Dataset Viewer
Auto-converted to Parquet Duplicate
id
stringlengths
10
10
title
stringlengths
23
131
pdf_path
stringlengths
58
58
num_references_total
int64
14
144
num_references_related_work
int64
0
60
bibliography_related_work
listlengths
0
60
bibliography_all
listlengths
14
144
related_work_ids
listlengths
0
60
bibliography_all_ids
listlengths
14
144
ayBKRjGDEI
Differentially Private Hierarchical Clustering with Provable Approximation Guarantees
data/openreview_paper/ICML_2023_oral/ayBKRjGDEI//paper.pdf
61
27
[ { "authors": [ "Shiva Prasad Kasiviswanathan", "Kobbi Nissim", "Sofya Raskhodnikova", "Adam Smith" ], "doi": "10.1007/978-3-642-36594-2_26", "ref_id": "b37", "title": "Analyzing Graphs with Node Differential Privacy", "year": "2013" }, { "authors": [ "Anil K Jain" ], "doi": "10.1016/j.patrec.2009.09.011", "ref_id": "b34", "title": "Data clustering: 50 years beyond K-means", "year": "2010" }, { "authors": [ "Aditya Hegde", "Helen Möllering", "Thomas Schneider", "Hossein Yalame" ], "doi": "10.2478/popets-2021-0068", "ref_id": "b33", "title": "SoK: Efficient Privacy-preserving Clustering", "year": "2021. 2021" }, { "authors": [ "Úlfar Erlingsson", "Vasyl Pihur", "Aleksandra Korolova" ], "doi": "10.1145/2660267.2660348", "ref_id": "b28", "title": "RAPPOR", "year": "2014" }, { "authors": [ "Fionn Murtagh", "Pedro Contreras" ], "doi": "10.1002/widm.53", "ref_id": "b49", "title": "Algorithms for hierarchical clustering: an overview", "year": "2012" }, { "authors": [ "Qian Xiao", "Rui Chen", "Kian-Lee Tan" ], "doi": "10.1145/2623330.2623642", "ref_id": "b60", "title": "Differentially private network data release via structural inference", "year": "2014" }, { "authors": [ "Moses Charikar", "Vaggos Chatziafratis" ], "doi": "10.1137/1.9781611974782.53", "ref_id": "b8", "title": "Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics", "year": "2017" }, { "authors": [ "A Epasto", "V Mirrokni", "B Perozzi", "A Tsitsulin", "P Zhong" ], "doi": "", "ref_id": "b27", "title": "Differentially private graph learning via sensitivity-bounded personalized pagerank", "year": "2022" }, { "authors": [ "M Bun", "M Elias", "J Kulkarni" ], "doi": "", "ref_id": "b7", "title": "Differentially private correlation clustering", "year": "2021" }, { "authors": [ "Vincent Cohen-Addad", "Varun Kanade", "Frederik Mallmann-Trenn", "Claire Mathieu" ], "doi": "10.1145/3321386", "ref_id": "b12", "title": "Hierarchical Clustering", "year": "2017" }, { "authors": [ "A Agarwal", "S Khanna", "H Li", "P Patil" ], "doi": "", "ref_id": "b0", "title": "Sublinear algorithms for hierarchical clustering", "year": "2022" }, { "authors": [ "M Eliáš", "M Kapralov", "J Kulkarni", "Y T Lee" ], "doi": "", "ref_id": "b26", "title": "Differentially private release of synthetic graphs", "year": "2020" }, { "authors": [ "R Arora", "J Upadhyay" ], "doi": "", "ref_id": "b1", "title": "On differentially private graph sparsification and applications", "year": "2019" }, { "authors": [ "Cynthia Dwork", "Frank Mcsherry", "Kobbi Nissim", "Adam Smith" ], "doi": "10.1007/11681878_14", "ref_id": "b22", "title": "Calibrating Noise to Sensitivity in Private Data Analysis", "year": "2006" }, { "authors": [ "Badih Ghazi", "Cristóbal Guzmán", "Pritish Kamath", "Ravi Kumar", "Pasin Manurangsi" ], "doi": "10.52202/079017-2025", "ref_id": "b30", "title": "Differentially Private Optimization with Sparse Gradients", "year": "2020" }, { "authors": [ "K Chaudhuri", "C Monteleoni", "A D Sarwate" ], "doi": "", "ref_id": "b10", "title": "Differentially private empirical risk minimization", "year": "2011" }, { "authors": [ "V Chatziafratis", "G Yaroslavtsev", "E Lee", "K Makarychev", "S Ahmadian", "A Epasto", "M Mahdian" ], "doi": "", "ref_id": "b9", "title": "Bisect and conquer: Hierarchical clustering via max-uncut bisection", "year": "2020" }, { "authors": [ "M.-F Balcan", "T Dick", "Y Liang", "W Mou", "H Zhang" ], "doi": "", "ref_id": "b2", "title": "Differentially private clustering in high-dimensional euclidean spaces", "year": "2017" }, { "authors": [ "Aashish Kolluri", "Teodora Baluta", "Prateek Saxena" ], "doi": "10.1145/3460120.3484822", "ref_id": "b38", "title": "Private Hierarchical Clustering in Federated Networks", "year": "2021" }, { "authors": [ "Cynthia Dwork", "Kunal Talwar", "Abhradeep Thakurta", "Li Zhang" ], "doi": "10.1145/2591796.2591883", "ref_id": "b24", "title": "Analyze gauss", "year": "2014b" }, { "authors": [ "Agus Santoso", "Siti Nurhayati" ], "doi": "10.55640/ijidml-v02i02-02", "ref_id": "b48", "title": "ALGORITHMIC GUARANTEES FOR HIERARCHICAL DATA GROUPING: INSIGHTS FROM AVERAGE LINKAGE, BISECTING K-MEANS, AND LOCAL SEARCH HEURISTICS", "year": "2017" }, { "authors": [ "Ashwin Machanavajjhala", "Xi He", "Michael Hay" ], "doi": "10.1145/3035918.3054779", "ref_id": "b42", "title": "Differential Privacy in the Wild", "year": "2017" }, { "authors": [ "Cynthia Dwork" ], "doi": "10.1145/3294052.3322188", "ref_id": "b21", "title": "Differential Privacy and the US Census", "year": "2019" }, { "authors": [ "J Blocki", "A Blum", "A Datta", "O Sheffet" ], "doi": "", "ref_id": "b6", "title": "The johnsonlindenstrauss transform itself preserves differential privacy", "year": "2012. 2012" }, { "authors": [ "Frank Mcsherry", "Kunal Talwar" ], "doi": "10.1109/focs.2007.66", "ref_id": "b45", "title": "Mechanism Design via Differential Privacy", "year": "2007" }, { "authors": [ "Sanjoy Dasgupta" ], "doi": "10.1145/2897518.2897527", "ref_id": "b17", "title": "A cost function for similarity-based hierarchical clustering", "year": "2016" }, { "authors": [ "Amrita Roy Chowdhury", "Chenghong Wang", "Xi He", "Ashwin Machanavajjhala", "Somesh Jha" ], "doi": "10.1145/3318464.3380596", "ref_id": "b51", "title": "Cryptϵ", "year": "2020" } ]
[ { "authors": [ "A Agarwal", "S Khanna", "H Li", "P Patil" ], "doi": "", "ref_id": "b0", "title": "Sublinear algorithms for hierarchical clustering", "year": "2022" }, { "authors": [ "R Arora", "J Upadhyay" ], "doi": "", "ref_id": "b1", "title": "On differentially private graph sparsification and applications", "year": "2019" }, { "authors": [ "M.-F Balcan", "T Dick", "Y Liang", "W Mou", "H Zhang" ], "doi": "", "ref_id": "b2", "title": "Differentially private clustering in high-dimensional euclidean spaces", "year": "2017" }, { "authors": [ "M Bateni", "S Behnezhad", "M Derakhshan", "M Hajiaghayi", "R Kiveris", "S Lattanzi", "V Mirrokni" ], "doi": "", "ref_id": "b3", "title": "Affinity clustering: Hierarchical clustering at scale", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b4", "title": "", "year": "2017" }, { "authors": [ "Rajendra Bhatia" ], "doi": "10.1007/978-1-4612-0653-8", "ref_id": "b5", "title": "Matrix Analysis", "year": "1997" }, { "authors": [ "J Blocki", "A Blum", "A Datta", "O Sheffet" ], "doi": "", "ref_id": "b6", "title": "The johnsonlindenstrauss transform itself preserves differential privacy", "year": "2012. 2012" }, { "authors": [ "M Bun", "M Elias", "J Kulkarni" ], "doi": "", "ref_id": "b7", "title": "Differentially private correlation clustering", "year": "2021" }, { "authors": [ "Moses Charikar", "Vaggos Chatziafratis" ], "doi": "10.1137/1.9781611974782.53", "ref_id": "b8", "title": "Approximate Hierarchical Clustering via Sparsest Cut and Spreading Metrics", "year": "2017" }, { "authors": [ "V Chatziafratis", "G Yaroslavtsev", "E Lee", "K Makarychev", "S Ahmadian", "A Epasto", "M Mahdian" ], "doi": "", "ref_id": "b9", "title": "Bisect and conquer: Hierarchical clustering via max-uncut bisection", "year": "2020" }, { "authors": [ "K Chaudhuri", "C Monteleoni", "A D Sarwate" ], "doi": "", "ref_id": "b10", "title": "Differentially private empirical risk minimization", "year": "2011" }, { "authors": [ "H Chen", "V Cohen-Addad", "T Orsi", "A Epasto", "J Imola", "D Steurer", "S Tiegel" ], "doi": "", "ref_id": "b11", "title": "Private estimation algorithms for stochastic block models and mixture models", "year": "2023" }, { "authors": [ "Vincent Cohen-Addad", "Varun Kanade", "Frederik Mallmann-Trenn", "Claire Mathieu" ], "doi": "10.1145/3321386", "ref_id": "b12", "title": "Hierarchical Clustering", "year": "2017" }, { "authors": [ "Vincent Cohen-Addad", "Varun Kanade", "Frederik Mallmann-Trenn", "Claire Mathieu" ], "doi": "10.1145/3321386", "ref_id": "b13", "title": "Hierarchical Clustering", "year": "2019" }, { "authors": [ "Vincent Cohen-Addad", "Alessandro Epasto", "Silvio Lattanzi", "Vahab Mirrokni", "Andres Munoz Medina", "David Saulpic", "Chris Schwiegelshohn", "Sergei Vassilvitskii" ], "doi": "10.1145/3534678.3539409", "ref_id": "b14", "title": "Scalable Differentially Private Clustering via Hierarchically Separated Trees", "year": "2022" }, { "authors": [ "V Cohen-Addad", "A Epasto", "V Mirrokni", "S Narayanan", "P Zhong" ], "doi": "", "ref_id": "b15", "title": "Near-optimal private and scalable kclustering", "year": "2022" }, { "authors": [ "V Cohen-Addad", "C Fan", "S Lattanzi", "S Mitrović", "A Norouzi-Fard", "N Parotsidis", "J Tarnawski" ], "doi": "", "ref_id": "b16", "title": "Nearoptimal correlation clustering with privacy", "year": "2022" }, { "authors": [ "Sanjoy Dasgupta" ], "doi": "10.1145/2897518.2897527", "ref_id": "b17", "title": "A cost function for similarity-based hierarchical clustering", "year": "2016" }, { "authors": [ "L Dhulipala", "D Eisenstat", "J Łacki", "V Mirronki", "J Shi" ], "doi": "", "ref_id": "b18", "title": "Hierarchical agglomerative graph clustering in poly-logarithmic depth", "year": "2022" }, { "authors": [ "Ibai Diez", "Paolo Bonifazi", "Iñaki Escudero", "Beatriz Mateos", "Miguel A Muñoz", "Sebastiano Stramaglia", "Jesus M Cortes" ], "doi": "10.1038/srep10532", "ref_id": "b19", "title": "A novel brain partition highlights the modular skeleton shared by structure and function", "year": "2015" }, { "authors": [ "Jingqiu Ding", "Tommaso D'orsi", "Rajai Nasser", "David Steurer" ], "doi": "10.1109/focs52979.2021.00046", "ref_id": "b20", "title": "Robust recovery for stochastic block models", "year": "2021. 2022" }, { "authors": [ "Cynthia Dwork" ], "doi": "10.1145/3294052.3322188", "ref_id": "b21", "title": "Differential Privacy and the US Census", "year": "2019" }, { "authors": [ "Cynthia Dwork", "Frank Mcsherry", "Kobbi Nissim", "Adam Smith" ], "doi": "10.1007/11681878_14", "ref_id": "b22", "title": "Calibrating Noise to Sensitivity in Private Data Analysis", "year": "2006" }, { "authors": [ "Cynthia Dwork", "Aaron Roth" ], "doi": "10.1561/0400000042", "ref_id": "b23", "title": "The Algorithmic Foundations of Differential Privacy", "year": "2014" }, { "authors": [ "Cynthia Dwork", "Kunal Talwar", "Abhradeep Thakurta", "Li Zhang" ], "doi": "10.1145/2591796.2591883", "ref_id": "b24", "title": "Analyze gauss", "year": "2014b" }, { "authors": [ "Michael B Eisen", "Paul T Spellman", "Patrick O Brown", "David Botstein" ], "doi": "10.1073/pnas.95.25.14863", "ref_id": "b25", "title": "Cluster analysis and display of genome-wide expression patterns", "year": "1998" }, { "authors": [ "M Eliáš", "M Kapralov", "J Kulkarni", "Y T Lee" ], "doi": "", "ref_id": "b26", "title": "Differentially private release of synthetic graphs", "year": "2020" }, { "authors": [ "A Epasto", "V Mirrokni", "B Perozzi", "A Tsitsulin", "P Zhong" ], "doi": "", "ref_id": "b27", "title": "Differentially private graph learning via sensitivity-bounded personalized pagerank", "year": "2022" }, { "authors": [ "Úlfar Erlingsson", "Vasyl Pihur", "Aleksandra Korolova" ], "doi": "10.1145/2660267.2660348", "ref_id": "b28", "title": "RAPPOR", "year": "2014" }, { "authors": [ "Yingjie Fei", "Yudong Chen" ], "doi": "10.1109/tit.2020.2966438", "ref_id": "b29", "title": "Achieving the Bayes Error Rate in Synchronization and Block Models by SDP, Robustly", "year": "2020" }, { "authors": [ "Badih Ghazi", "Cristóbal Guzmán", "Pritish Kamath", "Ravi Kumar", "Pasin Manurangsi" ], "doi": "10.52202/079017-2025", "ref_id": "b30", "title": "Differentially Private Optimization with Sparse Gradients", "year": "2020" }, { "authors": [ "O Guédon", "R Vershynin" ], "doi": "10.1007/s00440-015-0659-z", "ref_id": "b31", "title": "Community detection in sparse networks via Grothendieck's inequality", "year": "2016" }, { "authors": [ "M Hardt", "K Talwar" ], "doi": "", "ref_id": "b32", "title": "On the geometry of differential privacy", "year": "2010" }, { "authors": [ "Aditya Hegde", "Helen Möllering", "Thomas Schneider", "Hossein Yalame" ], "doi": "10.2478/popets-2021-0068", "ref_id": "b33", "title": "SoK: Efficient Privacy-preserving Clustering", "year": "2021. 2021" }, { "authors": [ "Anil K Jain" ], "doi": "10.1016/j.patrec.2009.09.011", "ref_id": "b34", "title": "Data clustering: 50 years beyond K-means", "year": "2010" }, { "authors": [ "N Jardine", "R Sibson" ], "doi": "10.1016/0025-5564(68)90030-8", "ref_id": "b35", "title": "A model for taxonomy", "year": "1968" }, { "authors": [ "W B Johnson" ], "doi": "", "ref_id": "b36", "title": "Extensions of lipschitz mappings into a hilbert space", "year": "1984" }, { "authors": [ "Shiva Prasad Kasiviswanathan", "Kobbi Nissim", "Sofya Raskhodnikova", "Adam Smith" ], "doi": "10.1007/978-3-642-36594-2_26", "ref_id": "b37", "title": "Analyzing Graphs with Node Differential Privacy", "year": "2013" }, { "authors": [ "Aashish Kolluri", "Teodora Baluta", "Prateek Saxena" ], "doi": "10.1145/3460120.3484822", "ref_id": "b38", "title": "Private Hierarchical Clustering in Federated Networks", "year": "2021" }, { "authors": [ "Y Lecun" ], "doi": "10.17683/ijomam.issue5.19", "ref_id": "b39", "title": "AN INTELLIGENT ROLLING BEARING FAULT DIAGNOSIS METHOD OF CNN BASED ON MNIST DATABASE OF HANDWRITTEN DIGITS", "year": "1998" }, { "authors": [ "J Leskovec", "A Rajaraman", "J D Ullman" ], "doi": "", "ref_id": "b40", "title": "Mining of massive datasets", "year": "2014" }, { "authors": [ "A Liu", "A Moitra" ], "doi": "10.48550/arXiv.2207.11903", "ref_id": "b41", "title": "Minimax rates for robust community detection", "year": "2022" }, { "authors": [ "Ashwin Machanavajjhala", "Xi He", "Michael Hay" ], "doi": "10.1145/3035918.3054779", "ref_id": "b42", "title": "Differential Privacy in the Wild", "year": "2017" }, { "authors": [ "Charles F Mann", "David W Matula", "Eli V Olinick" ], "doi": "10.1016/j.socnet.2008.03.004", "ref_id": "b43", "title": "The use of sparsest cuts to reveal the hierarchical community structure of social networks", "year": "2008" }, { "authors": [ "F Mcsherry" ], "doi": "10.1109/sfcs.2001.959929", "ref_id": "b44", "title": "Spectral partitioning of random graphs", "year": "2001" }, { "authors": [ "Frank Mcsherry", "Kunal Talwar" ], "doi": "10.1109/focs.2007.66", "ref_id": "b45", "title": "Mechanism Design via Differential Privacy", "year": "2007" }, { "authors": [ "Ankur Moitra", "William Perry", "Alexander S Wein" ], "doi": "10.1145/2897518.2897573", "ref_id": "b46", "title": "How robust are reconstruction thresholds for community detection?", "year": "2016" }, { "authors": [ "Andrea Montanari", "Subhabrata Sen" ], "doi": "10.1145/2897518.2897548", "ref_id": "b47", "title": "Semidefinite programs on sparse random graphs and their application to community detection", "year": "2016" }, { "authors": [ "Agus Santoso", "Siti Nurhayati" ], "doi": "10.55640/ijidml-v02i02-02", "ref_id": "b48", "title": "ALGORITHMIC GUARANTEES FOR HIERARCHICAL DATA GROUPING: INSIGHTS FROM AVERAGE LINKAGE, BISECTING K-MEANS, AND LOCAL SEARCH HEURISTICS", "year": "2017" }, { "authors": [ "Fionn Murtagh", "Pedro Contreras" ], "doi": "10.1002/widm.53", "ref_id": "b49", "title": "Algorithms for hierarchical clustering: an overview", "year": "2012" }, { "authors": [ "R Pinot" ], "doi": "", "ref_id": "b50", "title": "Minimum spanning tree release under differential privacy constraints", "year": "2018" }, { "authors": [ "Amrita Roy Chowdhury", "Chenghong Wang", "Xi He", "Ashwin Machanavajjhala", "Somesh Jha" ], "doi": "10.1145/3318464.3380596", "ref_id": "b51", "title": "Cryptϵ", "year": "2020" }, { "authors": [ "M Seif", "D Nguyen", "A Vullikanti", "R Tandon" ], "doi": "", "ref_id": "b52", "title": "Differentially private community detection for stochastic block models", "year": "2022" }, { "authors": [ "P H A Sneath", "Robert R Sokal" ], "doi": "10.1038/193855a0", "ref_id": "b53", "title": "Numerical Taxonomy", "year": "1962" }, { "authors": [ "M Steinbach", "G Karypis", "V Kumar" ], "doi": "", "ref_id": "b54", "title": "A comparison of document clustering techniques", "year": "2000" }, { "authors": [ "Michele Tumminello", "Fabrizio Lillo", "Rosario N Mantegna" ], "doi": "10.1016/j.jebo.2010.01.004", "ref_id": "b55", "title": "Correlation, hierarchies, and networks in financial markets", "year": "2010" }, { "authors": [ "Pauli Virtanen", "Ralf Gommers", "Travis E Oliphant", "Matt Haberland", "Tyler Reddy", "David Cournapeau", "Evgeni Burovski", "Pearu Peterson", "Warren Weckesser", "Jonathan Bright", "Stéfan J Van Der Walt", "Matthew Brett", "Joshua Wilson", "K Jarrod Millman", "Nikolay Mayorov", "Andrew R J Nelson", "Eric Jones", "Robert Kern", "Eric Larson", "C J Carey", "İlhan Polat", "Yu Feng", "Eric W Moore", "Jake Vanderplas", "Denis Laxalde", "Josef Perktold", "Robert Cimrman", "Ian Henriksen", "E A Quintero", "Charles R Harris", "Anne M Archibald", "Antônio H Ribeiro", "Fabian Pedregosa", "Paul Van Mulbregt" ], "doi": "10.1038/s41592-020-0772-5", "ref_id": "b56", "title": "Author Correction: SciPy 1.0: fundamental algorithms for scientific computing in Python", "year": "2020" }, { "authors": [ "V Vu" ], "doi": "", "ref_id": "b57", "title": "A simple svd algorithm for finding hidden partitions", "year": "2014" }, { "authors": [ "V H Vu" ], "doi": "10.1145/1060590.1060654", "ref_id": "b58", "title": "Spectral norm of random matrices", "year": "2005" }, { "authors": [ "Joe H Ward Jr" ], "doi": "10.1080/01621459.1963.10500845", "ref_id": "b59", "title": "Hierarchical Grouping to Optimize an Objective Function", "year": "1963" }, { "authors": [ "Qian Xiao", "Rui Chen", "Kian-Lee Tan" ], "doi": "10.1145/2623330.2623642", "ref_id": "b60", "title": "Differentially private network data release via structural inference", "year": "2014" } ]
[ "fa2f0f3760db598f", "a17c645d3ff160b9", "04741b0414ee99dc", "3307bce4c069789b", "2dc7f23bbb9c5f1c", "2810c40af3bbd53b", "5d65b45a5a400ebc", "dc12e618800d2c1c", "e08071ba035b67f8", "0418bc13b9b99902", "9009fdb89166ac06", "d480d1699a13a0ba", "0657f4769776989d", "8ca672d841e344b7", "4c18a1eeb7e22635", "ee6702d920cf7d7f", "245032ecd61be161", "4bbf5ac7b1ea59cb", "257a5abfec7c8543", "9a213050f596710c", "f577645e0e64cd19", "37c88ccbc436abb7", "8c2964e52542dc80", "0129d9dbb15a08fb", "1ec3e811476ea4fe", "fd71f771897b8434", "29e5bb4ebe7209e1" ]
[ "9009fdb89166ac06", "0657f4769776989d", "4bbf5ac7b1ea59cb", "8215de6d2fe2b4dd", "1b4395952f8afebb", "c12d783b24cff61d", "0129d9dbb15a08fb", "e08071ba035b67f8", "5d65b45a5a400ebc", "245032ecd61be161", "ee6702d920cf7d7f", "ccefd7f65017e499", "0418bc13b9b99902", "5f749504babb9be5", "a14efa685b7d7edb", "e8b2e9ef5be83c9e", "b530d7ffd52e4c3a", "fd71f771897b8434", "879c2ee4adf0c13b", "88f27a1db7214c54", "ea50c9f48f424cc3", "8c2964e52542dc80", "8ca672d841e344b7", "13dee622b725cef9", "9a213050f596710c", "eb2eb78a478acf25", "d480d1699a13a0ba", "dc12e618800d2c1c", "3307bce4c069789b", "28d7e264c740ea38", "4c18a1eeb7e22635", "5be74c38afc4b0e4", "472c16a46f628d27", "04741b0414ee99dc", "a17c645d3ff160b9", "b3f3a172f8c87d9a", "14ce04035ce06a63", "fa2f0f3760db598f", "257a5abfec7c8543", "1c57110a5bed4dc1", "c713247be52998f1", "cd6a23273f7a430f", "37c88ccbc436abb7", "f5ce6e250ea77d87", "3c981d048f2cae90", "1ec3e811476ea4fe", "427de95a4cf0495b", "33e8155a4343caa7", "f577645e0e64cd19", "2dc7f23bbb9c5f1c", "cdeaaf935d35be1a", "29e5bb4ebe7209e1", "5c296e1f10c82d37", "91b7cd3a229fb60d", "c462dd0316412518", "75f7a12bd434585f", "b755e01a0c2ae13e", "6db7e104011c44c2", "7f242cdfd0d155cc", "b1ed5207bfe54143", "2810c40af3bbd53b" ]
nS2x7LOKZk
Are labels informative in semi-supervised learning? Estimating and leveraging the missing-data mechanism.
