Avito Validation Model (Merged)

Fine-tuned Qwen2.5-1.5B-Instruct для валидации объявлений Avito. LoRA адаптер смержен с базовой моделью для удобства развертывания.

Model Details

  • Base Model: Qwen/Qwen2.5-1.5B-Instruct
  • Training Method: LoRA (merged)
  • LoRA Rank: 16
  • LoRA Alpha: 32
  • Target Modules: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
  • Training Platform: Fireworks.ai (December 2024)

Training Stats

  • Epochs: 2
  • Steps: 3,333
  • Training Sequences: 34,672
  • Training Tokens: ~101M
  • Final Loss: 0.125

Usage

Direct Usage

from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("Stepan222/avito-validation-merged")
tokenizer = AutoTokenizer.from_pretrained("Stepan222/avito-validation-merged")

# Example input
messages = [
    {"role": "system", "content": "Ты эксперт по валидации объявлений. Всегда отвечай строго в JSON формате."},
    {"role": "user", "content": '''АРТИКУЛ: "06L121011B"
ОБЪЯВЛЕНИЯ: [{"id": "7655180983", "title": "Насос водяной VAG 06L121011B", "snippet": "...", "price": 9890.0}]'''}
]

text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0]))

Input Format

АРТИКУЛ: "<articulum>"
ОБЪЯВЛЕНИЯ: [
  {"id": "...", "title": "...", "snippet": "...", "price": ..., "seller_reviews": ...},
  ...
]

Output Format

{
  "passed_ids": ["id1", "id2", ...],
  "rejected": [
    {"id": "id3", "reason": "Причина отклонения"}
  ]
}

License

Apache 2.0

Downloads last month
13
Safetensors
Model size
2B params
Tensor type
F16
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Stepan222/avito-validation-merged

Base model

Qwen/Qwen2.5-1.5B
Finetuned
(1370)
this model