LayoutLMV3_training

This model is a fine-tuned version of microsoft/layoutlmv3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2281
  • Precision: 0.8155
  • Recall: 0.86
  • F1: 0.8372
  • Accuracy: 0.9433

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.6667 100 1.6251 0.0512 0.0442 0.0475 0.5825
No log 1.3333 200 1.1656 0.4150 0.4988 0.4531 0.7626
No log 2.0 300 0.7479 0.5971 0.6915 0.6408 0.8657
No log 2.6667 400 0.5020 0.7014 0.7673 0.7329 0.9050
1.1334 3.3333 500 0.3852 0.7695 0.8297 0.7985 0.9251
1.1334 4.0 600 0.3149 0.7837 0.8345 0.8083 0.9327
1.1334 4.6667 700 0.2675 0.8177 0.8588 0.8377 0.9420
1.1334 5.3333 800 0.2460 0.8265 0.8606 0.8432 0.9423
1.1334 6.0 900 0.2363 0.8138 0.8606 0.8365 0.9415
0.3094 6.6667 1000 0.2281 0.8155 0.86 0.8372 0.9433

Framework versions

  • Transformers 4.57.3
  • Pytorch 2.9.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
30
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for TomasFAV/LayoutLMV3_training

Finetuned
(289)
this model

Evaluation results