data/openreview_paper/ICML_2023_oral/nS2x7LOKZk//paper.pdf
44
0
[]
[ { "authors": [ "D Ahfock", "G J Mclachlan" ], "doi": "", "ref_id": "b0", "title": "On missing label patterns in semi-supervised learning", "year": "2019" }, { "authors": [ "S Armato", "G Mclennan", "M Mcnitt-Gray", "C Meyer", "A Reeves", "L Bidaut", "B Zhao", "B Croft", "L Clarke" ], "doi": "10.1118/1.3469350", "ref_id": "b1", "title": "WE-B-201B-02: The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Public Database of CT Scans for Lung Nodule Analysis", "year": "2011" }, { "authors": [ "Stuart G Baker", "Nan M Laird" ], "doi": "10.1080/01621459.1988.10478565", "ref_id": "b2", "title": "Regression Analysis for Categorical Variables with Outcome Subject to Nonignorable Nonresponse", "year": "1988" }, { "authors": [ "D Berthelot", "N Carlini", "E D Cubuk", "A Kurakin", "K Sohn", "H Zhang", "C Raffel" ], "doi": "", "ref_id": "b3", "title": "Remixmatch: Semisupervised learning with distribution alignment and augmentation anchoring", "year": "2019" }, { "authors": [ "K Cao", "M Brbic", "J Leskovec" ], "doi": "", "ref_id": "b4", "title": "Open-world semisupervised learning", "year": "2021" }, { "authors": [], "doi": "10.7551/mitpress/9780262033589.001.0001", "ref_id": "b5", "title": "Semi-Supervised Learning", "year": "2006" }, { "authors": [ "Yanbei Chen", "Xiatian Zhu", "Wei Li", "Shaogang Gong" ], "doi": "10.1609/aaai.v34i04.5763", "ref_id": "b6", "title": "Semi-Supervised Learning under Class Distribution Mismatch", "year": "2020" }, { "authors": [ "N Codella", "V Rotemberg", "P Tschandl", "M E Celebi", "S Dusza", "D Gutman", "B Helba", "A Kalloo", "K Liopyris", "M Marchetti" ], "doi": "", "ref_id": "b7", "title": "Skin lesion analysis toward melanoma detection 2018: A challenge hosted by the international skin imaging collaboration", "year": "2019" }, { "authors": [ "X Haultfoeuille" ], "doi": "10.1016/j.jeconom.2009.06.005", "ref_id": "b8", "title": "A new instrumental method for dealing with endogenous selection", "year": "2010" }, { "authors": [ "Yves Grandvalet", "Yoshua Bengio" ], "doi": "10.7551/mitpress/6173.003.0013", "ref_id": "b9", "title": "Entropy Regularization", "year": "2004" }, { "authors": [ "L.-Z Guo", "Z.-Y Zhang", "Y Jiang", "Y.-F Li", "Z.-H Zhou" ], "doi": "", "ref_id": "b10", "title": "Safe deep semi-supervised learning for unseen-class unlabeled data", "year": "2020" }, { "authors": [ "X Hu", "Y Niu", "C Miao", "X.-S Hua", "H Zhang" ], "doi": "", "ref_id": "b11", "title": "On non-random missing labels in semi-supervised learning", "year": "2022" }, { "authors": [ "Z Huang", "C Xue", "B Han", "J Yang", "C Gong" ], "doi": "", "ref_id": "b12", "title": "Universal semi-supervised learning", "year": "2021" }, { "authors": [ "Joseph G Ibrahim", "Stuart R Lipsitz" ], "doi": "10.2307/2533068", "ref_id": "b13", "title": "Parameter Estimation from Incomplete Data in Binomial Regression When the Missing Data Mechanism is Nonignorable", "year": "1996" }, { "authors": [ "J G Ibrahim", "M.-H Chen", "S R Lipsitz" ], "doi": "10.1093/biomet/88.2.551", "ref_id": "b14", "title": "Missing responses in generalised linear mixed models when the missing data mechanism is nonignorable", "year": "2001" }, { "authors": [ "A Krizhevsky" ], "doi": "", "ref_id": "b15", "title": "Learning multiple layers of features from tiny images", "year": "2009" }, { "authors": [ "M Le Morvan", "N Prost", "J Josse", "E Scornet", "G Varoquaux" ], "doi": "", "ref_id": "b16", "title": "Linear predictor on linearly-generated data with missing values: non consistency and solutions", "year": "2020" }, { "authors": [ "Y Lecun", "C Cortes" ], "doi": "", "ref_id": "b17", "title": "MNIST handwritten digit database", "year": "2010" }, { "authors": [ "D.-H Lee" ], "doi": "", "ref_id": "b18", "title": "Pseudo-label: The simple and efficient semisupervised learning method for deep neural networks", "year": "2013" }, { "authors": [ "Roderick Little", "Donald Rubin" ], "doi": "10.1002/9781119482260", "ref_id": "b19", "title": "Statistical Analysis with Missing Data, Third Edition", "year": "2019" }, { "authors": [ "Tiantian Liu", "Yair Goldberg" ], "doi": "10.1214/20-ejs1752", "ref_id": "b20", "title": "Kernel machines with missing responses", "year": "2020" }, { "authors": [ "W Miao", "E J Tchetgen Tchetgen" ], "doi": "", "ref_id": "b21", "title": "On varieties of doubly robust estimators under missingness not at random with a shadow variable", "year": "2016" }, { "authors": [ "Wang Miao", "Peng Ding", "Zhi Geng" ], "doi": "10.1080/01621459.2015.1105808", "ref_id": "b22", "title": "Identifiability of Normal and Normal Mixture Models with Nonignorable Missing Data", "year": "2016" }, { "authors": [ "W Miao", "L Liu", "E T Tchetgen", "Z Geng" ], "doi": "", "ref_id": "b23", "title": "Identification, doubly robust estimation, and semiparametric efficiency theory of nonignorable missing data with a shadow variable", "year": "2019" }, { "authors": [ "K Mohan" ], "doi": "10.4135/9781036230197.n1", "ref_id": "b24", "title": "Simon Massey Discusses Handling Missing Data", "year": "2018. 2018" }, { "authors": [ "Geert Molenberghs", "Caroline Beunckens", "Cristina Sotto", "Michael G Kenward" ], "doi": "10.1111/j.1467-9868.2007.00640.x", "ref_id": "b25", "title": "Every Missingness not at Random Model Has a Missingness at Random Counterpart with Equal Fit", "year": "2008" }, { "authors": [ "K Morikawa", "J K Kim", "Y Kano" ], "doi": "", "ref_id": "b26", "title": "Semiparametric maximum likelihood estimation with data missing not at random", "year": "2017" }, { "authors": [ "S A Murphy", "A W Van Der Vaart" ], "doi": "10.1080/01621459.2000.10474219", "ref_id": "b27", "title": "On Profile Likelihood", "year": "2000" }, { "authors": [ "Leland G Neuberg" ], "doi": "10.1017/s0266466603004109", "ref_id": "b28", "title": "<i>CAUSALITY: MODELS, REASONING, AND INFERENCE</i>, by Judea Pearl, Cambridge University Press, 2000", "year": "2000. 2003" }, { "authors": [ "A Paszke", "S Gross", "F Massa", "A Lerer", "J Bradbury", "G Chanan", "T Killeen", "Z Lin", "N Gimelshein", "L Antiga", "A Desmaison", "A Kopf", "E Yang", "Z Devito", "M Raison", "A Tejani", "S Chilamkurthy", "B Steiner", "L Fang", "J Bai", "S Chintala" ], "doi": "", "ref_id": "b29", "title": "Pytorch: An imperative style, high-performance deep learning library", "year": "2019" }, { "authors": [ "Sophia Rabe-Hesketh", "Anders Skrondal" ], "doi": "10.1007/s11336-022-09895-1", "ref_id": "b30", "title": "Ignoring Non-ignorable Missingness", "year": "2023" }, { "authors": [ "M N Rizve", "K Duarte", "Y S Rawat", "M Shah" ], "doi": "", "ref_id": "b31", "title": "In defense of pseudo-labeling: An uncertainty-aware pseudolabel selection framework for semi-supervised learning", "year": "2021" }, { "authors": [ "D B Rubin" ], "doi": "", "ref_id": "b32", "title": "Inference and missing data", "year": "1976" }, { "authors": [ "H Schmutz", "O Humbert", "P.-A Mattei", "Don" ], "doi": "", "ref_id": "b33", "title": "t fear the unlabelled: safe deep semi-supervised learning via simple debiasing", "year": "2023" }, { "authors": [ "H Scudder" ], "doi": "10.1109/tit.1965.1053799", "ref_id": "b34", "title": "Probability of error of some adaptive pattern-recognition machines", "year": "1965" }, { "authors": [ "Jun Shao", "Lei Wang" ], "doi": "10.1093/biomet/asv071", "ref_id": "b35", "title": "Semiparametric inverse propensity weighting for nonignorable missing data", "year": "2016" }, { "authors": [ "K Sohn", "D Berthelot", "C.-L Li", "Z Zhang", "N Carlini", "E D Cubuk", "A Kurakin", "H Zhang", "C Raffel" ], "doi": "", "ref_id": "b36", "title": "Fixmatch: Simplifying semi-supervised learning with consistency and confidence", "year": "2020" }, { "authors": [ "Aude Sportisse", "Claire Boyer", "Julie Josse" ], "doi": "10.1007/s11222-020-09963-5", "ref_id": "b37", "title": "Imputation and low-rank estimation with Missing Not At Random data", "year": "2020" }, { "authors": [ "Niansheng Tang", "Yuanyuan Ju" ], "doi": "10.1080/24754269.2018.1522481", "ref_id": "b38", "title": "Statistical inference for nonignorable missing-data problems: a selective review", "year": "2018" }, { "authors": [ "A W Van Der Vaart" ], "doi": "", "ref_id": "b39", "title": "Asymptotic statistics", "year": "1998" }, { "authors": [ "M J Wainwright" ], "doi": "", "ref_id": "b40", "title": "High-dimensional statistics: A nonasymptotic viewpoint", "year": "2019" }, { "authors": [ "Chen Wei", "Kihyuk Sohn", "Clayton Mellina", "Alan Yuille", "Fan Yang" ], "doi": "10.1109/cvpr46437.2021.01071", "ref_id": "b41", "title": "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning", "year": "2021" }, { "authors": [ "Q Xie", "Z Dai", "E Hovy", "T Luong", "Q Le" ], "doi": "", "ref_id": "b42", "title": "Unsupervised data augmentation for consistency training", "year": "2020" }, { "authors": [ "Jiancheng Yang", "Rui Shi", "Donglai Wei", "Zequan Liu", "Lin Zhao", "Bilian Ke", "Hanspeter Pfister", "Bingbing Ni" ], "doi": "10.1038/s41597-022-01721-8", "ref_id": "b43", "title": "MedMNIST v2 - A large-scale lightweight benchmark for 2D and 3D biomedical image classification", "year": "2023" } ]
[]
[ "d77d907412430276", "b36a42c1196bc1df", "95f4c334a583c90f", "d9cc705ab09783e4", "41d73f294532c611", "30c10ebd10dba633", "86dd1c289fd7d656", "1cb4a92437f5ebba", "15b0fc76be07ddf7", "eff4cf692532c430", "f056ca161136cee3", "039875c530ff3106", "cecf7080edd0362e", "d6acacd6286bbf9a", "92b23dc40a38de66", "0c75b99cd5e726b0", "05f2a6659d8bd950", "25e668b5a8e8f67d", "557f8fba6ea710f0", "19e20b1e9706c2b4", "4bc1c600fa2c017a", "4bf4d35c82c7d57f", "7ce3a27dfb4e382e", "bf89845a7f30745b", "cfb927fb567425fb", "f8a50883a128773b", "156def4d0acd02b6", "7d36dca2ef2fbbd8", "ca4629cdf5382c80", "e39313f99aa1bc1a", "f9d2e8dff8370c72", "be3f749c23991126", "a7c9c9d1886ee800", "7e28dc331c26a53e", "5aa13d8fc5339e9b", "80bd07d6bb6d817a", "64bc74beff5d44a1", "26bb58bc3036a558", "f653bb62ce8e104b", "d1820c0d2ab339f8", "1c5144a38c05be0c", "344bc4208b47db9e", "b199f993a4f6324b", "f41be9dc24b15ffa" ]
Ovu1horBiZ
Reinforcement Learning from Passive Data via Latent Intentions
data/openreview_paper/ICML_2023_oral/Ovu1horBiZ//paper.pdf
38
19
[ { "authors": [ "B Baker", "I Akkaya", "P Zhokhov", "J Huizinga", "J Tang", "A Ecoffet", "B Houghton", "R Sampedro", "J Clune" ], "doi": "", "ref_id": "b1", "title": "Video pretraining (vpt): Learning to act by watching unlabeled online videos", "year": "2022" }, { "authors": [ "Y J Ma", "S Sodhani", "D Jayaraman", "O Bastani", "V Kumar", "A Zhang" ], "doi": "", "ref_id": "b16", "title": "Vip: Towards universal visual reward and representation via value-implicit pre-training", "year": "2022" }, { "authors": [ "D Borsa", "A Barreto", "J Quan", "D J Mankowitz", "R Munos", "H V Hasselt", "D Silver", "T Schaul" ], "doi": "", "ref_id": "b4", "title": "Universal successor features approximators", "year": "2018" }, { "authors": [ "T Xiao", "I Radosavovic", "T Darrell", "J Malik" ], "doi": "", "ref_id": "b35", "title": "Masked visual pre-training for motor control", "year": "2022" }, { "authors": [ "M Chang", "A Gupta", "S Gupta" ], "doi": "", "ref_id": "b5", "title": "Learning value functions from undirected state-only experience", "year": "2022" }, { "authors": [ "Richard S Sutton", "Joseph Modayil", "Michael Delp", "Thomas Degris", "Patrick M Pilarski", "Adam White", "Doina Precup" ], "doi": "10.65109/qdhn7183", "ref_id": "b28", "title": "Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction", "year": "2011" }, { "authors": [ "A Srinivas", "M Laskin", "P Abbeel" ], "doi": "", "ref_id": "b26", "title": "Curl: Contrastive unsupervised representations for reinforcement learning", "year": "2020" }, { "authors": [ "Karl Schmeckpeper", "Annie Xie", "Oleh Rybkin", "Stephen Tian", "Kostas Daniilidis", "Sergey Levine", "Chelsea Finn" ], "doi": "10.1007/978-3-030-58565-5_42", "ref_id": "b22", "title": "Learning Predictive Models from Observation and Interaction", "year": "2020" }, { "authors": [ "S Nair", "A Rajeswaran", "V Kumar", "C Finn", "A Gupta" ], "doi": "", "ref_id": "b19", "title": "R3m: A universal visual representation for robot manipulation", "year": "2022" }, { "authors": [], "doi": "10.5962/bhl.title.99010", "ref_id": "b7", "title": "S.M. Isbell & Co. seed merchants : growers and importers", "year": "2019" }, { "authors": [ "T D Kulkarni", "A Saeedi", "S Gautam", "S J Gershman" ], "doi": "", "ref_id": "b14", "title": "Deep successor reinforcement learning", "year": "2016" }, { "authors": [ "M C Machado", "C Rosenbaum", "X Guo", "M Liu", "G Tesauro", "M Campbell" ], "doi": "", "ref_id": "b17", "title": "Eigenoption discovery through the deep successor representation", "year": "2017" }, { "authors": [ "B C Stadie", "P Abbeel", "I Sutskever" ], "doi": "", "ref_id": "b27", "title": "Third-person imitation learning", "year": "2017" }, { "authors": [ "Pierre Sermanet", "Corey Lynch", "Yevgen Chebotar", "Jasmine Hsu", "Eric Jang", "Stefan Schaal", "Sergey Levine", "Google Brain" ], "doi": "10.1109/icra.2018.8462891", "ref_id": "b25", "title": "Time-Contrastive Networks: Self-Supervised Learning from Video", "year": "2018. 2017" }, { "authors": [ "A Barreto", "W Dabney", "R Munos", "J J Hunt", "T Schaul", "D Silver", "H V Hasselt" ], "doi": "", "ref_id": "b2", "title": "Successor features for trans-fer in reinforcement learning", "year": "2016" }, { "authors": [ "A Touati", "Y Ollivier" ], "doi": "", "ref_id": "b31", "title": "Learning one representation to optimize all rewards", "year": "2021" }, { "authors": [ "A Nair", "V H Pong", "M Dalal", "S Bahl", "S Lin", "S Levine" ], "doi": "", "ref_id": "b18", "title": "Visual reinforcement learning with imagined goals", "year": "2018" }, { "authors": [ "P Dayan" ], "doi": "", "ref_id": "b6", "title": "Improving generalization for temporal difference learning: The successor representation", "year": "1993" }, { "authors": [ "T Schaul", "D Horgan", "K Gregor", "D Silver" ], "doi": "", "ref_id": "b21", "title": "Universal value function approximators", "year": "2015" } ]
