F2LLM-v2-0.6B-Preview
F2LLM-v2-0.6B-Preview is a multilingual embedding model trained from Qwen3-0.6B on a corpus of 27 million samples, spanning over 100 natural and programming languages. It is a "preview" version trained without instructions and intended to serve as a foundation for downstream embedding tasks and further fine-tuning.
Usage
With Sentence Transformers
To encode text with the Sentence Transformers library:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("codefuse-ai/F2LLM-v2-0.6B-Preview", device="cuda:0", model_kwargs={"torch_dtype": "bfloat16"})
# Some sample query and documents
query = "What is F2LLM used for?"
documents = [
'We present F2LLM, a family of fully open embedding LLMs that achieve a strong balance between model size, training data, and embedding performance.',
'F2LLM is a model for computing text embeddings that can be used for various NLP tasks such as information retrieval, semantic search, and text classification.',
'F2LLM 是 CodeFuse 开源的系列嵌入模型。',
'F2LLM — это модель вычисления встраивания текста, которую можно использовать для различных задач НЛП, таких как поиск информации, семантический поиск и классификация текста.'
]
# Encode the query and documents
query_embedding = model.encode(query)
document_embeddings = model.encode(documents)
print(query_embedding.shape, document_embeddings.shape)
# (1024,) (4, 1024)
# Compute cosine similarity between the query and documents
similarity = model.similarity(query_embedding, document_embeddings)
print(similarity)
# tensor([[0.5520, 0.7553, 0.6339, 0.7554]])
With Transformers
Or directly with the Transformers library:
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
model_path = "codefuse-ai/F2LLM-v2-0.6B-Preview"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModel.from_pretrained(model_path, torch_dtype=torch.bfloat16, device_map={'': 0})
query = "What is F2LLM used for?"
documents = [
'We present F2LLM, a family of fully open embedding LLMs that achieve a strong balance between model size, training data, and embedding performance.',
'F2LLM is a model for computing text embeddings that can be used for various NLP tasks such as information retrieval, semantic search, and text classification.',
'F2LLM 是 CodeFuse 开源的系列嵌入模型。',
'F2LLM — это модель вычисления встраивания текста, которую можно использовать для различных задач НЛП, таких как поиск информации, семантический поиск и классификация текста.'
]
def encode(sentences):
batch_size = len(sentences)
# the tokenizer will automatically add eos token
tokenized_inputs = tokenizer(sentences, padding=True, return_tensors='pt').to(model.device)
last_hidden_state = model(**tokenized_inputs).last_hidden_state
eos_positions = tokenized_inputs.attention_mask.sum(dim=1) - 1
embeddings = last_hidden_state[torch.arange(batch_size, device=model.device), eos_positions]
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Encode the query and documents
query_embedding = encode([query])
document_embeddings = encode(documents)
print(query_embedding.shape, document_embeddings.shape)
# torch.Size([1, 1024]) torch.Size([4, 1024])
# Compute cosine similarity between the query and documents
similarity = query_embedding @ document_embeddings.T
print(similarity)
# tensor([[0.5508, 0.7539, 0.6367, 0.7578]], device='cuda:0',
# dtype=torch.bfloat16, grad_fn=<MmBackward0>)
Future Releases
We are committed to the open-source community and will soon release:
- The Finetuned Version: Optimized for downstream tasks, with state-of-the-art performance on MTEB.
- The Training Data: We will be releasing the data used to train F2LLM-v2 to help advance the field of multilingual embeddings.
Stay tuned for more updates!
- Downloads last month
- 7