Aadhyas-rvlcdip-vit-classifier
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.3307
- Accuracy: 0.6675
- Precision: 0.6793
- Recall: 0.6675
- F1: 0.6665
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| No log | 1.0 | 125 | 1.9642 | 0.5188 | 0.5316 | 0.5188 | 0.4815 |
| No log | 2.0 | 250 | 1.6649 | 0.565 | 0.5880 | 0.565 | 0.5474 |
| No log | 3.0 | 375 | 1.4671 | 0.65 | 0.6777 | 0.65 | 0.6550 |
| 1.5975 | 4.0 | 500 | 1.3606 | 0.6587 | 0.6711 | 0.6587 | 0.6558 |
| 1.5975 | 5.0 | 625 | 1.3307 | 0.6675 | 0.6793 | 0.6675 | 0.6665 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 8
Model tree for aadhya1803/Aadhyas-rvlcdip-vit-classifier
Base model
google/vit-base-patch16-224-in21k