[ { "authors": [ "R Agarwal", "D Schuurmans", "M Norouzi" ], "doi": "", "ref_id": "b0", "title": "An optimistic perspective on offline reinforcement learning", "year": "2020" }, { "authors": [ "B Baker", "I Akkaya", "P Zhokhov", "J Huizinga", "J Tang", "A Ecoffet", "B Houghton", "R Sampedro", "J Clune" ], "doi": "", "ref_id": "b1", "title": "Video pretraining (vpt): Learning to act by watching unlabeled online videos", "year": "2022" }, { "authors": [ "A Barreto", "W Dabney", "R Munos", "J J Hunt", "T Schaul", "D Silver", "H V Hasselt" ], "doi": "", "ref_id": "b2", "title": "Successor features for trans-fer in reinforcement learning", "year": "2016" }, { "authors": [ "M G Bellemare", "Y Naddaf", "J Veness", "M Bowling" ], "doi": "10.1613/jair.3912", "ref_id": "b3", "title": "The Arcade Learning Environment: An Evaluation Platform for General Agents", "year": "jun 2013" }, { "authors": [ "D Borsa", "A Barreto", "J Quan", "D J Mankowitz", "R Munos", "H V Hasselt", "D Silver", "T Schaul" ], "doi": "", "ref_id": "b4", "title": "Universal successor features approximators", "year": "2018" }, { "authors": [ "M Chang", "A Gupta", "S Gupta" ], "doi": "", "ref_id": "b5", "title": "Learning value functions from undirected state-only experience", "year": "2022" }, { "authors": [ "P Dayan" ], "doi": "", "ref_id": "b6", "title": "Improving generalization for temporal difference learning: The successor representation", "year": "1993" }, { "authors": [], "doi": "10.5962/bhl.title.99010", "ref_id": "b7", "title": "S.M. Isbell & Co. seed merchants : growers and importers", "year": "2019" }, { "authors": [ "L Espeholt", "H Soyer", "R Munos", "K Simonyan", "V Mnih", "T Ward", "Y Doron", "V Firoiu", "T Harley", "I Dunning", "S Legg", "K Kavukcuoglu" ], "doi": "", "ref_id": "b8", "title": "Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures", "year": "2018" }, { "authors": [ "B Eysenbach", "T Zhang", "R Salakhutdinov", "S Levine" ], "doi": "", "ref_id": "b9", "title": "Contrastive learning as goal-conditioned reinforcement learning", "year": "2022" }, { "authors": [ "J Fu", "A Kumar", "O Nachum", "G Tucker", "S D Levine" ], "doi": "", "ref_id": "b10", "title": "4rl: Datasets for deep data-driven reinforcement learning", "year": "2020" }, { "authors": [ "K Grauman", "A Westbury", "E Byrne", "Z Chavis", "A Furnari", "R Girdhar", "J Hamburger", "H Jiang", "M Liu", "X Liu", "M Martin", "T Nagarajan", "I Radosavovic", "S K Ramakrishnan", "F Ryan", "J Sharma", "M Wray", "M Xu", "E Z Xu", "C Zhao", "S Bansal", "D Batra", "V Cartillier", "S Crane", "T Do", "M Doulaty", "A Erapalli", "C Feichtenhofer", "A Fragomeni", "Q Fu", "C Fuegen", "A Gebreselasie", "C González", "J Hillis", "X Huang", "Y Huang", "W Jia", "W Khoo", "J Kolár", "S Kottur", "A Kumar", "F Landini", "C Li", "Y Li", "Z Li", "K Mangalam", "R Modhugu", "J Munro", "T Murrell", "T Nishiyasu", "W Price", "P R Puentes", "M Ramazanova", "L Sari", "K Somasundaram", "A Southerland", "Y Sugano", "R Tao", "M Vo", "Y Wang", "X Wu", "T Yagi", "Y Zhu", "P Arbelaez", "D Crandall", "D Damen", "G M Farinella", "B Ghanem", "V K Ithapu", "C V Jawahar", "H Joo", "K Kitani", "H Li", "R A Newcombe", "A Oliva", "H S Park", "J M Rehg", "Y Sato", "J Shi", "M Z Shou", "A Torralba", "L Torresani", "M Yan", "J Malik" ], "doi": "", "ref_id": "b11", "title": "Ego4d: Around the world in 3, 000 hours of egocentric video", "year": "2021" }, { "authors": [ "I Kostrikov", "D Yarats", "R Fergus" ], "doi": "", "ref_id": "b12", "title": "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels", "year": "2020" }, { "authors": [ "I Kostrikov", "A Nair", "S Levine" ], "doi": "", "ref_id": "b13", "title": "Offline reinforcement learning with implicit q-learning", "year": "2021" }, { "authors": [ "T D Kulkarni", "A Saeedi", "S Gautam", "S J Gershman" ], "doi": "", "ref_id": "b14", "title": "Deep successor reinforcement learning", "year": "2016" }, { "authors": [ "A Kumar", "A Zhou", "G Tucker", "S Levine" ], "doi": "", "ref_id": "b15", "title": "Conservative q-learning for offline reinforcement learning", "year": "2020" }, { "authors": [ "Y J Ma", "S Sodhani", "D Jayaraman", "O Bastani", "V Kumar", "A Zhang" ], "doi": "", "ref_id": "b16", "title": "Vip: Towards universal visual reward and representation via value-implicit pre-training", "year": "2022" }, { "authors": [ "M C Machado", "C Rosenbaum", "X Guo", "M Liu", "G Tesauro", "M Campbell" ], "doi": "", "ref_id": "b17", "title": "Eigenoption discovery through the deep successor representation", "year": "2017" }, { "authors": [ "A Nair", "V H Pong", "M Dalal", "S Bahl", "S Lin", "S Levine" ], "doi": "", "ref_id": "b18", "title": "Visual reinforcement learning with imagined goals", "year": "2018" }, { "authors": [ "S Nair", "A Rajeswaran", "V Kumar", "C Finn", "A Gupta" ], "doi": "", "ref_id": "b19", "title": "R3m: A universal visual representation for robot manipulation", "year": "2022" }, { "authors": [ "K Paster", "S A Mcilraith", "J Ba" ], "doi": "", "ref_id": "b20", "title": "You can't count on luck: Why decision transformers fail in stochastic environments", "year": "2022" }, { "authors": [ "T Schaul", "D Horgan", "K Gregor", "D Silver" ], "doi": "", "ref_id": "b21", "title": "Universal value function approximators", "year": "2015" }, { "authors": [ "Karl Schmeckpeper", "Annie Xie", "Oleh Rybkin", "Stephen Tian", "Kostas Daniilidis", "Sergey Levine", "Chelsea Finn" ], "doi": "10.1007/978-3-030-58565-5_42", "ref_id": "b22", "title": "Learning Predictive Models from Observation and Interaction", "year": "2020" }, { "authors": [ "Younggyo Seo", "Kimin Lee", "Fangchen Liu", "Stephen James", "Pieter Abbeel" ], "doi": "10.1109/icip46576.2022.9897982", "ref_id": "b23", "title": "HARP: Autoregressive Latent Video Prediction with High-Fidelity Image Generator", "year": "2022" }, { "authors": [ "Y Seo", "K Lee", "S James", "P Abbeel" ], "doi": "", "ref_id": "b24", "title": "Reinforcement learning with action-free pre-training from videos", "year": "2022" }, { "authors": [ "Pierre Sermanet", "Corey Lynch", "Yevgen Chebotar", "Jasmine Hsu", "Eric Jang", "Stefan Schaal", "Sergey Levine", "Google Brain" ], "doi": "10.1109/icra.2018.8462891", "ref_id": "b25", "title": "Time-Contrastive Networks: Self-Supervised Learning from Video", "year": "2018. 2017" }, { "authors": [ "A Srinivas", "M Laskin", "P Abbeel" ], "doi": "", "ref_id": "b26", "title": "Curl: Contrastive unsupervised representations for reinforcement learning", "year": "2020" }, { "authors": [ "B C Stadie", "P Abbeel", "I Sutskever" ], "doi": "", "ref_id": "b27", "title": "Third-person imitation learning", "year": "2017" }, { "authors": [ "Richard S Sutton", "Joseph Modayil", "Michael Delp", "Thomas Degris", "Patrick M Pilarski", "Adam White", "Doina Precup" ], "doi": "10.65109/qdhn7183", "ref_id": "b28", "title": "Horde: a scalable real-time architecture for learning knowledge from unsupervised sensorimotor interaction", "year": "2011" }, { "authors": [ "Faraz Torabi", "Garrett Warnell", "Peter Stone" ], "doi": "10.24963/ijcai.2018/687", "ref_id": "b29", "title": "Behavioral Cloning from Observation", "year": "2018" }, { "authors": [ "Faraz Torabi", "Garrett Warnell", "Peter Stone" ], "doi": "10.24963/ijcai.2019/882", "ref_id": "b30", "title": "Recent Advances in Imitation Learning from Observation", "year": "2018" }, { "authors": [ "A Touati", "Y Ollivier" ], "doi": "", "ref_id": "b31", "title": "Learning one representation to optimize all rewards", "year": "2021" }, { "authors": [ "S Toyer", "R Shah", "A Critch", "S Russell" ], "doi": "", "ref_id": "b32", "title": "The MAG-ICAL benchmark for robust imitation", "year": "2020" }, { "authors": [ "A Van Den Oord", "Y Li", "O Vinyals" ], "doi": "", "ref_id": "b33", "title": "Representation learning with contrastive predictive coding", "year": "2018" }, { "authors": [ "A R Villaflor", "Z Huang", "S Pande", "J M Dolan", "J Schneider" ], "doi": "", "ref_id": "b34", "title": "Addressing optimism bias in sequence modeling for reinforcement learning", "year": "17-23 Jul 2022" }, { "authors": [ "T Xiao", "I Radosavovic", "T Darrell", "J Malik" ], "doi": "", "ref_id": "b35", "title": "Masked visual pre-training for motor control", "year": "2022" }, { "authors": [ "M Yang", "D Schuurmans", "P Abbeel", "O Nachum" ], "doi": "10.5040/9781805016816.ch-012", "ref_id": "b36", "title": "You cannot control what others do, but you can control how you respond", "year": "2022" }, { "authors": [ "K Zakka", "A Zeng", "P Florence", "J Tompson", "J Bohg", "D Dwibedi" ], "doi": "", "ref_id": "b37", "title": "Xirl: Cross-embodiment inverse reinforcement learning", "year": "2021" } ]
[ "c7b9b84d363b94d0", "fe6b5113364e16e4", "a614ea64acbaed6b", "3f60fc051117fd13", "4af664e88032de1f", "6e03d13761ce8245", "3cdf97f816ef62eb", "2586fba4858ef4bd", "0b2c7e890fb504c7", "af42b80e668921f1", "977e310fb9c6a187", "7c1c7942c7633715", "299110a60037b28a", "e3cdcb73f542bf72", "4c07dde14727b246", "3e400e480b9473ca", "aa1d51820a5fe54b", "7ce06ef07fae1dba", "f1e60bbb5d26411c" ]
[ "e6bc04e2b9f585eb", "c7b9b84d363b94d0", "4c07dde14727b246", "1779c10d7c0791b6", "a614ea64acbaed6b", "4af664e88032de1f", "7ce06ef07fae1dba", "af42b80e668921f1", "bb5271f9bbc0f3c6", "ba54f89e2f6a7573", "00ed24be71a08dca", "61291a410e445705", "da7645d7893d4e2e", "e4ecda062a6f7fea", "977e310fb9c6a187", "e8142325d4b65a9d", "fe6b5113364e16e4", "7c1c7942c7633715", "aa1d51820a5fe54b", "0b2c7e890fb504c7", "66b821f614675242", "f1e60bbb5d26411c", "2586fba4858ef4bd", "2355fe61d92f5682", "34e5847b8407a160", "e3cdcb73f542bf72", "3cdf97f816ef62eb", "299110a60037b28a", "6e03d13761ce8245", "1aa4a16fee6715cc", "be7ad6e49b2aff9c", "3e400e480b9473ca", "4432c5174524faa6", "e2a9f6fa31a3d3d2", "f9c7f19a896ba8c5", "3f60fc051117fd13", "f502b8ed42fad910", "29b0ee2ee8de3296" ]
jwy77xkyPt
Information-Theoretic State Space Model for Multi-View Reinforcement Learning
data/openreview_paper/ICML_2023_oral/jwy77xkyPt//paper.pdf
54
23
[ { "authors": [ "R Jangir", "N Hansen", "S Ghosal", "M Jain", "X Wang" ], "doi": "", "ref_id": "b19", "title": "Look closer: Bridging egocentric and third-person views with transformers for robotic manipulation", "year": "2022" }, { "authors": [ "H Hwang", "G.-H Kim", "S Hong", "K.-E Kim" ], "doi": "", "ref_id": "b18", "title": "Multiview representation learning via total correlation objective", "year": "2021" }, { "authors": [ "S Watanabe" ], "doi": "", "ref_id": "b48", "title": "Information theoretical analysis of multivariate correlation", "year": "1960" }, { "authors": [ "M Wu", "N Goodman" ], "doi": "", "ref_id": "b49", "title": "Multimodal generative models for scalable weakly-supervised learning", "year": "2018" }, { "authors": [ "Yonglong Tian", "Dilip Krishnan", "Phillip Isola" ], "doi": "10.1007/978-3-030-58621-8_45", "ref_id": "b42", "title": "Contrastive Multiview Coding", "year": "2020" }, { "authors": [ "Yueyue Hu", "Shiliang Sun", "Xin Xu", "Jing Zhao" ], "doi": "10.1007/s13042-020-01130-6", "ref_id": "b16", "title": "Attentive multi-view reinforcement learning", "year": "2020" }, { "authors": [ "M Federici", "A Dutta", "P Forré", "N Kushman", "Z Akata" ], "doi": "", "ref_id": "b8", "title": "Learning robust representations via multi-view information bottleneck", "year": "2020" }, { "authors": [ "N Barhate" ], "doi": "", "ref_id": "b1", "title": "Minimal pytorch implementation of proximal policy optimization", "year": "2021" }, { "authors": [ "J Fan", "W Li", "Dribo" ], "doi": "", "ref_id": "b7", "title": "Robust deep reinforcement learning via multi-view information bottleneck", "year": "2022" }, { "authors": [ "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b46", "title": "Discovering structure in high-dimensional data through correlation explanation", "year": "2014" }, { "authors": [ "R G Krishnan", "U Shalit", "D Sontag" ], "doi": "", "ref_id": "b24", "title": "Deep kalman filters", "year": "2015" }, { "authors": [ "N Tishby", "F C Pereira", "W Bialek" ], "doi": "", "ref_id": "b43", "title": "The information bottleneck method", "year": "2000" }, { "authors": [ "Ian Fischer" ], "doi": "10.3390/e22090999", "ref_id": "b9", "title": "The Conditional Entropy Bottleneck", "year": "2020" }, { "authors": [ "B Chen", "P Abbeel", "D Pathak" ], "doi": "", "ref_id": "b4", "title": "Unsupervised learning of visual 3d keypoints for control", "year": "2021" }, { "authors": [ "H Yang", "D Shi", "G Xie", "Y Peng", "Y Zhang", "Y Yang", "S Yang" ], "doi": "", "ref_id": "b50", "title": "Self-supervised representations for multi-view reinforcement learning", "year": "2022" }, { "authors": [ "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b47", "title": "Maximally informative hierarchical representations of high-dimensional data", "year": "2015" }, { "authors": [ "S Gao", "R Brekelmans", "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b10", "title": "Auto-encoding total correlation explanation", "year": "2019" }, { "authors": [ "Leslie Pack Kaelbling", "Michael L Littman", "Anthony R Cassandra" ], "doi": "10.1016/s0004-3702(98)00023-x", "ref_id": "b20", "title": "Planning and acting in partially observable stochastic domains", "year": "1998" }, { "authors": [ "M Li", "L Wu", "H B Ammar", "J Wang" ], "doi": "", "ref_id": "b31", "title": "Multi-view reinforcement learning", "year": "2019" }, { "authors": [ "T M Sutter", "I Daunhawer", "J E Vogt" ], "doi": "", "ref_id": "b39", "title": "Multimodal generative learning utilizing jensen-shannon-divergence", "year": "2020" }, { "authors": [ "D Hafner", "T Lillicrap", "I Fischer", "R Villegas", "D Ha", "H Lee", "J Davidson" ], "doi": "", "ref_id": "b12", "title": "Learning latent dynamics for planning from pixels", "year": "2019" }, { "authors": [ "Y Shi", "N Siddharth", "B Paige", "P H Torr" ], "doi": "", "ref_id": "b38", "title": "Variational mixture-of-experts autoencoders for multi-modal deep generative models", "year": "2019" }, { "authors": [ "P Poklukar", "M Vasco", "H Yin", "F S Melo", "A Paiva", "D Kragic" ], "doi": "", "ref_id": "b34", "title": "Geometric multimodal contrastive representation learning", "year": "2022" } ]
[ { "authors": [ "L N Alegre", "Sumo-Rl" ], "doi": "", "ref_id": "b0", "title": "", "year": "2019" }, { "authors": [ "N Barhate" ], "doi": "", "ref_id": "b1", "title": "Minimal pytorch implementation of proximal policy optimization", "year": "2021" }, { "authors": [ "M I Belghazi", "A Baratin", "S Rajeshwar", "S Ozair", "Y Bengio", "A Courville", "D Hjelm" ], "doi": "", "ref_id": "b2", "title": "Mutual information neural estimation", "year": "2018" }, { "authors": [ "G Brockman", "V Cheung", "L Pettersson", "J Schneider", "J Schulman", "J Tang", "W Zaremba", "Openai Gym" ], "doi": "", "ref_id": "b3", "title": "", "year": "2016" }, { "authors": [ "B Chen", "P Abbeel", "D Pathak" ], "doi": "", "ref_id": "b4", "title": "Unsupervised learning of visual 3d keypoints for control", "year": "2021" }, { "authors": [ "William G Cochran" ], "doi": "10.2307/3001666", "ref_id": "b5", "title": "The Combination of Estimates from Different Experiments", "year": "1954" }, { "authors": [ "W G Cochran", "S P Carroll" ], "doi": "", "ref_id": "b6", "title": "A sampling investigation of the efficiency of weighting inversely as the estimated variance", "year": "1953" }, { "authors": [ "J Fan", "W Li", "Dribo" ], "doi": "", "ref_id": "b7", "title": "Robust deep reinforcement learning via multi-view information bottleneck", "year": "2022" }, { "authors": [ "M Federici", "A Dutta", "P Forré", "N Kushman", "Z Akata" ], "doi": "", "ref_id": "b8", "title": "Learning robust representations via multi-view information bottleneck", "year": "2020" }, { "authors": [ "Ian Fischer" ], "doi": "10.3390/e22090999", "ref_id": "b9", "title": "The Conditional Entropy Bottleneck", "year": "2020" }, { "authors": [ "S Gao", "R Brekelmans", "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b10", "title": "Auto-encoding total correlation explanation", "year": "2019" }, { "authors": [ "T Haarnoja", "A Zhou", "P Abbeel", "S Levine" ], "doi": "", "ref_id": "b11", "title": "Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor", "year": "2018" }, { "authors": [ "D Hafner", "T Lillicrap", "I Fischer", "R Villegas", "D Ha", "H Lee", "J Davidson" ], "doi": "", "ref_id": "b12", "title": "Learning latent dynamics for planning from pixels", "year": "2019" }, { "authors": [ "D Hafner", "T Lillicrap", "J Ba", "M Norouzi" ], "doi": "", "ref_id": "b13", "title": "Dream to control: Learning behaviors by latent imagination", "year": "2020" }, { "authors": [ "D Hafner", "T P Lillicrap", "M Norouzi", "J Ba" ], "doi": "", "ref_id": "b14", "title": "Mastering atari with discrete world models", "year": "2021" }, { "authors": [ "R D Hjelm", "A Fedorov", "S Lavoie-Marchildon", "K Grewal", "P Bachman", "A Trischler", "Y Bengio" ], "doi": "", "ref_id": "b15", "title": "Learning deep representations by mutual information estimation and maximization", "year": "2018" }, { "authors": [ "Yueyue Hu", "Shiliang Sun", "Xin Xu", "Jing Zhao" ], "doi": "10.1007/s13042-020-01130-6", "ref_id": "b16", "title": "Attentive multi-view reinforcement learning", "year": "2020" }, { "authors": [ "H Hwang", "G.-H Kim", "S Hong", "K.-E Kim" ], "doi": "", "ref_id": "b17", "title": "Variational interaction information maximization for crossdomain disentanglement", "year": "2020" }, { "authors": [ "H Hwang", "G.-H Kim", "S Hong", "K.-E Kim" ], "doi": "", "ref_id": "b18", "title": "Multiview representation learning via total correlation objective", "year": "2021" }, { "authors": [ "R Jangir", "N Hansen", "S Ghosal", "M Jain", "X Wang" ], "doi": "", "ref_id": "b19", "title": "Look closer: Bridging egocentric and third-person views with transformers for robotic manipulation", "year": "2022" }, { "authors": [ "Leslie Pack Kaelbling", "Michael L Littman", "Anthony R Cassandra" ], "doi": "10.1016/s0004-3702(98)00023-x", "ref_id": "b20", "title": "Planning and acting in partially observable stochastic domains", "year": "1998" }, { "authors": [ "L Kaiser", "M Babaeizadeh", "P Milos", "B Osinski", "R H Campbell", "K Czechowski", "D Erhan", "C Finn", "P Kozakowski", "S Levine" ], "doi": "", "ref_id": "b21", "title": "Model-based reinforcement learning for atari", "year": "2019" }, { "authors": [ "D P Kingma", "J Ba", "Adam" ], "doi": "", "ref_id": "b22", "title": "A method for stochastic optimization", "year": "2015" }, { "authors": [ "D Krajzewicz", "J Erdmann", "M Behrisch", "L Bieker" ], "doi": "10.1007/978-3-662-45079-6", "ref_id": "b23", "title": "Simulation of Urban Mobility", "year": "December 2012" }, { "authors": [ "R G Krishnan", "U Shalit", "D Sontag" ], "doi": "", "ref_id": "b24", "title": "Deep kalman filters", "year": "2015" }, { "authors": [ "Brenden M Lake", "Tomer D Ullman", "Joshua B Tenenbaum", "Samuel J Gershman" ], "doi": "10.1017/s0140525x16001837", "ref_id": "b25", "title": "Building machines that learn and think like people", "year": "2017" }, { "authors": [ "M Laskin", "K Lee", "A Stooke", "L Pinto", "P Abbeel", "A Srinivas" ], "doi": "", "ref_id": "b26", "title": "Reinforcement learning with augmented data", "year": "2020" }, { "authors": [ "M Laskin", "A Srinivas", "P Abbeel" ], "doi": "", "ref_id": "b27", "title": "Curl: Contrastive unsupervised representations for reinforcement learning", "year": "2020" }, { "authors": [ "A X Lee", "A Nagabandi", "P Abbeel", "S Levine" ], "doi": "", "ref_id": "b28", "title": "Stochastic latent actor-critic: Deep reinforcement learning with a latent variable model", "year": "2020" }, { "authors": [ "J Lee", "B.