Aadhya-rvlcdip-vit-classifier-3
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.1411
- Accuracy: 0.6887
- Precision: 0.6883
- Recall: 0.6887
- F1: 0.6836
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 188 | 1.7333 | 0.549 | 0.6379 | 0.549 | 0.5230 |
| No log | 2.0 | 376 | 1.4089 | 0.636 | 0.6717 | 0.636 | 0.6226 |
| 1.6083 | 3.0 | 564 | 1.2312 | 0.666 | 0.6863 | 0.666 | 0.6715 |
| 1.6083 | 4.0 | 752 | 1.1426 | 0.7 | 0.7150 | 0.7 | 0.7021 |
| 1.6083 | 5.0 | 940 | 1.0885 | 0.709 | 0.7103 | 0.709 | 0.7072 |
| 0.6576 | 6.0 | 1128 | 1.0865 | 0.699 | 0.7108 | 0.699 | 0.7010 |
| 0.6576 | 7.0 | 1316 | 1.0942 | 0.69 | 0.7158 | 0.69 | 0.6980 |
| 0.246 | 8.0 | 1504 | 1.0737 | 0.706 | 0.7215 | 0.706 | 0.7110 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 13
Model tree for aadhya1803/Aadhya-rvlcdip-vit-classifier-3
Base model
google/vit-base-patch16-224-in21k