-J Lee", "K.-E Kim" ], "doi": "", "ref_id": "b29", "title": "Reinforcement learning for control with multiple frequencies", "year": "2020" }, { "authors": [ "L Li", "T J Walsh", "M L Littman" ], "doi": "", "ref_id": "b30", "title": "Towards a unified theory of state abstraction for mdps", "year": "2006" }, { "authors": [ "M Li", "L Wu", "H B Ammar", "J Wang" ], "doi": "", "ref_id": "b31", "title": "Multi-view reinforcement learning", "year": "2019" }, { "authors": [ "W Mcgill" ], "doi": "", "ref_id": "b32", "title": "Multivariate information transmission", "year": "1954" }, { "authors": [ "A V D Oord", "Y Li", "O Vinyals" ], "doi": "", "ref_id": "b33", "title": "Representation learning with contrastive predictive coding", "year": "2018" }, { "authors": [ "P Poklukar", "M Vasco", "H Yin", "F S Melo", "A Paiva", "D Kragic" ], "doi": "", "ref_id": "b34", "title": "Geometric multimodal contrastive representation learning", "year": "2022" }, { "authors": [ "B Poole", "S Ozair", "A Van Den Oord", "A Alemi", "G Tucker" ], "doi": "", "ref_id": "b35", "title": "On variational bounds of mutual information", "year": "2019" }, { "authors": [ "K Rakelly", "A Gupta", "C Florensa", "S Levine" ], "doi": "", "ref_id": "b36", "title": "Which mutual-information representation learning objectives are sufficient for control?", "year": "2021" }, { "authors": [ "J Schulman", "F Wolski", "P Dhariwal", "A Radford", "O Klimov" ], "doi": "", "ref_id": "b37", "title": "Proximal policy optimization algorithms", "year": "2017" }, { "authors": [ "Y Shi", "N Siddharth", "B Paige", "P H Torr" ], "doi": "", "ref_id": "b38", "title": "Variational mixture-of-experts autoencoders for multi-modal deep generative models", "year": "2019" }, { "authors": [ "T M Sutter", "I Daunhawer", "J E Vogt" ], "doi": "", "ref_id": "b39", "title": "Multimodal generative learning utilizing jensen-shannon-divergence", "year": "2020" }, { "authors": [ "T M Sutter", "I Daunhawer", "J E Vogt" ], "doi": "", "ref_id": "b40", "title": "Generalized multimodal elbo", "year": "2021" }, { "authors": [ "Y Tassa", "Y Doron", "A Muldal", "T Erez", "Y Li", "D D L Casas", "D Budden", "A Abdolmaleki", "J Merel", "A Lefrancq" ], "doi": "", "ref_id": "b41", "title": "Deepmind control suite", "year": "2018" }, { "authors": [ "Yonglong Tian", "Dilip Krishnan", "Phillip Isola" ], "doi": "10.1007/978-3-030-58621-8_45", "ref_id": "b42", "title": "Contrastive Multiview Coding", "year": "2020" }, { "authors": [ "N Tishby", "F C Pereira", "W Bialek" ], "doi": "", "ref_id": "b43", "title": "The information bottleneck method", "year": "2000" }, { "authors": [ "Stef Van Buuren" ], "doi": "10.1201/9780429492259", "ref_id": "b44", "title": "Flexible Imputation of Missing Data, Second Edition", "year": "2018" }, { "authors": [ "A Vaswani", "N Shazeer", "N Parmar", "J Uszkoreit", "L Jones", "A N Gomez", "L U Kaiser", "I Polosukhin" ], "doi": "", "ref_id": "b45", "title": "Attention is all you need", "year": "2017" }, { "authors": [ "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b46", "title": "Discovering structure in high-dimensional data through correlation explanation", "year": "2014" }, { "authors": [ "G Ver Steeg", "A Galstyan" ], "doi": "", "ref_id": "b47", "title": "Maximally informative hierarchical representations of high-dimensional data", "year": "2015" }, { "authors": [ "S Watanabe" ], "doi": "", "ref_id": "b48", "title": "Information theoretical analysis of multivariate correlation", "year": "1960" }, { "authors": [ "M Wu", "N Goodman" ], "doi": "", "ref_id": "b49", "title": "Multimodal generative models for scalable weakly-supervised learning", "year": "2018" }, { "authors": [ "H Yang", "D Shi", "G Xie", "Y Peng", "Y Zhang", "Y Yang", "S Yang" ], "doi": "", "ref_id": "b50", "title": "Self-supervised representations for multi-view reinforcement learning", "year": "2022" }, { "authors": [ "T Yu", "D Quillen", "Z He", "R Julian", "K Hausman", "C Finn", "S Levine" ], "doi": "", "ref_id": "b51", "title": "Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning", "year": "2020" }, { "authors": [ "C Zhang", "Z Han", "H Fu", "J T Zhou", "Q Hu" ], "doi": "", "ref_id": "b52", "title": "Cpm-nets: Cross partial multi-view networks", "year": "2019" }, { "authors": [ "Changqing Zhang", "Yajie Cui", "Zongbo Han", "Joey Tianyi Zhou", "Huazhu Fu", "Qinghua Hu" ], "doi": "10.1109/tpami.2020.3037734", "ref_id": "b53", "title": "Deep Partial Multi-View Learning", "year": "2020" } ]
[ "8fff3905fe466601", "c6f8d617c54d9f5c", "2da7ea3943dfa7e0", "4254a56c70c407bf", "cb391135924aea4a", "3877f56420c0da0e", "3594142f5c0a6833", "55a2b47b216e7ebd", "0f16825e4c6f9ca0", "0fceb21a4c06f2be", "749b9701720b857a", "096f85e900249d10", "de344f36fde78e71", "f6557c75fa31a474", "836674a62d4195ba", "6999b731a8d7b4b6", "f243be7cafb1138b", "aaa2dc832476747f", "42705dc060804cd6", "19f99351fe0366f8", "b0a73948120acbf8", "e5b65aaece077c2e", "3eda1327cff6e357" ]
[ "d91fcfbe809e0c84", "55a2b47b216e7ebd", "67d1539ac135d7be", "bf7fd420fa3d0400", "f6557c75fa31a474", "eeb8725a8b07d0c6", "7177da699e515d8c", "0f16825e4c6f9ca0", "3594142f5c0a6833", "de344f36fde78e71", "f243be7cafb1138b", "e436392273aa8135", "b0a73948120acbf8", "fd0b5633f25b60dd", "dcf2220701fc7a5c", "dcdb079fab6d4b2d", "3877f56420c0da0e", "f767ce5951062cd6", "c6f8d617c54d9f5c", "8fff3905fe466601", "aaa2dc832476747f", "b74a181863827db9", "efa52fc16696aff7", "46ce486a63b18658", "749b9701720b857a", "4ca43ed6541ad1f6", "6759ac313b4bbd04", "edc3fbde65218091", "aa3687e5f0fb6630", "53d58c5cd1f8177c", "6de6bca262d75379", "42705dc060804cd6", "9a96717c7dd1fc1c", "5c1d8cb59cb00bb1", "3eda1327cff6e357", "08064e0a550d8936", "3fe45eb478110dd4", "8801c585dbbd10ea", "e5b65aaece077c2e", "19f99351fe0366f8", "754840f1e5d8f184", "d39c4f46233f732e", "cb391135924aea4a", "096f85e900249d10", "e88a01b298360497", "69c2ddc2106cfcca", "0fceb21a4c06f2be", "6999b731a8d7b4b6", "2da7ea3943dfa7e0", "4254a56c70c407bf", "836674a62d4195ba", "ddd15812dbda40a4", "da0110117a22723e", "23af21af119ad1c2" ]
CXkJh2ITml
Bayes-optimal Learning of Deep Random Networks of Extensive-width
data/openreview_paper/ICML_2023_oral/CXkJh2ITml//paper.pdf
65
33
[ { "authors": [ "J Hron", "Y Bahri", "R Novak", "J Pennington", "J N Sohl-Dickstein" ], "doi": "", "ref_id": "b27", "title": "Exact posterior distributions of wide bayesian neural networks", "year": "2020" }, { "authors": [ "M Advani", "S Ganguli" ], "doi": "", "ref_id": "b0", "title": "Statistical mechanics of optimal convex inference in high dimensions", "year": "2016" }, { "authors": [ "R M Neal" ], "doi": "", "ref_id": "b44", "title": "Priors for infinite networks", "year": "1994" }, { "authors": [ "Noureddine El Karoui" ], "doi": "10.1214/07-aos581", "ref_id": "b14", "title": "Spectrum estimation for large dimensional covariance matrices using random matrix theory", "year": "2008" }, { "authors": [ "Michel Talagrand" ], "doi": "10.4007/annals.2006.163.221", "ref_id": "b56", "title": "The Parisi formula", "year": "2006" }, { "authors": [ "Jaehoon Lee", "Lechao Xiao", "Samuel S Schoenholz", "Yasaman Bahri", "Roman Novak", "Jascha Sohl-Dickstein", "Jeffrey Pennington" ], "doi": "10.1088/1742-5468/abc62b", "ref_id": "b31", "title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>", "year": "2018" }, { "authors": [ "T L Watkin", "A Rau", "M Biehl" ], "doi": "", "ref_id": "b58", "title": "The statistical mechanics of learning a rule", "year": "1993" }, { "authors": [ "Christos Thrampoulidis", "Ehsan Abbasi", "Babak Hassibi" ], "doi": "10.1109/tit.2018.2840720", "ref_id": "b57", "title": "Precise Error Analysis of Regularized <inline-formula> <tex-math notation=\"LaTeX\">$M$ </tex-math> </inline-formula>-Estimators in High Dimensions", "year": "2018" }, { "authors": [ "Jean Barbier", "Florent Krzakala", "Nicolas Macris", "Léo Miolane", "Lenka Zdeborová" ], "doi": "10.1073/pnas.1802705116", "ref_id": "b5", "title": "Optimal errors and phase transitions in high-dimensional generalized linear models", "year": "2017" }, { "authors": [ "B Aubin", "F Krzakala", "Y M Lu", "L Zdeborová" ], "doi": "", "ref_id": "b4", "title": "Generalization error in high-dimensional perceptrons: Approaching bayes error with convex optimization", "year": "2020" }, { "authors": [ "A Maillard", "B Loureiro", "F Krzakala", "L Zdeborová" ], "doi": "", "ref_id": "b37", "title": "Phase retrieval in high dimensions: Statistical and computational phase transitions", "year": "2020" }, { "authors": [ "D Bosch", "A Panahi", "B Hassibi" ], "doi": "", "ref_id": "b6", "title": "Precise asymptotic analysis of deep random feature models", "year": "2023" }, { "authors": [ "H Cui", "L Saglietti", "L Zdeborová" ], "doi": "", "ref_id": "b9", "title": "Large deviations for the perceptron model and consequences for active learning", "year": "2019" }, { "authors": [ "S Yaida" ], "doi": "10.7551/mitpress/3206.003.0013", "ref_id": "b61", "title": "Mathematical Background", "year": "2019" }, { "authors": [ "Federica Gerace", "Bruno Loureiro", "Florent Krzakala", "Marc Mézard", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac3ae6", "ref_id": "b18", "title": "Generalisation error in learning with random features and the hidden manifold model*", "year": "2020" }, { "authors": [ "Abdulkadir Canatar", "Blake Bordelon", "Cengiz Pehlevan" ], "doi": "10.1038/s41467-021-23103-1", "ref_id": "b7", "title": "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks", "year": "2020" }, { "authors": [ "Dominik Schröder", "Hugo Cui", "Daniil Dmitriev", "Bruno Loureiro" ], "doi": "10.1088/1742-5468/ad65e2", "ref_id": "b53", "title": "Deterministic equivalent and error universality of deep random features learning<sup>*</sup>", "year": "2023" }, { "authors": [ "Boris Hanin", "Alexander Zlokapa" ], "doi": "10.1073/pnas.2301345120", "ref_id": "b25", "title": "Bayesian interpolation with deep linear networks", "year": "2022" }, { "authors": [ "S Ariosto", "R Pacelli", "M Pastore", "F Ginelli", "M Gherardi", "P Rotondo" ], "doi": "", "ref_id": "b1", "title": "Statistical mechanics of deep learning beyond the infinite-width limit", "year": "2022" }, { "authors": [ "Jeffrey Pennington", "Pratik Worah" ], "doi": "10.1088/1742-5468/ab3bc3", "ref_id": "b49", "title": "Nonlinear random matrix theory for deep learning", "year": "2019. 2019" }, { "authors": [ "Benjamin Aubin", "Antoine Maillard", "Jean Barbier", "Florent Krzakala", "Nicolas Macris", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ab43d2", "ref_id": "b3", "title": "The committee machine: computational to statistical gaps in learning a two-layers neural network", "year": "2019. 2018" }, { "authors": [ "G De", "A G Matthews", "M Rowland", "J Hron", "R E Turner", "Z Ghahramani" ], "doi": "", "ref_id": "b13", "title": "Gaussian process behaviour in wide deep neural networks", "year": "2018" }, { "authors": [ "Qianyi Li", "Haim Sompolinsky" ], "doi": "10.1103/physrevx.11.031059", "ref_id": "b34", "title": "Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization", "year": "2021" }, { "authors": [ "Cosme Louart", "Zhenyu Liao", "Romain Couillet" ], "doi": "10.1214/17-aap1328", "ref_id": "b35", "title": "A random matrix approach to neural networks", "year": "2017" }, { "authors": [ "A Montanari", "F Ruan", "Y Sohn", "J Yan" ], "doi": "", "ref_id": "b43", "title": "The generalization error of max-margin linear classifiers: Highdimensional asymptotics in the overparametrized regime", "year": "2019" }, { "authors": [ "Daniel A Roberts", "Sho Yaida", "Boris Hanin" ], "doi": "10.1017/9781009023405", "ref_id": "b51", "title": "The Principles of Deep Learning Theory", "year": "2021" }, { "authors": [ "Bruno Loureiro", "Cédric Gerbelot", "Hugo Cui", "Sebastian Goldt", "Florent Krzakala", "Marc Mézard", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac9825", "ref_id": "b36", "title": "Learning curves of generic features maps for realistic datasets with a teacher-student model*", "year": "2021" }, { "authors": [ "Marylou Gabrié" ], "doi": "10.1088/1751-8121/ab7f65", "ref_id": "b17", "title": "Mean-field inference methods for neural networks", "year": "2019" }, { "authors": [ "Hugo Cui", "Bruno Loureiro", "Florent Krzakala", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac9829", "ref_id": "b10", "title": "Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime*", "year": "2021" }, { "authors": [ "Jacob A Zavatone-Veth", "Abdulkadir Canatar", "Benjamin S Ruben", "Cengiz Pehlevan" ], "doi": "10.1088/1742-5468/ac98a6", "ref_id": "b62", "title": "Asymptotics of representation learning in finite Bayesian neural networks*", "year": "2022. 2021" }, { "authors": [ "S Goldt", "B Loureiro", "G Reeves", "F Krzakala", "M Mézard", "L Zdeborová" ], "doi": "", "ref_id": "b22", "title": "The gaussian equivalence of generative models for learning with shallow neural networks", "year": "2021" }, { "authors": [ "A Montanari", "B Saeed" ], "doi": "", "ref_id": "b42", "title": "Universality of empirical risk minimization", "year": "2022" }, { "authors": [ "H S Seung", "H Sompolinsky", "N Tishby" ], "doi": "10.1103/physreva.45.6056", "ref_id": "b55", "title": "Statistical mechanics of learning from examples", "year": "1992" } ]
[ { "authors": [ "M Advani", "S Ganguli" ], "doi": "", "ref_id": "b0", "title": "Statistical mechanics of optimal convex inference in high dimensions", "year": "2016" }, { "authors": [ "S Ariosto", "R Pacelli", "M Pastore", "F Ginelli", "M Gherardi", "P Rotondo" ], "doi": "", "ref_id": "b1", "title": "Statistical mechanics of deep learning beyond the infinite-width limit", "year": "2022" }, { "authors": [ "S Arora", "S S Du", "Z Li", "R Salakhutdinov", "R Wang", "D Yu" ], "doi": "", "ref_id": "b2", "title": "Harnessing the power of infinitely wide deep nets on small-data tasks", "year": "2020" }, { "authors": [ "Benjamin Aubin", "Antoine Maillard", "Jean Barbier", "Florent Krzakala", "Nicolas Macris", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ab43d2", "ref_id": "b3", "title": "The committee machine: computational to statistical gaps in learning a two-layers neural network", "year": "2019. 2018" }, { "authors": [ "B Aubin", "F Krzakala", "Y M Lu", "L Zdeborová" ], "doi": "", "ref_id": "b4", "title": "Generalization error in high-dimensional perceptrons: Approaching bayes error with convex optimization", "year": "2020" }, { "authors": [ "Jean Barbier", "Florent Krzakala", "Nicolas Macris", "Léo Miolane", "Lenka Zdeborová" ], "doi": "10.1073/pnas.1802705116", "ref_id": "b5", "title": "Optimal errors and phase transitions in high-dimensional generalized linear models", "year": "2017" }, { "authors": [ "D Bosch", "A Panahi", "B Hassibi" ], "doi": "", "ref_id": "b6", "title": "Precise asymptotic analysis of deep random feature models", "year": "2023" }, { "authors": [ "Abdulkadir Canatar", "Blake Bordelon", "Cengiz Pehlevan" ], "doi": "10.1038/s41467-021-23103-1", "ref_id": "b7", "title": "Spectral bias and task-model alignment explain generalization in kernel regression and infinitely wide neural networks", "year": "2020" }, { "authors": [ "Lucas Clarté", "Bruno Loureiro", "Florent Krzakala", "Lenka Zdeborová" ], "doi": "10.1088/2632-2153/acd749", "ref_id": "b8", "title": "Theoretical characterization of uncertainty in high-dimensional linear classification", "year": "2022" }, { "authors": [ "H Cui", "L Saglietti", "L Zdeborová" ], "doi": "", "ref_id": "b9", "title": "Large deviations for the perceptron model and consequences for active learning", "year": "2019" }, { "authors": [ "Hugo Cui", "Bruno Loureiro", "Florent Krzakala", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac9829", "ref_id": "b10", "title": "Generalization error rates in kernel regression: the crossover from the noiseless to noisy regime*", "year": "2021" }, { "authors": [ "H Cui", "B Loureiro", "F Krzakala", "L Zdeborová" ], "doi": "", "ref_id": "b11", "title": "Error rates for kernel classification under source and capacity conditions", "year": "2022" }, { "authors": [ "S Ascoli", "M Gabrié", "L Sagun", "G Biroli" ], "doi": "", "ref_id": "b12", "title": "On the interplay between data structure and loss function in classification problems", "year": "2021" }, { "authors": [ "G De", "A G Matthews", "M Rowland", "J Hron", "R E Turner", "Z Ghahramani" ], "doi": "", "ref_id": "b13", "title": "Gaussian process behaviour in wide deep neural networks", "year": "2018" }, { "authors": [ "Noureddine El Karoui" ], "doi": "10.1214/07-aos581", "ref_id": "b14", "title": "Spectrum estimation for large dimensional covariance matrices using random matrix theory", "year": "2008" }, { "authors": [ "Z Fan", "Z Wang" ], "doi": "", "ref_id": "b15", "title": "Spectra of the conjugate kernel and neural tangent kernel for linear-width neural networks", "year": "2020" }, { "authors": [ "Kirsten Fischer", "Alexandre René", "Christian Keup", "Moritz Layer", "David Dahmen", "Moritz Helias" ], "doi": "10.1103/physrevresearch.4.043143", "ref_id": "b16", "title": "Decomposing neural networks as mappings of correlation functions", "year": "2022" }, { "authors": [ "Marylou Gabrié" ], "doi": "10.1088/1751-8121/ab7f65", "ref_id": "b17", "title": "Mean-field inference methods for neural networks", "year": "2019" }, { "authors": [ "Federica Gerace", "Bruno Loureiro", "Florent Krzakala", "Marc Mézard", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac3ae6", "ref_id": "b18", "title": "Generalisation error in learning with random features and the hidden manifold model*", "year": "2020" }, { "authors": [ "Behrooz Ghorbani", "Song Mei", "Theodor Misiakiewicz", "Andrea Montanari" ], "doi": "10.1214/20-aos1990", "ref_id": "b19", "title": "Linearized two-layers neural networks in high dimension", "year": "2019" }, { "authors": [ "Behrooz Ghorbani", "Song Mei", "Theodor Misiakiewicz", "Andrea Montanari" ], "doi": "10.1088/1742-5468/ac3a81", "ref_id": "b20", "title": "When do neural networks outperform kernel methods?*", "year": "2021. 2020" }, { "authors": [ "Sebastian Goldt", "Marc Mézard", "Florent Krzakala", "Lenka Zdeborová" ], "doi": "10.1103/physrevx.10.041044", "ref_id": "b21", "title": "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model", "year": "2020" }, { "authors": [ "S Goldt", "B Loureiro", "G Reeves", "F Krzakala", "M Mézard", "L Zdeborová" ], "doi": "", "ref_id": "b22", "title": "The gaussian equivalence of generative models for learning with shallow neural networks", "year": "2021" }, { "authors": [ "Sebastian Goldt", "Marc Mézard", "Florent Krzakala", "Lenka Zdeborová" ], "doi": "10.1103/physrevx.10.041044", "ref_id": "b23", "title": "Modeling the Influence of Data Structure on Learning in Neural Networks: The Hidden Manifold Model", "year": "2022" }, { "authors": [ "Boris Hanin" ], "doi": "10.1214/23-aap1933", "ref_id": "b24", "title": "Random neural networks in the infinite width limit as Gaussian processes", "year": "2022" }, { "authors": [ "Boris Hanin", "Alexander Zlokapa" ], "doi": "10.1073/pnas.2301345120", "ref_id": "b25", "title": "Bayesian interpolation with deep linear networks", "year": "2022" }, { "authors": [ "Trevor Hastie", "Andrea Montanari", "Saharon Rosset", "Ryan J Tibshirani" ], "doi": "10.1214/21-aos2133", "ref_id": "b26", "title": "Surprises in high-dimensional ridgeless least squares interpolation", "year": "2019" }, { "authors": [ "J Hron", "Y Bahri", "R Novak", "J Pennington", "J N Sohl-Dickstein" ], "doi": "", "ref_id": "b27", "title": "Exact posterior distributions of wide bayesian neural networks", "year": "2020" }, { "authors": [ "Hong Hu", "Yue M Lu" ], "doi": "10.1109/tit.2022.3217698", "ref_id": "b28", "title": "Universality Laws for High-Dimensional Learning With Random Features", "year": "2022" }, { "authors": [ "H Hu", "Y M Lu" ], "doi": "", "ref_id": "b29", "title": "Sharp asymptotics of kernel ridge regression beyond the linear regime", "year": "2022" }, { "authors": [ "Yukito Iba" ], "doi": "10.1088/0305-4470/32/21/302", "ref_id": "b30", "title": "The Nishimori line and Bayesian statistics", "year": "1998" }, { "authors": [ "Jaehoon Lee", "Lechao Xiao", "Samuel S Schoenholz", "Yasaman Bahri", "Roman Novak", "Jascha Sohl-Dickstein", "Jeffrey Pennington" ], "doi": "10.1088/1742-5468/abc62b", "ref_id": "b31", "title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>", "year": "2018" }, { "authors": [ "Jaehoon Lee", "Lechao Xiao", "Samuel S Schoenholz", "Yasaman Bahri", "Roman Novak", "Jascha Sohl-Dickstein", "Jeffrey Pennington" ], "doi": "10.1088/1742-5468/abc62b", "ref_id": "b32", "title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>", "year": "2020. 2019" }, { "authors": [ "Jaehoon Lee", "Lechao Xiao", "Samuel S Schoenholz", "Yasaman Bahri", "Roman Novak", "Jascha Sohl-Dickstein", "Jeffrey Pennington" ], "doi": "10.1088/1742-5468/abc62b", "ref_id": "b33", "title": "Wide neural networks of any depth evolve as linear models under gradient descent <sup>*</sup>", "year": "2020" }, { "authors": [ "Qianyi Li", "Haim Sompolinsky" ], "doi": "10.1103/physrevx.11.031059", "ref_id": "b34", "title": "Statistical Mechanics of Deep Linear Neural Networks: The Backpropagating Kernel Renormalization", "year": "2021" }, { "authors": [ "Cosme Louart", "Zhenyu Liao", "Romain Couillet" ], "doi": "10.1214/17-aap1328", "ref_id": "b35", "title": "A random matrix approach to neural networks", "year": "2017" }, { "authors": [ "Bruno Loureiro", "Cédric Gerbelot", "Hugo Cui", "Sebastian Goldt", "Florent Krzakala", "Marc Mézard", "Lenka Zdeborová" ], "doi": "10.1088/1742-5468/ac9825", "ref_id": "b36", "title": "Learning curves of generic features maps for realistic datasets with a teacher-student model*", "year": "2021" }, { "authors": [ "A Maillard", "B Loureiro", "F Krzakala", "L Zdeborová" ], "doi": "", "ref_id": "b37", "title": "Phase retrieval in high dimensions: Statistical and computational phase transitions", "year": "2020" }, { "authors": [ "S Mei", "A Montanari" ], "doi": "", "ref_id": "b38", "title": "The generalization error of random features regression: Precise asymptotics and the double descent curve", "year": "2019" }, { "authors": [ "Song Mei", "Theodor Misiakiewicz", "Andrea Montanari" ], "doi": "10.1016/j.acha.2021.12.003", "ref_id": "b39", "title": "Generalization error of random feature and kernel methods: Hypercontractivity and kernel matrix concentration", "year": "2021" }, { "authors": [ "Marc Mézard", "Andrea Montanari" ], "doi": "10.1093/acprof:oso/9780198570837.001.0001", "ref_id": "b40", "title": "Information, Physics, and Computation", "year": "2002" }, { "authors": [ "T Misiakiewicz" ], "doi": "", "ref_id": "b41", "title": "Spectrum of inner-product kernel matrices in the polynomial regime and multiple descent phenomenon in kernel ridge regression", "year": "2022" }, { "authors": [ "A Montanari", "B Saeed" ], "doi": "", "ref_id": "b42", "title": "Universality of empirical risk minimization", "year": "2022" }, { "authors": [ "A Montanari", "F Ruan", "Y Sohn", "J Yan" ], "doi": "", "ref_id": "b43", "title": "The generalization error of max-margin linear classifiers: Highdimensional asymptotics in the overparametrized regime", "year": "2019" }, { "authors": [ "R M Neal" ], "doi": "", "ref_id": "b44", "title": "Priors for infinite networks", "year": "1994" }, { "authors": [ "Hidetoshi Nishimori" ], "doi": "10.1093/acprof:oso/9780198509417.001.0001", "ref_id": "b45", "title": "Statistical Physics of Spin Glasses and Information Processing", "year": "2001" }, { "authors": [ "Manfred Opper", "David Haussler" ], "doi": "10.1103/physrevlett.66.2677", "ref_id": "b46", "title": "Generalization performance of Bayes optimal classification algorithm for learning a perceptron", "year": "1991" }, { "authors": [ "G Parisi" ], "doi": "", "ref_id": "b47", "title": "Towards a mean field theory for spin glasses", "year": "1979" }, { "authors": [ "Giorgio Parisi" ], "doi": "10.1103/physrevlett.50.1946", "ref_id": "b48", "title": "Order Parameter for Spin-Glasses", "year": "1983" }, { "authors": [ "Jeffrey Pennington", "Pratik Worah" ], "doi": "10.1088/1742-5468/ab3bc3", "ref_id": "b49", "title": "Nonlinear random matrix theory for deep learning", "year": "2019. 2019" }, { "authors": [ "A Rahimi", "B Recht" ], "doi": "10.7551/mitpress/7496.003.0017", "ref_id": "b50", "title": "References", "year": "2007" }, { "authors": [ "Daniel A Roberts", "Sho Yaida", "Boris Hanin" ], "doi": "10.1017/9781009023405", "ref_id": "b51", "title": "The Principles of Deep Learning Theory", "year": "2021" }, { "authors": [ "M Sahraee-Ardakan", "M Emami", "P Pandit", "S Rangan", "A K Fletcher" ], "doi": "", "ref_id": "b52", "title": "Kernel methods and multi-layer perceptrons learn linear models in high dimensions", "year": "2022" }, { "authors": [ "Dominik Schröder", "Hugo Cui", "Daniil Dmitriev", "Bruno Loureiro" ], "doi": "10.1088/1742-5468/ad65e2", "ref_id": "b53", "title": "Deterministic equivalent and error universality of deep random features learning<sup>*</sup>", "year": "2023" }, { "authors": [ "H Schwarze" ], "doi": "10.1088/0305-4470/26/21/017", "ref_id": "b54", "title": "Learning a rule in a multilayer neural network", "year": "1993" }, { "authors": [ "H S Seung", "H Sompolinsky", "N Tishby" ], "doi": "10.1103/physreva.45.6056", "ref_id": "b55", "title": "Statistical mechanics of learning from examples", "year": "1992" }, { "authors": [ "Michel Talagrand" ], "doi": "10.4007/annals.2006.163.221", "ref_id": "b56", "title": "The Parisi formula", "year": "2006" }, { "authors": [ "Christos Thrampoulidis", "Ehsan Abbasi", "Babak Hassibi" ], "doi": "10.1109/tit.2018.2840720", "ref_id": "b57", "title": "Precise Error Analysis of Regularized <inline-formula> <tex-math notation=\"LaTeX\">$M$ </tex-math> </inline-formula>-Estimators in High Dimensions", "year": "2018" }, { "authors": [ "T L Watkin", "A Rau", "M Biehl" ], "doi": "", "ref_id": "b58", "title": "The statistical mechanics of learning a rule", "year": "1993" }, { "authors": [ "D Wu", "J Xu" ], "doi": "", "ref_id": "b59", "title": "On the optimal weighted ℓ 2 regularization in overparameterized linear regression", "year": "2020" }, { "authors": [ "Lechao Xiao", "Hong Hu", "Theodor Misiakiewicz", "Yue M Lu", "Jeffrey Pennington" ], "doi": "10.1088/1742-5468/ad01b7", "ref_id": "b60", "title": "Precise learning curves and higher-order scaling limits for dot-product kernel regression <sup>*</sup>", "year": "2022" }, { "authors": [ "S Yaida" ], "doi": "10.7551/mitpress/3206.003.0013", "ref_id": "b61", "title": "Mathematical Background", "year": "2019" }, { "authors": [ "Jacob A Zavatone-Veth", "Abdulkadir Canatar", "Benjamin S Ruben", "Cengiz Pehlevan" ], "doi": "10.1088/1742-5468/ac98a6", "ref_id": "b62", "title": "Asymptotics of representation learning in finite Bayesian neural networks*", "year": "2022. 2021" }, { "authors": [ "Jacob A Zavatone-Veth", "William L Tong", "Cengiz Pehlevan" ], "doi": "10.1103/physreve.105.064118", "ref_id": "b63", "title": "Contrasting random and learned features in deep Bayesian linear regression", "year": "2022" }, { "authors": [ "Lenka Zdeborová", "Florent Krzakala" ], "doi": "10.1080/00018732.2016.1211393", "ref_id": "b64", "title": "Statistical physics of inference: thresholds and algorithms", "year": "2015" } ]
[ "cf7d586ae469dd00", "0e158c91b804a04d", "c367c363fca7bd49", "82fffb9b5cde4dd5", "72783db1e14e50ca", "92bd5ef627702ef0", "c75cac3874187b31", "f0a48c568a56cbfb", "190637669357c42c", "82d7fb29f66f4df6", "1baf5faf0f0dfd35", "7fc7b79353c8544f", "bd6787d9469a816e", "7a23e990c9d6b439", "a30b2777f471e77e", "3e69ef05e26e4b5f", "8c41bd5053b225dc", "8cb3e9a3c724ef66", "7b4be9698e06a486", "0b36139d776d2e57", "523dc860997891e5", "4c6be1beedb04ef2", "0170d242f140b3af", "a455136421fbed07", "bd685f4812006af3", "d5d8056d7299869a", "9a7e4dfc0b726bba", "acf67f3a14123d7b", "61eafc038777da91", "d5e85a522e6359f8", "d760ae5f14670165", "3ae1b14e37082196", "2e3f44861f70260d" ]
[ "0e158c91b804a04d", "7b4be9698e06a486", "864214022edca181", "523dc860997891e5", "82d7fb29f66f4df6", "190637669357c42c", "7fc7b79353c8544f", "3e69ef05e26e4b5f", "559fc479d169c59b", "bd6787d9469a816e", "61eafc038777da91", "3772de01c471a48a", "2e3e7e8dbd6f9617", "4c6be1beedb04ef2", "82fffb9b5cde4dd5", "301704807171863f", "024a65bc6d4e3ae4", "acf67f3a14123d7b", "a30b2777f471e77e", "61b0703b64e2975e", "961c63fb75f2d503", "cf5a4e4aee0f4c44", "d760ae5f14670165", "1d3986b1ac231a0f", "e8736d1293a18916", "8cb3e9a3c724ef66", "96b03b1c868c62fd", "cf7d586ae469dd00", "14ee449eb2d7de8e", "4e3d238aec3df287", "b3df5ed4b05f620a", "92bd5ef627702ef0", "6c52ae5ac08e5d11", "7b01252a4e91b4dc", "0170d242f140b3af", "a455136421fbed07", "9a7e4dfc0b726bba", "1baf5faf0f0dfd35", "405a5f81e64416cb", "a8022b8e3384df51", "412a26e6f1126be5", "2279f95ed59ef23e", "3ae1b14e37082196", "bd685f4812006af3", "c367c363fca7bd49", "13e89258c4606b24", "adf756bea4d65b35", "67d9e9f25da6ddf1", "6151d54ded081b97", "0b36139d776d2e57", "ff043575ca85e4fe", "d5d8056d7299869a", "b7f4b3cb05df6925", "8c41bd5053b225dc", "9f227ae0243657c5", "2e3f44861f70260d", "72783db1e14e50ca", "f0a48c568a56cbfb", "c75cac3874187b31", "7bfa3d7965ea8af9", "92b71c57c9db9eb2", "7a23e990c9d6b439", "d5e85a522e6359f8", "a49e57b16ce2ffda", "9fbdd03f9d9c5a66" ]
O1j4uFuSVW
Adapting to game trees in zero-sum imperfect information games
data/openreview_paper/ICML_2023_oral/O1j4uFuSVW//paper.pdf
57
27
[ { "authors": [ "O Tammelin" ], "doi": "10.1063/pt.5.028530", "ref_id": "b45", "title": "Preprint repository arXiv achieves milestone million uploads", "year": "2014" }, { "authors": [ "J V Romanovsky" ], "doi": "10.1016/0011-7471(63)90317-6", "ref_id": "b39", "title": "Dokl. Akad. Nauk, SSSR", "year": "1962" }, { "authors": [ "R Munos", "J Pérolat", "J.-B Lespiau", "M Rowland", "B De Vylder", "M Lanctot", "F Timbers", "D Hennes", "S Omidshafiei", "A Gruslys", "M G Azar", "E Lockhart", "K Tuyls" ], "doi": "", "ref_id": "b34", "title": "Fast computation of nash equilibria in imperfect information games", "year": "2020" }, { "authors": [ "G Farina", "C Kroer", "T Sandholm" ], "doi": "", "ref_id": "b13", "title": "Stochastic Regret Minimization in Extensive-Form Games", "year": "2020" }, { "authors": [ "Arkadi Nemirovski" ], "doi": "10.1137/s1052623403425629", "ref_id": "b35", "title": "Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems", "year": "2004" }, { "authors": [ "Andrew Gilpin", "Javier Peña", "Tuomas Sandholm" ], "doi": "10.1007/s10107-010-0430-2", "ref_id": "b16", "title": "First-order algorithm with $${\\mathcal{O}({\\rm ln}(1{/}\\epsilon))}$$ convergence for $${\\epsilon}$$ -equilibrium in two-person zero-sum games", "year": "2012" }, { "authors": [ "Sergiu Hart", "Andreu Mas-Colell" ], "doi": "10.1111/1468-0262.00153", "ref_id": "b18", "title": "A Simple Adaptive Procedure Leading to Correlated Equilibrium", "year": "2000" }, { "authors": [ "G Farina", "C Kroer", "T Sandholm" ], "doi": "", "ref_id": "b12", "title": "Regret circuits: Composability of regret minimizers", "year": "9-15 June 2019. 2019" }, { "authors": [ "Y Bai", "C Jin", "S Mei", "T Yu" ], "doi": "", "ref_id": "b4", "title": "Near-optimal learning of extensive-form games with imperfect information", "year": "2022" }, { "authors": [ "Peter Auer", "Nicolò Cesa-Bianchi", "Yoav Freund", "Robert E Schapire" ], "doi": "10.1137/s0097539701398375", "ref_id": "b1", "title": "The Nonstochastic Multiarmed Bandit Problem", "year": "January 2003" }, { "authors": [ "Samid Hoda", "Andrew Gilpin", "Javier Peña", "Tuomas Sandholm" ], "doi": "10.1287/moor.1100.0452", "ref_id": "b20", "title": "Smoothing Techniques for Computing Nash Equilibria of Sequential Games", "year": "2010" }, { "authors": [ "K Waugh", "J A Bagnell" ], "doi": "", "ref_id": "b49", "title": "A unified view of large-scale zero-sum equilibrium computation", "year": "2014" }, { "authors": [ "G Neu" ], "doi": "", "ref_id": "b37", "title": "Explore no more: Improved high-probability regret bounds for non-stochastic bandits", "year": "2015" }, { "authors": [ "Neil Burch", "Matej Moravcik", "Martin Schmid" ], "doi": "10.1613/jair.1.11370", "ref_id": "b8", "title": "Revisiting CFR+ and Alternating Updates", "year": "2019" }, { "authors": [ "Martin Schmid", "Neil Burch", "Marc Lanctot", "Matej Moravcik", "Rudolf Kadlec", "Michael Bowling" ], "doi": "10.1609/aaai.v33i01.33012157", "ref_id": "b40", "title": "Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games Using Baselines", "year": "2018" }, { "authors": [ "Noam Brown", "Tuomas Sandholm" ], "doi": "10.1126/science.aao1733", "ref_id": "b6", "title": "Superhuman AI for heads-up no-limit poker: Libratus beats top professionals", "year": "2018" }, { "authors": [ "Geoffrey J Gordon" ], "doi": "10.7551/mitpress/7503.003.0066", "ref_id": "b17", "title": "No-regret Algorithms for Online Convex Programs", "year": "2007" }, { "authors": [ "Bernhard Von Stengel" ], "doi": "10.1006/game.1996.0050", "ref_id": "b48", "title": "Efficient Computation of Behavior Strategies", "year": "1996" }, { "authors": [ "Martin Schmid", "Matej Moravčík", "Neil Burch", "Rudolf Kadlec", "Josh Davidson", "Kevin Waugh", "Nolan Bard", "Finbarr Timbers", "Marc Lanctot", "G Zacharias Holland", "Elnaz Davoodi", "Alden Christianson", "Michael Bowling" ], "doi": "10.1126/sciadv.adg3256", "ref_id": "b41", "title": "Student of Games: A unified learning algorithm for both perfect and imperfect information games", "year": "2021" }, { "authors": [ "C Kroer", "G Farina", "T Sandholm" ], "doi": "", "ref_id": "b22", "title": "Solving large sequential games with the excessive gap technique", "year": "2018" }, { "authors": [ "Tor Lattimore", "Csaba Szepesvári" ], "doi": "10.1017/9781108571401", "ref_id": "b28", "title": "Bandit Algorithms", "year": "2020" }, { "authors": [ "C.-W Lee", "C Kroer", "H Luo" ], "doi": "", "ref_id": "b29", "title": "Last-iterate convergence in extensive-form games", "year": "2021" }, { "authors": [ "Anton Bakhtin", "Noam Brown", "Emily Dinan", "Gabriele Farina", "Colin Flaherty", "Daniel Fried", "Andrew Goff", "Jonathan Gray", "Hengyuan Hu", "Athul Paul Jacob", "Mojtaba Komeili", "Karthik Konath", "Minae Kwon", "Adam Lerer", "Mike Lewis", "Alexander H Miller", "Sasha Mitts", "Adithya Renduchintala", "Stephen Roller", "Dirk Rowe", "Weiyan Shi", "Joe Spisak", "Alexander Wei", "David Wu", "Hugh Zhang", "Markus Zijlstra" ], "doi": "10.1126/science.ade9097", "ref_id": "b5", "title": "Human-level play in the game of<i>Diplomacy</i>by combining language models with strategic reasoning", "year": "2022" }, { "authors": [ "Y U Nesterov" ], "doi": "10.1007/s10107-004-0552-5", "ref_id": "b36", "title": "Smooth minimization of non-smooth functions", "year": "2005" }, { "authors": [ "J Pérolat", "B De Vylder", "D Hennes", "E Tarassov", "F Strub", "V De Boer", "P Muller", "J T Connor", "N Burch", "T Anthony", "S Mcaleer", "R Elie", "S H Cen", "Z Wang", "A Gruslys", "A Malysheva", "M Khan", "S Ozair", "F Timbers", "T Pohlen", "T Eccles", "M Rowland", "M Lanctot", "J.-B Lespiau", "B Piot", "S Omidshafiei", "E Lockhart", "L Sifre", "N Beauguerlange", "R Munos", "D Silver", "S Singh", "D Hassabis", "K Tuyls" ], "doi": "10.48550/ARXIV.2206.15378", "ref_id": "b38", "title": "Mastering the game of stratego with model-free multiagent reinforcement learning", "year": "2022" }, { "authors": [ "Matej Moravčík", "Martin Schmid", "Neil Burch", "Viliam Lisý", "Dustin Morrill", "Nolan Bard", "Trevor Davis", "Kevin Waugh", "Michael Johanson", "Michael Bowling" ], "doi": "10.1126/science.aam6960", "ref_id": "b33", "title": "DeepStack: Expert-level artificial intelligence in heads-up no-limit poker", "year": "2017" }, { "authors": [ "M Lanctot", "K Waugh", "M Zinkevich", "M Bowling" ], "doi": "", "ref_id": "b26", "title": "Monte-Carlo sampling for regret minimization in extensive games", "year": "2009" } ]
[ { "authors": [ "J D Abernethy", "C Lee", "A Tewari" ], "doi": "", "ref_id": "b0", "title": "Fighting bandits with a new kind of smoothness", "year": "2015" }, { "authors": [ "Peter Auer", "Nicolò Cesa-Bianchi", "Yoav Freund", "Robert E Schapire" ], "doi": "10.1137/s0097539701398375", "ref_id": "b1", "title": "The Nonstochastic Multiarmed Bandit Problem", "year": "January 2003" }, { "authors": [ "Y Bai", "C Jin", "T Yu" ], "doi": "", "ref_id": "b2", "title": "Near-optimal reinforcement learning with self-play", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b3", "title": "", "year": "2020" }, { "authors": [ "Y Bai", "C Jin", "S Mei", "T Yu" ], "doi": "", "ref_id": "b4", "title": "Near-optimal learning of extensive-form games with imperfect information", "year": "2022" }, { "authors": [ "Anton Bakhtin", "Noam Brown", "Emily Dinan", "Gabriele Farina", "Colin Flaherty", "Daniel Fried", "Andrew Goff", "Jonathan Gray", "Hengyuan Hu", "Athul Paul Jacob", "Mojtaba Komeili", "Karthik Konath", "Minae Kwon", "Adam Lerer", "Mike Lewis", "Alexander H Miller", "Sasha Mitts", "Adithya Renduchintala", "Stephen Roller", "Dirk Rowe", "Weiyan Shi", "Joe Spisak", "Alexander Wei", "David Wu", "Hugh Zhang", "Markus Zijlstra" ], "doi": "10.1126/science.ade9097", "ref_id": "b5", "title": "Human-level play in the game of<i>Diplomacy</i>by combining language models with strategic reasoning", "year": "2022" }, { "authors": [ "Noam Brown", "Tuomas Sandholm" ], "doi": "10.1126/science.aao1733", "ref_id": "b6", "title": "Superhuman AI for heads-up no-limit poker: Libratus beats top professionals", "year": "2018" }, { "authors": [ "N Brown", "A Lerer", "S Gross", "T Sandholm" ], "doi": "", "ref_id": "b7", "title": "Deep counterfactual regret minimization", "year": "2019" }, { "authors": [ "Neil Burch", "Matej Moravcik", "Martin Schmid" ], "doi": "10.1613/jair.1.11370", "ref_id": "b8", "title": "Revisiting CFR+ and Alternating Updates", "year": "2019" }, { "authors": [ "Nicolo Cesa-Bianchi", "Gabor Lugosi" ], "doi": "10.1017/cbo9780511546921", "ref_id": "b9", "title": "Prediction, Learning, and Games", "year": "2006" }, { "authors": [ "C Daskalakis", "D J Foster", "N Golowich" ], "doi": "", "ref_id": "b10", "title": "Independent policy gradient methods for competitive reinforcement learning", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b11", "title": "", "year": "2020" }, { "authors": [ "G Farina", "C Kroer", "T Sandholm" ], "doi": "", "ref_id": "b12", "title": "Regret circuits: Composability of regret minimizers", "year": "9-15 June 2019. 2019" }, { "authors": [ "G Farina", "C Kroer", "T Sandholm" ], "doi": "", "ref_id": "b13", "title": "Stochastic Regret Minimization in Extensive-Form Games", "year": "2020" }, { "authors": [ "Gabriele Farina", "Christian Kroer", "Tuomas Sandholm" ], "doi": "10.1609/aaai.v35i6.16676", "ref_id": "b14", "title": "Faster Game Solving via Predictive Blackwell Approachability: Connecting Regret Matching and Mirror Descent", "year": "2021" }, { "authors": [ "Gabriele Farina", "Robin Schmucker", "Tuomas Sandholm" ], "doi": "10.1609/aaai.v35i6.16677", "ref_id": "b15", "title": "Bandit Linear Optimization for Sequential Decision Making and Extensive-Form Games", "year": "2021" }, { "authors": [ "Andrew Gilpin", "Javier Peña", "Tuomas Sandholm" ], "doi": "10.1007/s10107-010-0430-2", "ref_id": "b16", "title": "First-order algorithm with $${\\mathcal{O}({\\rm ln}(1{/}\\epsilon))}$$ convergence for $${\\epsilon}$$ -equilibrium in two-person zero-sum games", "year": "2012" }, { "authors": [ "Geoffrey J Gordon" ], "doi": "10.7551/mitpress/7503.003.0066", "ref_id": "b17", "title": "No-regret Algorithms for Online Convex Programs", "year": "2007" }, { "authors": [ "Sergiu Hart", "Andreu Mas-Colell" ], "doi": "10.1111/1468-0262.00153", "ref_id": "b18", "title": "A Simple Adaptive Procedure Leading to Correlated Equilibrium", "year": "2000" }, { "authors": [ "J Heinrich", "M Lanctot", "D Silver" ], "doi": "", "ref_id": "b19", "title": "Fictitious self-play in extensive-form games", "year": "2015" }, { "authors": [ "Samid Hoda", "Andrew Gilpin", "Javier Peña", "Tuomas Sandholm" ], "doi": "10.1287/moor.1100.0452", "ref_id": "b20", "title": "Smoothing Techniques for Computing Nash Equilibria of Sequential Games", "year": "2010" }, { "authors": [ "M Johanson", "N Bard", "M Lanctot", "R Gibson", "M Bowling", "C Waugh", "K Kilinc ¸-Karzan", "F Sandholm", "T" ], "doi": "10.1145/2764468.2764476", "ref_id": "b21", "title": "Faster first-order methods for extensive-form game solving", "year": "2015" }, { "authors": [ "C Kroer", "G Farina", "T Sandholm" ], "doi": "", "ref_id": "b22", "title": "Solving large sequential games with the excessive gap technique", "year": "2018" }, { "authors": [ "Christian Kroer", "Kevin Waugh", "Fatma Kılınç-Karzan", "Tuomas Sandholm" ], "doi": "10.1007/s10107-018-1336-7", "ref_id": "b23", "title": "Faster algorithms for extensive-form game solving via improved smoothing functions", "year": "2020" }, { "authors": [ "H W Kuhn" ], "doi": "10.1073/pnas.36.10.570", "ref_id": "b24", "title": "Extensive Games", "year": "1950" }, { "authors": [ "H W Kuhn" ], "doi": "10.1515/9781400881970-012", "ref_id": "b25", "title": "11. Extensive Games and the Problem of Information", "year": "1953" }, { "authors": [ "M Lanctot", "K Waugh", "M Zinkevich", "M Bowling" ], "doi": "", "ref_id": "b26", "title": "Monte-Carlo sampling for regret minimization in extensive games", "year": "2009" }, { "authors": [ "M Lanctot", "E Lockhart", "J.-B Lespiau", "V Zambaldi", "S Upadhyay", "J Pérolat", "S Srinivasan", "F Timbers", "K Tuyls", "S Omidshafiei", "D Hennes", "D Morrill", "P Muller", "T Ewalds", "R Faulkner", "J Kramár", "B De Vylder", "B Saeta", "J Bradbury", "D Ding", "S Borgeaud", "M Lai", "J Schrittwieser", "T Anthony", "E Hughes", "I Danihelka", "Ryan-Davis", "J" ], "doi": "", "ref_id": "b27", "title": "Openspiel: A framework for reinforcement learning in games", "year": "2019" }, { "authors": [ "Tor Lattimore", "Csaba Szepesvári" ], "doi": "10.1017/9781108571401", "ref_id": "b28", "title": "Bandit Algorithms", "year": "2020" }, { "authors": [ "C.-W Lee", "C Kroer", "H Luo" ], "doi": "", "ref_id": "b29", "title": "Last-iterate convergence in extensive-form games", "year": "2021" }, { "authors": [ "Michael L Littman" ], "doi": "10.1016/b978-1-55860-335-6.50027-1", "ref_id": "b30", "title": "Markov games as a framework for multi-agent reinforcement learning", "year": "1994" }, { "authors": [ "Q Liu", "T Yu", "Y Bai", "Jin", "C" ], "doi": "", "ref_id": "b31", "title": "A sharp analysis of model-based reinforcement learning with self-play", "year": "18-24 Jul 2021" }, { "authors": [ "S Mcaleer", "G Farina", "M Lanctot", "T Sandholm", "Escher" ], "doi": "10.48550/arXiv.2206.04122", "ref_id": "b32", "title": "Eschewing importance sampling in games by computing a history value function to estimate regret", "year": "2022" }, { "authors": [ "Matej Moravčík", "Martin Schmid", "Neil Burch", "Viliam Lisý", "Dustin Morrill", "Nolan Bard", "Trevor Davis", "Kevin Waugh", "Michael Johanson", "Michael Bowling" ], "doi": "10.1126/science.aam6960", "ref_id": "b33", "title": "DeepStack: Expert-level artificial intelligence in heads-up no-limit poker", "year": "2017" }, { "authors": [ "R Munos", "J Pérolat", "J.-B Lespiau", "M Rowland", "B De Vylder", "M Lanctot", "F Timbers", "D Hennes", "S Omidshafiei", "A Gruslys", "M G Azar", "E Lockhart", "K Tuyls" ], "doi": "", "ref_id": "b34", "title": "Fast computation of nash equilibria in imperfect information games", "year": "2020" }, { "authors": [ "Arkadi Nemirovski" ], "doi": "10.1137/s1052623403425629", "ref_id": "b35", "title": "Prox-Method with Rate of Convergence <i>O</i>(1/<i>t</i>) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems", "year": "2004" }, { "authors": [ "Y U Nesterov" ], "doi": "10.1007/s10107-004-0552-5", "ref_id": "b36", "title": "Smooth minimization of non-smooth functions", "year": "2005" }, { "authors": [ "G Neu" ], "doi": "", "ref_id": "b37", "title": "Explore no more: Improved high-probability regret bounds for non-stochastic bandits", "year": "2015" }, { "authors": [ "J Pérolat", "B De Vylder", "D Hennes", "E Tarassov", "F Strub", "V De Boer", "P Muller", "J T Connor", "N Burch", "T Anthony", "S Mcaleer", "R Elie", "S H Cen", "Z Wang", "A Gruslys", "A Malysheva", "M Khan", "S Ozair", "F Timbers", "T Pohlen", "T Eccles", "M Rowland", "M Lanctot", "J.-B Lespiau", "B Piot", "S Omidshafiei", "E Lockhart", "L Sifre", "N Beauguerlange", "R Munos", "D Silver", "S Singh", "D Hassabis", "K Tuyls" ], "doi": "10.48550/ARXIV.2206.15378", "ref_id": "b38", "title": "Mastering the game of stratego with model-free multiagent reinforcement learning", "year": "2022" }, { "authors": [ "J V Romanovsky" ], "doi": "10.1016/0011-7471(63)90317-6", "ref_id": "b39", "title": "Dokl. Akad. Nauk, SSSR", "year": "1962" }, { "authors": [ "Martin Schmid", "Neil Burch", "Marc Lanctot", "Matej Moravcik", "Rudolf Kadlec", "Michael Bowling" ], "doi": "10.1609/aaai.v33i01.33012157", "ref_id": "b40", "title": "Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games Using Baselines", "year": "2018" }, { "authors": [ "Martin Schmid", "Matej Moravčík", "Neil Burch", "Rudolf Kadlec", "Josh Davidson", "Kevin Waugh", "Nolan Bard", "Finbarr Timbers", "Marc Lanctot", "G Zacharias Holland", "Elnaz Davoodi", "Alden Christianson", "Michael Bowling" ], "doi": "10.1126/sciadv.adg3256", "ref_id": "b41", "title": "Student of Games: A unified learning algorithm for both perfect and imperfect information games", "year": "2021" }, { "authors": [ "A Sidford", "M Wang", "L Yang", "Y Ye" ], "doi": "", "ref_id": "b42", "title": "Solving discounted stochastic two-player games with near-optimal time and sample complexity", "year": "August 2020. 2020" }, { "authors": [ "F Southey", "M Bowling", "B Larson", "C Piccione", "N Burch", "D Billings", "C Rayner" ], "doi": "", "ref_id": "b43", "title": "Bayes' bluff: Opponent modelling in poker", "year": "2005" }, { "authors": [ "M Strens" ], "doi": "", "ref_id": "b44", "title": "A Bayesian Framework for Reinforcement Learning", "year": "2000" }, { "authors": [ "O Tammelin" ], "doi": "10.1063/pt.5.028530", "ref_id": "b45", "title": "Preprint repository arXiv achieves milestone million uploads", "year": "2014" }, { "authors": [ "Constantino Tsallis" ], "doi": "10.1007/bf01016429", "ref_id": "b46", "title": "Possible generalization of Boltzmann-Gibbs statistics", "year": "1988" }, { "authors": [ "J Von Neumann" ], "doi": "", "ref_id": "b47", "title": "Zur Theorie der Gesellschaftsspiele", "year": "1928" }, { "authors": [ "Bernhard Von Stengel" ], "doi": "10.1006/game.1996.0050", "ref_id": "b48", "title": "Efficient Computation of Behavior Strategies", "year": "1996" }, { "authors": [ "K Waugh", "J A Bagnell" ], "doi": "", "ref_id": "b49", "title": "A unified view of large-scale zero-sum equilibrium computation", "year": "2014" }, { "authors": [ "C Wei", "C Lee", "M Zhang", "H Luo" ], "doi": "", "ref_id": "b50", "title": "Last-iterate convergence of decentralized optimistic gradient descent/ascent in infinite-horizon competitive markov games", "year": "August 2021. 2021" }, { "authors": [ "C.-Y Wei", "Y.-T Hong", "C.-J Lu" ], "doi": "", "ref_id": "b51", "title": "Online reinforcement learning in stochastic games", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b52", "title": "", "year": "2017" }, { "authors": [ "Q Xie", "Y Chen", "Z Wang", "Z Yang" ], "doi": "", "ref_id": "b53", "title": "Learning zerosum simultaneous-move markov games using function approximation and correlated equilibrium", "year": "09-12 Jul 2020" }, { "authors": [ "Brian Hu Zhang", "Tuomas Sandholm" ], "doi": "10.1609/aaai.v35i6.16724", "ref_id": "b54", "title": "Finding and Certifying (Near-)Optimal Strategies in Black-Box Extensive-Form Games", "year": "2021" }, { "authors": [ "K Zhang", "S Kakade", "T Basar", "L Yang" ], "doi": "", "ref_id": "b55", "title": "Model-based multi-agent rl in zero-sum markov games with nearoptimal sample complexity", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b56", "title": "", "year": "2020" } ]
[ "3f6b3f7918784a71", "6c4ec217d0c82261", "c1f2146d9bdce91f", "e6c6b596167894a8", "6c73389a940b86f6", "f8d72c6f22df3935", "d07819811d5300f4", "da26e152d890308b", "d1d89e952b603930", "09d333e5fab31827", "e553b2fb7a69f60c", "d98e633a99e7567b", "87c17ae81b89012c", "deaa60a5ad88dac4", "7a954d76bf62c13c", "6a993483e870bca5", "c4348c4bca5275d2", "e835748dacd6328d", "495f2b5d6097382d", "5100ec0265a5ec5b", "a8e5aa6f2a215a01", "762621d3da8264ea", "cd466969b0ed06cb", "2fe9b75d47d53bee", "095903bd2e451f66", "25fb9dc0a5bf3ec3", "0459e7673fda8c81" ]
[ "d0e853a6356d966f", "09d333e5fab31827", "8b16434af0b6d1e0", "c27b3e365f55765e", "d1d89e952b603930", "cd466969b0ed06cb", "6a993483e870bca5", "7fae944fbd688e65", "deaa60a5ad88dac4", "2789278b5dc911da", "8f2a4eeaa6ef3afb", "c27b3e365f55765e", "da26e152d890308b", "e6c6b596167894a8", "95584433de71e816", "dd8e42aeab014ac4", "f8d72c6f22df3935", "c4348c4bca5275d2", "d07819811d5300f4", "12e8b0d4fcf2b4d4", "e553b2fb7a69f60c", "35ee50c51b34ef57", "5100ec0265a5ec5b", "7629ff1169697825", "989174c8864e053e", "5f8a8edfb656a320", "0459e7673fda8c81", "139d266d8edcfc7f", "a8e5aa6f2a215a01", "762621d3da8264ea", "27c4b33ec85fe7c6", "2c9b3c5458118065", "06cb5b96b072d82e", "25fb9dc0a5bf3ec3", "c1f2146d9bdce91f", "6c73389a940b86f6", "2fe9b75d47d53bee", "87c17ae81b89012c", "095903bd2e451f66", "6c4ec217d0c82261", "7a954d76bf62c13c", "495f2b5d6097382d", "327357c80db6961f", "b4c096bbda676cab", "ca5dcbc753893965", "3f6b3f7918784a71", "a675a0650f657f0c", "d8ab6ef4e293b4c2", "e835748dacd6328d", "d98e633a99e7567b", "e7356fa862e18639", "d726af1d9d045b42", "1b4395952f8afebb", "f9d54f0fdb6a7d64", "9d717b933a179bf8", "c8278a4fcf75ce11", "c27b3e365f55765e" ]
qlAtMW9jIh
Uncertain Evidence in Probabilistic Models and Stochastic Simulators
data/openreview_paper/ICML_2023_oral/qlAtMW9jIh//paper.pdf
44
15
[ { "authors": [ "J M Hammersley", "D C Handscomb" ], "doi": "10.1007/978-94-009-5819-7", "ref_id": "b14", "title": "Monte Carlo Methods", "year": "1964" }, { "authors": [ "Nicholas Metropolis", "Arianna W Rosenbluth", "Marshall N Rosenbluth", "Augusta H Teller", "Edward Teller" ], "doi": "10.1063/1.1699114", "ref_id": "b22", "title": "Equation of State Calculations by Fast Computing Machines", "year": "June 1953" }, { "authors": [ "R C Jeffrey" ], "doi": "", "ref_id": "b17", "title": "The Logic of Decision", "year": "1983. 1965" }, { "authors": [ "Radford M Neal" ], "doi": "10.1006/jcph.1994.1054", "ref_id": "b26", "title": "An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm", "year": "1994" }, { "authors": [ "D Tolpin", "Y Zhou", "T Rainforth", "H Yang" ], "doi": "", "ref_id": "b37", "title": "Probabilistic Programs with Stochastic Conditioning", "year": "July 2021" }, { "authors": [ "W K Hastings" ], "doi": "10.1093/biomet/57.1.97", "ref_id": "b15", "title": "Monte Carlo sampling methods using Markov chains and their applications", "year": "April 1970" }, { "authors": [ "Simon Duane", "A D Kennedy", "Brian J Pendleton", "Duncan Roweth" ], "doi": "10.1016/0370-2693(87)91197-x", "ref_id": "b10", "title": "Hybrid Monte Carlo", "year": "September 1987" }, { "authors": [ "Hei Chan", "Adnan Darwiche" ], "doi": "10.1016/j.artint.2004.09.005", "ref_id": "b6", "title": "On the revision of probabilistic beliefs using uncertain evidence", "year": "2005" }, { "authors": [ "Persi Diaconis", "Sandy L Zabell" ], "doi": "10.1080/01621459.1982.10477893", "ref_id": "b9", "title": "Updating Subjective Probability", "year": "1982" }, { "authors": [ "Philippe Smets", "Jeffrey" ], "doi": "10.1016/b978-1-4832-1451-1.50065-2", "ref_id": "b35", "title": "Jeffrey's rule of conditioning generalized to belief functions.", "year": "1993" }, { "authors": [ "B Jacobs" ], "doi": "10.1093/biomet/57.1.97", "ref_id": "b16", "title": "The Mathematics of Changing One's Mind, via Jeffrey's or via Pearl's Update Rule", "year": "August 2019" }, { "authors": [ "Carl G Wagner" ], "doi": "10.1086/341053", "ref_id": "b41", "title": "Probability Kinematics and Commutativity", "year": "June 2002" }, { "authors": [ "J Pearl" ], "doi": "", "ref_id": "b29", "title": "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", "year": "1988" }, { "authors": [ "K Yao" ], "doi": "10.1080/03610926.2020.1838545", "ref_id": "b43", "title": "Bayesian inference with uncertain data of imprecise observations", "year": "2022" }, { "authors": [ "Marco Valtorta", "Young-Gyun Kim", "Jiří Vomlel" ], "doi": "10.1016/s0888-613x(01)00056-1", "ref_id": "b38", "title": "Soft evidential update for probabilistic multiagent systems", "year": "January 2002" } ]
[ { "authors": [ "A G Baydin", "T A Le", "Pyprob" ], "doi": "", "ref_id": "b0", "title": "", "year": "2018" }, { "authors": [ "Atilim Güneş Baydin", "Lei Shao", "Wahid Bhimji", "Lukas Heinrich", "Lawrence Meadows", "Jialin Liu", "Andreas Munk", "Saeid Naderiparizi", "Bradley Gram-Hansen", "Gilles Louppe", "Mingfei Ma", "Xiaohui Zhao", "Philip Torr", "Victor Lee", "Kyle Cranmer", "Prabhat", "Frank Wood" ], "doi": "10.1145/3295500.3356180", "ref_id": "b1", "title": "Etalumis", "year": "" }, { "authors": [ "Curran Associates", "Inc" ], "doi": "", "ref_id": "b2", "title": "", "year": "2019" }, { "authors": [ "A Ben Mrad", "V Delcroix", "S Piechowiak", "M A Maalej", "M Abid" ], "doi": "10.1109/ICMSAO.2013.6552583", "ref_id": "b3", "title": "Understanding soft evidence as probabilistic evidence: Illustration with several use cases", "year": "April 2013" }, { "authors": [ "C M Bishop" ], "doi": "", "ref_id": "b4", "title": "Pattern Recognition and Machine Learning", "year": "2006" }, { "authors": [ "William J Borucki", "David Koch", "Gibor Basri", "Natalie Batalha", "Timothy Brown", "Douglas Caldwell", "John Caldwell", "Jørgen Christensen-Dalsgaard", "William D Cochran", "Edna Devore", "Edward W Dunham", "Andrea K Dupree", "Thomas N Gautier", "John C Geary", "Ronald Gilliland", "Alan Gould", "Steve B Howell", "Jon M Jenkins", "Yoji Kondo", "David W Latham", "Geoffrey W Marcy", "Søren Meibom", "Hans Kjeldsen", "Jack J Lissauer", "David G Monet", "David Morrison", "Dimitar Sasselov", "Jill Tarter", "Alan Boss", "Don Brownlee", "Toby Owen", "Derek Buzasi", "David Charbonneau", "Laurance Doyle", "Jonathan Fortney", "Eric B Ford", "Matthew J Holman", "Sara Seager", "Jason H Steffen", "William F Welsh", "Jason Rowe", "Howard Anderson", "Lars Buchhave", "David Ciardi", "Lucianne Walkowicz", "William Sherry", "Elliott Horch", "Howard Isaacson", "Mark E Everett", "Debra Fischer", "Guillermo Torres", "John Asher Johnson", "Michael Endl", "Phillip Macqueen", "Stephen T Bryson", "Jessie Dotson", "Michael Haas", "Jeffrey Kolodziejczak", "Jeffrey Van Cleve", "Hema Chandrasekaran", "Joseph D Twicken", "Elisa V Quintana", "Bruce D Clarke", "Christopher Allen", "Jie Li", "Haley Wu", "Peter Tenenbaum", "Ekaterina Verner", "Frederick Bruhweiler", "Jason Barnes", "Andrej Prsa" ], "doi": "10.1126/science.1185402", "ref_id": "b5", "title": "Kepler Planet-Detection Mission: Introduction and First Results", "year": "5968. February 2010" }, { "authors": [ "Hei Chan", "Adnan Darwiche" ], "doi": "10.1016/j.artint.2004.09.005", "ref_id": "b6", "title": "On the revision of probabilistic beliefs using uncertain evidence", "year": "2005" }, { "authors": [ "Maximilian Dax", "Stephen R Green", "Jonathan Gair", "Jakob H Macke", "Alessandra Buonanno", "Bernhard Schölkopf" ], "doi": "10.1103/physrevlett.127.241103", "ref_id": "b7", "title": "Real-Time Gravitational Wave Science with Neural Posterior Estimation", "year": "December 2021" }, { "authors": [ "Katherine M Deck", "Eric Agol", "Matthew J Holman", "David Nesvorný" ], "doi": "10.1088/0004-637x/787/2/132", "ref_id": "b8", "title": "TTVFast: AN EFFICIENT AND ACCURATE CODE FOR TRANSIT TIMING INVERSION PROBLEMS", "year": "June 2014" }, { "authors": [ "Persi Diaconis", "Sandy L Zabell" ], "doi": "10.1080/01621459.1982.10477893", "ref_id": "b9", "title": "Updating Subjective Probability", "year": "1982" }, { "authors": [ "Simon Duane", "A D Kennedy", "Brian J Pendleton", "Duncan Roweth" ], "doi": "10.1016/0370-2693(87)91197-x", "ref_id": "b10", "title": "Hybrid Monte Carlo", "year": "September 1987" }, { "authors": [ "F Feroz", "M P Hobson" ], "doi": "10.1093/mnras/stt2148", "ref_id": "b11", "title": "Bayesian analysis of radial velocity data of GJ667C with correlated noise: evidence for only two planets", "year": "February 2014" }, { "authors": [ "S Gershman", "N Goodman" ], "doi": "", "ref_id": "b12", "title": "Amortized inference in probabilistic reasoning", "year": "2014" }, { "authors": [ "A J Grove", "J Y Halpern" ], "doi": "", "ref_id": "b13", "title": "Probability update: Conditioning vs. cross-entropy", "year": "August 1997" }, { "authors": [ "J M Hammersley", "D C Handscomb" ], "doi": "10.1007/978-94-009-5819-7", "ref_id": "b14", "title": "Monte Carlo Methods", "year": "1964" }, { "authors": [ "W K Hastings" ], "doi": "10.1093/biomet/57.1.97", "ref_id": "b15", "title": "Monte Carlo sampling methods using Markov chains and their applications", "year": "April 1970" }, { "authors": [ "B Jacobs" ], "doi": "10.1093/biomet/57.1.97", "ref_id": "b16", "title": "The Mathematics of Changing One's Mind, via Jeffrey's or via Pearl's Update Rule", "year": "August 2019" }, { "authors": [ "R C Jeffrey" ], "doi": "", "ref_id": "b17", "title": "The Logic of Decision", "year": "1983. 1965" }, { "authors": [ "A Lavin", "H Zenil", "B Paige", "D Krakauer", "J Gottschlich", "T Mattson", "A Anandkumar", "S Choudry", "K Rocki", "A G Baydin" ], "doi": "", "ref_id": "b18", "title": "Simulation intelligence: Towards a new generation of scientific methods", "year": "2021" }, { "authors": [ "L Lentati", "M P Hobson", "P Alexander" ], "doi": "10.1093/mnras/stu1721", "ref_id": "b19", "title": "Bayesian estimation of non-Gaussianity in pulsar timing analysis", "year": "November 2014" }, { "authors": [ "Yan Liang", "Jakob Robnik", "Uroš Seljak" ], "doi": "10.3847/1538-3881/abe6a7", "ref_id": "b20", "title": "Kepler-90: Giant Transit-timing Variations Reveal a Super-puff", "year": "March 2021" }, { "authors": [ "N Metropolis", "S Ulam" ], "doi": "10.1080/01621459.1949.10483310", "ref_id": "b21", "title": "The Monte Carlo Method", "year": "September 1949" }, { "authors": [ "Nicholas Metropolis", "Arianna W Rosenbluth", "Marshall N Rosenbluth", "Augusta H Teller", "Edward Teller" ], "doi": "10.1063/1.1699114", "ref_id": "b22", "title": "Equation of State Calculations by Fast Computing Machines", "year": "June 1953" }, { "authors": [ "Siddharth Mishra-Sharma", "Kyle Cranmer" ], "doi": "10.1103/physrevd.105.063017", "ref_id": "b23", "title": "Neural simulation-based inference approach for characterizing the Galactic Center <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mml:mi>γ</mml:mi></mml:math> -ray excess", "year": "March 2022" }, { "authors": [ "Ali Ben Mrad", "Véronique Delcroix", "Sylvain Piechowiak", "Philip Leicester", "Mohamed Abid" ], "doi": "10.1007/s10489-015-0678-6", "ref_id": "b24", "title": "An explication of uncertain evidence in Bayesian networks: likelihood evidence and probabilistic evidence", "year": "December 2015" }, { "authors": [ "A Munk", "B Zwartsenberg", "A Scibior", "A G Baydin", "A L Stewart", "G Fernlund", "A Poursartip", "F Wood" ], "doi": "", "ref_id": "b25", "title": "Probabilistic surrogate networks for simulators with unbounded randomness", "year": "2022" }, { "authors": [ "Radford M Neal" ], "doi": "10.1006/jcph.1994.1054", "ref_id": "b26", "title": "An Improved Acceptance Procedure for the Hybrid Monte Carlo Algorithm", "year": "1994" }, { "authors": [ "Vehbi Paksoy", "Ramazan Turkmen", "Fuzhen Zhang" ], "doi": "10.13001/1081-3810.1622", "ref_id": "b27", "title": "Inequalities of generalized matrix functions via tensor products", "year": "2014" }, { "authors": [ "G Papamakarios", "D Sterratt", "I Murray" ], "doi": "", "ref_id": "b28", "title": "Sequential neural likelihood: Fast likelihood-free inference with autoregressive flows", "year": "April 2019" }, { "authors": [ "J Pearl" ], "doi": "", "ref_id": "b29", "title": "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference", "year": "1988" }, { "authors": [ "Judea Pearl" ], "doi": "10.1023/a:1016709416174", "ref_id": "b30", "title": "On Two Pseudo-Paradoxes in Bayesian Analysis", "year": "August 2001" }, { "authors": [ "Yun Peng", "Shenyong Zhang", "Rong Pan" ], "doi": "10.1142/s0218488510006696", "ref_id": "b31", "title": "BAYESIAN NETWORK REASONING WITH UNCERTAIN EVIDENCES", "year": "October 2010" }, { "authors": [ "A G Riess", "W Yuan", "L M Macri", "D Scolnic", "D Brout", "S Casertano", "D O Jones", "Y Murakami", "G S Anand", "L Breuval", "T G Brink", "A V Filippenko", "S Hoffmann", "S W Jha", "W Kenworthy", "J Mackenty", "B E Stahl", "W Zheng" ], "doi": "10.3847/2041-8213/ac5c5b", "ref_id": "b32", "title": "A comprehensive measurement of the local value of the hubble constant with 1 km s -1 mpc -1 uncertainty from the hubble space telescope and the SH0ES team", "year": "July 2022" }, { "authors": [ "T Schulze-Hartung", "R Launhardt", "T Henning" ], "doi": "10.1051/0004-6361/201219074", "ref_id": "b33", "title": "Bayesian analysis of exoplanet and binary orbits", "year": "September 2012" }, { "authors": [ "Glenn Shafer" ], "doi": "10.1086/289004", "ref_id": "b34", "title": "Jeffrey's Rule of Conditioning", "year": "1981" }, { "authors": [ "Philippe Smets", "Jeffrey" ], "doi": "10.1016/b978-1-4832-1451-1.50065-2", "ref_id": "b35", "title": "Jeffrey's rule of conditioning generalized to belief functions.", "year": "1993" }, { "authors": [ "E Thrane", "C Talbot" ], "doi": "10.1017/pasa.2019", "ref_id": "b36", "title": "An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models", "year": "March 2019" }, { "authors": [ "D Tolpin", "Y Zhou", "T Rainforth", "H Yang" ], "doi": "", "ref_id": "b37", "title": "Probabilistic Programs with Stochastic Conditioning", "year": "July 2021" }, { "authors": [ "Marco Valtorta", "Young-Gyun Kim", "Jiří Vomlel" ], "doi": "10.1016/s0888-613x(01)00056-1", "ref_id": "b38", "title": "Soft evidential update for probabilistic multiagent systems", "year": "January 2002" }, { "authors": [ "R Van De Schoot", "S Depaoli", "R King", "B Kramer", "K Märtens", "M G Tadesse", "M Vannucci", "A Gelman", "D Veen", "J Willemsen", "C Yau" ], "doi": "10.1038/s43586-020-00001-2", "ref_id": "b39", "title": "Bayesian statistics and modelling", "year": "January 2021" }, { "authors": [ "Sarah J Vigeland", "Michele Vallisneri" ], "doi": "10.1093/mnras/stu312", "ref_id": "b40", "title": "Bayesian inference for pulsar-timing models", "year": "May 2014" }, { "authors": [ "Carl G Wagner" ], "doi": "10.1086/341053", "ref_id": "b41", "title": "Probability Kinematics and Commutativity", "year": "June 2002" }, { "authors": [ "Frank Wood", "Andrew Warrington", "Saeid Naderiparizi", "Christian Weilbach", "Vaden Masrani", "William Harvey", "Adam Ścibior", "Boyan Beronov", "John Grefenstette", "Duncan Campbell", "S Ali Nasseri" ], "doi": "10.3389/frai.2021.550603", "ref_id": "b42", "title": "Planning as Inference in Epidemiological Dynamics Models", "year": "2022" }, { "authors": [ "K Yao" ], "doi": "10.1080/03610926.2020.1838545", "ref_id": "b43", "title": "Bayesian inference with uncertain data of imprecise observations", "year": "2022" } ]
[ "e02ed37c0129f86d", "bb72e922c3874682", "a25bb13e7c0d8fbc", "b3679f83ac940086", "cf4e58b44120081c", "d8d2450d41e67a79", "39c1b4a8ef659edd", "39ea1fab345a98b5", "3ec15f0ca0113c19", "b745656784f4daca", "f11d9ef1a9ab164c", "cfaa01ca126f62f2", "05c6ade311ddf6f5", "d71a3fd7e7b1ad50", "c85312c9ceb95662" ]
[ "b4456ce6b99cecfe", "c52cebb90e95c77d", "7e13ecdaf7b05cda", "ae9982e772d53566", "810f2ca1fa5f7d85", "fa0d5c0037526464", "39ea1fab345a98b5", "bd4a7365db59e154", "18e8a7cba515330c", "3ec15f0ca0113c19", "39c1b4a8ef659edd", "2fdabc1743456e0b", "e59cd271c195cffe", "4227842e782ae43d", "e02ed37c0129f86d", "d8d2450d41e67a79", "f11d9ef1a9ab164c", "a25bb13e7c0d8fbc", "88acc24abe43229d", "4d36ebcd8cdf32f1", "d313e51936639d6c", "c13c77a79b594514", "bb72e922c3874682", "4b4ca929a3c6237d", "92ecb7c196f899e9", "e7f40984af9c4d0f", "b3679f83ac940086", "b3be7f42962e9c0d", "19a83c6504d01471", "05c6ade311ddf6f5", "3dcbd88ec0419e72", "e2a4c82202bafd47", "4f2eb406ba150f7f", "ef8076a31dd822c1", "67afb0d4baec6185", "b745656784f4daca", "e60e5b2df8db5b29", "cf4e58b44120081c", "c85312c9ceb95662", "8b376c00a3b0f82e", "700f37e5a9848b4e", "cfaa01ca126f62f2", "8c17a4b4d5179618", "d71a3fd7e7b1ad50" ]
XAK3238obr
How Bad is Top-$K$ Recommendation under Competing Content Creators?
data/openreview_paper/ICML_2023_oral/XAK3238obr//paper.pdf
41
16
[ { "authors": [ "O Ben-Porat", "M Tennenholtz" ], "doi": "", "ref_id": "b5", "title": "A game-theoretic approach to recommendation systems with strategic content providers", "year": "2018" }, { "authors": [ "H Hotelling" ], "doi": "", "ref_id": "b16", "title": "Stability in competition", "year": "1929. 1929" }, { "authors": [ "R D Luce", "P Suppes" ], "doi": "", "ref_id": "b25", "title": "Preference, utility, and subjective probability", "year": "1965" }, { "authors": [ "Elias Koutsoupias", "Christos Papadimitriou" ], "doi": "10.1007/3-540-49116-3_38", "ref_id": "b22", "title": "Worst-Case Equilibria", "year": "1999" }, { "authors": [ "O Ben-Porat", "G Goren", "I Rosenberg", "M Tennenholtz" ], "doi": "", "ref_id": "b6", "title": "From recommendation systems to facility location games", "year": "2019" }, { "authors": [ "George Baltas", "Peter Doyle" ], "doi": "10.1016/s0148-2963(99)00058-2", "ref_id": "b2", "title": "Random utility models in marketing research: a survey", "year": "2001" }, { "authors": [ "Avrim Blum", "Mohammadtaghi Hajiaghayi", "Katrina Ligett", "Aaron Roth" ], "doi": "10.1145/1374376.1374430", "ref_id": "b7", "title": "Regret minimization and the price of total anarchy", "year": "2008" }, { "authors": [ "G Christodoulou", "E Koutsoupias" ], "doi": "", "ref_id": "b9", "title": "The price of anarchy of finite congestion games", "year": "2005" }, { "authors": [ "M Jagadeesan", "N Garg", "J Steinhardt" ], "doi": "", "ref_id": "b19", "title": "Supplyside equilibria in recommender systems", "year": "2022" }, { "authors": [ "Tim Roughgarden" ], "doi": "10.1145/2806883", "ref_id": "b35", "title": "Intrinsic Robustness of the Price of Anarchy", "year": "2015" }, { "authors": [ "R Ben Basat", "M Tennenholtz", "O Kurland" ], "doi": "", "ref_id": "b3", "title": "The probability ranking principle is not optimal in adversarial retrieval settings", "year": "2015" }, { "authors": [ "Nimrod Raifer", "Fiana Raiber", "Moshe Tennenholtz", "Oren Kurland" ], "doi": "10.1145/3077136.3080785", "ref_id": "b34", "title": "Information Retrieval Meets Game Theory", "year": "2017" }, { "authors": [ "A Vetta" ], "doi": "10.1109/sfcs.2002.1181966", "ref_id": "b39", "title": "Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions", "year": "2002. 2002" }, { "authors": [ "J Hron", "K Krauth", "M I Jordan", "N Kilbertus", "S Dean" ], "doi": "", "ref_id": "b17", "title": "Modeling content creator incentives on algorithmcurated platforms", "year": "2022" }, { "authors": [ "George Christodoulou", "Annamária Kovács", "Michael Schapira" ], "doi": "10.1007/978-3-540-70575-8_67", "ref_id": "b10", "title": "Bayesian Combinatorial Auctions", "year": "2008" }, { "authors": [ "W Shen", "Z Wang" ], "doi": "", "ref_id": "b38", "title": "Hotelling-downs model with limited attraction", "year": "2016" } ]
[ { "authors": [ "Peter Auer", "Nicolò Cesa-Bianchi", "Yoav Freund", "Robert E Schapire" ], "doi": "10.1137/s0097539701398375", "ref_id": "b0", "title": "The Nonstochastic Multiarmed Bandit Problem", "year": "2002" }, { "authors": [ "M Balog", "N Tripuraneni", "Z Ghahramani", "A Weller" ], "doi": "", "ref_id": "b1", "title": "Lost relatives of the gumbel trick", "year": "2017" }, { "authors": [ "George Baltas", "Peter Doyle" ], "doi": "10.1016/s0148-2963(99)00058-2", "ref_id": "b2", "title": "Random utility models in marketing research: a survey", "year": "2001" }, { "authors": [ "R Ben Basat", "M Tennenholtz", "O Kurland" ], "doi": "", "ref_id": "b3", "title": "The probability ranking principle is not optimal in adversarial retrieval settings", "year": "2015" }, { "authors": [ "O Ben-Porat", "M Tennenholtz" ], "doi": "", "ref_id": "b4", "title": "Shapley facility location games", "year": "2017" }, { "authors": [ "O Ben-Porat", "M Tennenholtz" ], "doi": "", "ref_id": "b5", "title": "A game-theoretic approach to recommendation systems with strategic content providers", "year": "2018" }, { "authors": [ "O Ben-Porat", "G Goren", "I Rosenberg", "M Tennenholtz" ], "doi": "", "ref_id": "b6", "title": "From recommendation systems to facility location games", "year": "2019" }, { "authors": [ "Avrim Blum", "Mohammadtaghi Hajiaghayi", "Katrina Ligett", "Aaron Roth" ], "doi": "10.1145/1374376.1374430", "ref_id": "b7", "title": "Regret minimization and the price of total anarchy", "year": "2008" }, { "authors": [ "J Bobadilla", "F Ortega", "A Hernando", "A Gutiérrez" ], "doi": "10.1016/j.knosys.2013.03.012", "ref_id": "b8", "title": "Recommender systems survey", "year": "2013" }, { "authors": [ "G Christodoulou", "E Koutsoupias" ], "doi": "", "ref_id": "b9", "title": "The price of anarchy of finite congestion games", "year": "2005" }, { "authors": [ "George Christodoulou", "Annamária Kovács", "Michael Schapira" ], "doi": "10.1007/978-3-540-70575-8_67", "ref_id": "b10", "title": "Bayesian Combinatorial Auctions", "year": "2008" }, { "authors": [ "Constantinos Daskalakis", "Paul W Goldberg", "Christos H Papadimitriou" ], "doi": "10.1137/070699652", "ref_id": "b11", "title": "The Complexity of Computing a Nash Equilibrium", "year": "2009" }, { "authors": [ "Jicong Fan", "Jieyu Cheng" ], "doi": "10.1016/j.neunet.2017.10.007", "ref_id": "b12", "title": "Matrix completion by deep matrix factorization", "year": "2018" }, { "authors": [ "Daniel Fleder", "Kartik Hosanagar" ], "doi": "10.1287/mnsc.1080.0974", "ref_id": "b13", "title": "Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity", "year": "2009" }, { "authors": [ "F Maxwell Harper", "Joseph A Konstan" ], "doi": "10.1145/2827872", "ref_id": "b14", "title": "The MovieLens Datasets", "year": "2015" }, { "authors": [ "Xiangnan He", "Lizi Liao", "Hanwang Zhang", "Liqiang Nie", "Xia Hu", "Tat-Seng Chua" ], "doi": "10.1145/3038912.3052569", "ref_id": "b15", "title": "Neural Collaborative Filtering", "year": "2017" }, { "authors": [ "H Hotelling" ], "doi": "", "ref_id": "b16", "title": "Stability in competition", "year": "1929. 1929" }, { "authors": [ "J Hron", "K Krauth", "M I Jordan", "N Kilbertus", "S Dean" ], "doi": "", "ref_id": "b17", "title": "Modeling content creator incentives on algorithmcurated platforms", "year": "2022" }, { "authors": [ "Neil Hurley", "Mi Zhang" ], "doi": "10.1145/1944339.1944341", "ref_id": "b18", "title": "Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation", "year": "2011" }, { "authors": [ "M Jagadeesan", "N Garg", "J Steinhardt" ], "doi": "", "ref_id": "b19", "title": "Supplyside equilibria in recommender systems", "year": "2022" }, { "authors": [ "Joseph A Konstan", "Bradley N Miller", "David Maltz", "Jonathan L Herlocker", "Lee R Gordon", "John Riedl" ], "doi": "10.1145/245108.245126", "ref_id": "b20", "title": "GroupLens", "year": "1997" }, { "authors": [ "Yehuda Koren", "Robert Bell", "Chris Volinsky" ], "doi": "10.1109/mc.2009.263", "ref_id": "b21", "title": "Matrix Factorization Techniques for Recommender Systems", "year": "2009" }, { "authors": [ "Elias Koutsoupias", "Christos Papadimitriou" ], "doi": "10.1007/3-540-49116-3_38", "ref_id": "b22", "title": "Worst-Case Equilibria", "year": "1999" }, { "authors": [ "Chun Kai Ling", "Fei Fang", "J Zico Kolter" ], "doi": "10.24963/ijcai.2018/55", "ref_id": "b23", "title": "What Game Are We Playing? End-to-end Learning in Normal and Extensive Form Games", "year": "2018" }, { "authors": [ "R D Luce" ], "doi": "10.1037/14396-000", "ref_id": "b24", "title": "Individual choice behavior: A theoretical analysis.", "year": "1959" }, { "authors": [ "R D Luce", "P Suppes" ], "doi": "", "ref_id": "b25", "title": "Preference, utility, and subjective probability", "year": "1965" }, { "authors": [ "Charles F Manski" ], "doi": "10.1007/bf00133443", "ref_id": "b26", "title": "The structure of random utility models", "year": "1977" }, { "authors": [ "D Mcfadden" ], "doi": "", "ref_id": "b27", "title": "The measurement of urban travel demand", "year": "1974" }, { "authors": [ "Daniel L Mcfadden" ], "doi": "10.1016/s1573-4412(84)02016-x", "ref_id": "b28", "title": "Chapter 24 Econometric analysis of qualitative response models", "year": "1984" }, { "authors": [ "Richard D Mckelvey", "Thomas R Palfrey" ], "doi": "10.1006/game.1995.1023", "ref_id": "b29", "title": "Quantal Response Equilibria for Normal Form Games", "year": "1995. 2022" }, { "authors": [ "Dov Monderer", "Lloyd S Shapley" ], "doi": "10.1006/game.1996.0044", "ref_id": "b30", "title": "Potential Games", "year": "1996" }, { "authors": [ "C H Papadimitriou", "T Roughgarden" ], "doi": "", "ref_id": "b31", "title": "Computing equilibria in multi-player games", "year": "2005" }, { "authors": [ "R L Plackett" ], "doi": "", "ref_id": "b32", "title": "The analysis of permutations", "year": "1975" }, { "authors": [ "Kun Qian", "Sanjay Jain" ], "doi": "10.2139/ssrn.4311562", "ref_id": "b33", "title": "Digital Content Creation: An Analysis of the Impact of Recommendation Systems", "year": "2022" }, { "authors": [ "Nimrod Raifer", "Fiana Raiber", "Moshe Tennenholtz", "Oren Kurland" ], "doi": "10.1145/3077136.3080785", "ref_id": "b34", "title": "Information Retrieval Meets Game Theory", "year": "2017" }, { "authors": [ "Tim Roughgarden" ], "doi": "10.1145/2806883", "ref_id": "b35", "title": "Intrinsic Robustness of the Price of Anarchy", "year": "2015" }, { "authors": [ "Tim Roughgarden", "Vasilis Syrgkanis", "Eva Tardos" ], "doi": "10.1613/jair.5272", "ref_id": "b36", "title": "The Price of Anarchy in Auctions", "year": "2017" }, { "authors": [ "Savy" ], "doi": "", "ref_id": "b37", "title": "Will the new youtube algorithm impact your content?", "year": "2019" }, { "authors": [ "W Shen", "Z Wang" ], "doi": "", "ref_id": "b38", "title": "Hotelling-downs model with limited attraction", "year": "2016" }, { "authors": [ "A Vetta" ], "doi": "10.1109/sfcs.2002.1181966", "ref_id": "b39", "title": "Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions", "year": "2002. 2002" }, { "authors": [], "doi": "10.4135/9781506325279.n16", "ref_id": "b40", "title": "Chapter 11 YouTube", "year": "2023" } ]
[ "6a22a3fb165fca93", "4c64de279f325127", "2e716ab3a8d7da09", "4431a2475550864d", "00bffdfb79709b4c", "2a5b31ecb23c4fd6", "e642cc1db745efde", "e47bad6b5fd0d5f9", "75630e6760fb8161", "c89fb1f481330f4c", "1413246247962b62", "bc4300482288273e", "f225bfff569580ab", "bacc64d2dcaee9fa", "95016d7006d07d74", "0a2f92289744e03e" ]
[ "bdc6896a51803109", "90ecfcdcc280de79", "2a5b31ecb23c4fd6", "1413246247962b62", "d8c205b097dad989", "6a22a3fb165fca93", "00bffdfb79709b4c", "e642cc1db745efde", "66594edd1f1f6204", "e47bad6b5fd0d5f9", "95016d7006d07d74", "5533a592605fcf56", "b5902fb599653d58", "f8c83ade0cc5dbf3", "0373aac4fedd85d2", "fa5902b1a390bfb3", "4c64de279f325127", "bacc64d2dcaee9fa", "b2cea2175863a1ac", "75630e6760fb8161", "6da2c5c1d573dc38", "8de512c64a921e31", "4431a2475550864d", "3120c6c7e3eb0239", "61cc4f43c94c4d13", "2e716ab3a8d7da09", "00bb78d975472934", "388617f215c97b46", "ed0b50e94fce8114", "a75eaca1956e235c", "1e944811e0dc8143", "6ffb9f91f322c2f6", "6a1dca2fe6ad8557", "287a5265768aef0f", "bc4300482288273e", "c89fb1f481330f4c", "5accfab4fc924785", "37d5322b31d3c3da", "0a2f92289744e03e", "f225bfff569580ab", "65c1d23ad1e5d94d" ]
6rlGbYv4bT
Weighted Flow Diffusion for Local Graph Clustering with Node Attributes: an Algorithm and Statistical Guarantees
data/openreview_paper/ICML_2023_oral/6rlGbYv4bT//paper.pdf
32
0
[]
[ { "authors": [ "Emmanuel Abbe", "Jianqing Fan", "Kaizheng Wang" ], "doi": "10.1214/22-aos2196", "ref_id": "b0", "title": "An ℓp theory of PCA and spectral clustering", "year": "2022" }, { "authors": [ "Z Allen-Zhu", "L Silvio", "S M Vahab" ], "doi": "", "ref_id": "b1", "title": "A local algorithm for finding well-connected clusters", "year": "2013" }, { "authors": [ "R Andersen", "F Chung", "K Lang" ], "doi": "", "ref_id": "b2", "title": "Local graph partitioning using pagerank vectors", "year": "2006" }, { "authors": [ "R Andersen", "S O Gharan", "Y Peres", "L Trevisan" ], "doi": "", "ref_id": "b3", "title": "Almost optimal local graph clustering using evolving sets", "year": "2016" }, { "authors": [ "Ery Arias-Castro", "Emmanuel J Candès", "Hannes Helgason", "Ofer Zeitouni" ], "doi": "10.1214/07-aos526", "ref_id": "b4", "title": "Searching for a trail of evidence in a maze", "year": "2008" }, { "authors": [ "Ery Arias-Castro", "Emmanuel J Candès", "Arnaud Durand" ], "doi": "10.1214/10-aos839", "ref_id": "b5", "title": "Detection of an anomalous cluster in a network", "year": "2011" }, { "authors": [ "A Baranwal", "K Fountoulakis", "A Jagannath" ], "doi": "", "ref_id": "b6", "title": "Graph convolution for semi-supervised classification: Improved linear separability and out-of-distribution generalization", "year": "2021" }, { "authors": [ "Aseem Baranwal", "Kimon Fontoulakis", "Robert Wang" ], "doi": "10.52202/079017-4065", "ref_id": "b7", "title": "Analysis of Corrected Graph Convolutions", "year": "2023" }, { "authors": [ "A Baranwal", "A Jagannath", "K Fountoulakis" ], "doi": "", "ref_id": "b8", "title": "Optimality of message-passing architectures for sparse graphs", "year": "2023" }, { "authors": [ "G Braun", "H Tyagi", "C Biernacki" ], "doi": "", "ref_id": "b9", "title": "An iterative clustering algorithm for the contextual stochastic block model with optimality guarantees", "year": "2022" }, { "authors": [ "Li Chen", "Richard Peng", "Di Wang" ], "doi": "10.1109/focs52979.2021.00060", "ref_id": "b10", "title": "2-norm Flow Diffusion in Near-Linear Time", "year": "2022" }, { "authors": [ "Y Chen", "J Xu" ], "doi": "", "ref_id": "b11", "title": "Statistical-computational tradeoffs in planted problems and submatrix localization with a growing number of clusters and submatrices", "year": "2016" }, { "authors": [ "U Chitra", "K Ding", "J C H Lee", "B J Raphael" ], "doi": "", "ref_id": "b12", "title": "Quantifying and reducing bias in maximum likelihood estimation of structured anomalies", "year": "2021" }, { "authors": [ "Y Deshpande", "S Sen", "A Montanari", "E Mossel" ], "doi": "", "ref_id": "b13", "title": "Contextual stochastic block models", "year": "2018" }, { "authors": [ "Kimon Fountoulakis", "Farbod Roosta-Khorasani", "Julian Shun", "Xiang Cheng", "Michael W Mahoney" ], "doi": "10.1007/s10107-017-1214-8", "ref_id": "b14", "title": "Variational perspective on local graph clustering", "year": "2017" }, { "authors": [ "K Fountoulakis", "D Wang", "S Yang" ], "doi": "", "ref_id": "b15", "title": "p-norm flow diffusion for local graph clustering", "year": "2020" }, { "authors": [ "K Fountoulakis", "A Levi", "S Yang", "A Baranwal", "A Jagannath" ], "doi": "", "ref_id": "b16", "title": "Graph attention retrospective", "year": "2023" }, { "authors": [ "David F Gleich" ], "doi": "10.1137/140976649", "ref_id": "b17", "title": "PageRank Beyond the Web", "year": "2015" }, { "authors": [ "W Ha", "K Fountoulakis", "M W Mahoney" ], "doi": "", "ref_id": "b18", "title": "Statistical guarantees for local graph clustering", "year": "2021" }, { "authors": [ "Lucas G S Jeub", "Prakash Balachandran", "Mason A Porter", "Peter J Mucha", "Michael W Mahoney" ], "doi": "10.1103/physreve.91.012821", "ref_id": "b19", "title": "Think locally, act locally: Detection of small, medium-sized, and large communities in large networks", "year": "2015" }, { "authors": [ "Caiyan Jia", "Yafang Li", "Matthew B Carson", "Xiaoyang Wang", "Jian Yu" ], "doi": "10.1038/s41598-017-02751-8", "ref_id": "b20", "title": "Node Attribute-enhanced Community Detection in Complex Networks", "year": "2017" }, { "authors": [ "Jure Leskovec", "Kevin J Lang", "Anirban Dasgupta", "Michael W Mahoney" ], "doi": "10.1080/15427951.2009.10129177", "ref_id": "b21", "title": "Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters", "year": "2009" }, { "authors": [ "M Liu", "D F Gleich" ], "doi": "", "ref_id": "b22", "title": "Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering", "year": "2020" }, { "authors": [ "P Macgregor", "H Sun" ], "doi": "", "ref_id": "b23", "title": "Local algorithms for finding densely connected clusters", "year": "2021" }, { "authors": [ "Julian Mcauley", "Christopher Targett", "Qinfeng Shi", "Anton Van Den Hengel" ], "doi": "10.1145/2766462.2767755", "ref_id": "b24", "title": "Image-Based Recommendations on Styles and Substitutes", "year": "2015" }, { "authors": [ "J Qian", "V Saligrama" ], "doi": "", "ref_id": "b25", "title": "Efficient minimax signal detection on graphs", "year": "2014" }, { "authors": [ "A Reid", "P Yuval" ], "doi": "", "ref_id": "b26", "title": "Finding sparse cuts locally using evolving sets", "year": "2009" }, { "authors": [ "James Sharpnack", "Aarti Singh" ], "doi": "10.1109/globalsip.2013.6736910", "ref_id": "b27", "title": "Near-optimal and computationally efficient detectors for weak and sparse graph-structured patterns", "year": "2013" }, { "authors": [ "O Shchur", "M Mumme", "A Bojchevski", "S Günnemann" ], "doi": "", "ref_id": "b28", "title": "Pitfalls of graph neural network evaluation", "year": "2018. 2018" }, { "authors": [ "Pan Shi", "Kun He", "David Bindel", "John E Hopcroft" ], "doi": "10.1007/978-3-319-71249-9_39", "ref_id": "b29", "title": "Local Lanczos Spectral Approximation for Community Detection", "year": "2017" }, { "authors": [ "Daniel A Spielman", "Shang-Hua Teng" ], "doi": "10.1137/080744888", "ref_id": "b30", "title": "A Local Clustering Algorithm for Massive Graphs and Its Application to Nearly Linear Time Graph Partitioning", "year": "2013" }, { "authors": [ "Heli Sun", "Fang He", "Jianbin Huang", "Yizhou Sun", "Yang Li", "Chenyu Wang", "Liang He", "Zhongbin Sun", "Xiaolin Jia" ], "doi": "10.1145/3385415", "ref_id": "b31", "title": "Network Embedding for Community Detection in Attributed Networks", "year": "" } ]
[]
[ "5b198d02e38f0f5d", "30833bbb9c36fa56", "eeb270af265c4676", "7d8b0211aee660e5", "b839f535e517fbc1", "87aaef71c0dcef00", "e1fae0f74ea3f192", "39cc58e479d922bc", "0d9fa409bd9261ef", "5ce67d3233196ace", "d996bd4bff42dc92", "281038f7734e9c54", "b9476ea2bc765c74", "b34815cdf3397edd", "35e5120113b47fff", "32ca135855c1ea44", "c88cf941f0f76b12", "19982105871f408c", "d8840dfd1fa0826c", "914774429511390c", "5be77f50a224df83", "823913a19b715da6", "147fe86c0825e162", "ca2e4b9014bc51e4", "4953dd3e39325c21", "a3013e05ee813e00", "442987c861175d77", "39c3f90d9192fa9b", "c152b0504ee86dee", "088cb2f80d7a9373", "ef01b207e862e225", "da770a60ab3a33ec" ]
DH11pt7S2t
Facial Expression Recognition with Adaptive Frame Rate based on Multiple Testing Correction
data/openreview_paper/ICML_2023_oral/DH11pt7S2t//paper.pdf
51
0
[]
[ { "authors": [ "N S Belova", "A V Savchenko" ], "doi": "", "ref_id": "b0", "title": "Statistical testing of segment homogeneity in classification of piecewise-regular objects", "year": "2015" }, { "authors": [ "Y Benjamini", "Y Hochberg" ], "doi": "", "ref_id": "b1", "title": "Controlling the false discovery rate: a practical and powerful approach to multiple testing", "year": "1995" }, { "authors": [ "A Dhall", "Emotiw" ], "doi": "", "ref_id": "b2", "title": "Automatic emotion, engagement and cohesion prediction tasks", "year": "2019. 2019" }, { "authors": [ "M Dutson", "Y Li", "M Gupta" ], "doi": "", "ref_id": "b3", "title": "Event neural networks", "year": "2022" }, { "authors": [ "Hehe Fan", "Zhongwen Xu", "Linchao Zhu", "Chenggang Yan", "Jianjun Ge", "Yi Yang" ], "doi": "10.24963/ijcai.2018/98", "ref_id": "b4", "title": "Watching a Small Portion could be as Good as Watching All: Towards Efficient Video Classification", "year": "2018" }, { "authors": [ "Ruohan Gao", "Tae-Hyun Oh", "Kristen Grauman", "Lorenzo Torresani" ], "doi": "10.1109/cvpr42600.2020.01047", "ref_id": "b5", "title": "Listen to Look: Action Recognition by Previewing Audio", "year": "2020" }, { "authors": [ "Amir Ghodrati", "Babak Ehteshami Bejnordi", "Amirhossein Habibian" ], "doi": "10.1109/cvpr46437.2021.01535", "ref_id": "b6", "title": "FrameExit: Conditional Early Exiting for Efficient Video Recognition", "year": "2021" }, { "authors": [ "Shreyank N Gowda", "Marcus Rohrbach", "Laura Sevilla-Lara" ], "doi": "10.1609/aaai.v35i2.16235", "ref_id": "b7", "title": "SMART Frame Selection for Action Recognition", "year": "2021" }, { "authors": [ "Artem M Grachev", "Dmitry I Ignatov", "Andrey V Savchenko" ], "doi": "10.1007/978-3-319-69900-4_44", "ref_id": "b8", "title": "Neural Networks Compression for Language Modeling", "year": "2017" }, { "authors": [ "Yosef Hochberg", "Ajit C Tamhane" ], "doi": "10.1002/9780470316672", "ref_id": "b9", "title": "Multiple Comparison Procedures", "year": "2009" }, { "authors": [ "Jae -Yeop Jeong", "Yeong-Gi Hong", "Daun Kim", "Jin-Woo Jeong", "Yuchul Jung", "Sang-Ho Kim" ], "doi": "10.1109/cvprw56347.2022.00262", "ref_id": "b10", "title": "Classification of Facial Expression In-the-Wild based on Ensemble of Multi-head Cross Attention Networks", "year": "2022" }, { "authors": [ "R R Jillela", "A Ross" ], "doi": "", "ref_id": "b11", "title": "Adaptive frame selection for improved face recognition in low-resolution videos", "year": "2009" }, { "authors": [ "A Karpov", "I Makarov" ], "doi": "", "ref_id": "b12", "title": "Exploring efficiency of vision transformers for self-supervised monocular depth estimation", "year": "2022" }, { "authors": [ "Y I Khokhlova", "A Savchenko" ], "doi": "", "ref_id": "b13", "title": "About neural-network algorithms application in viseme classification problem with face video in audiovisual speech recognition systems", "year": "2014" }, { "authors": [ "Hanul Kim", "Mihir Jain", "Jun-Tae Lee", "Sungrack Yun", "Fatih Porikli" ], "doi": "10.1109/iccv48922.2021.01346", "ref_id": "b14", "title": "Efficient Action Recognition via Dynamic Knowledge Propagation", "year": "2021" }, { "authors": [ "D Kollias", "Abaw" ], "doi": "", "ref_id": "b15", "title": "Valence-arousal estimation, expression recognition, action unit detection & multi-task learning challenges", "year": "2022" }, { "authors": [ "Dimitrios Kollias", "Panagiotis Tzirakis", "Mihalis A Nicolaou", "Athanasios Papaioannou", "Guoying Zhao", "Björn Schuller", "Irene Kotsia", "Stefanos Zafeiriou" ], "doi": "10.1007/s11263-019-01158-4", "ref_id": "b16", "title": "Deep Affect Prediction in-the-Wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond", "year": "2019" }, { "authors": [ "Bruno Korbar", "Du Tran", "Lorenzo Torresani" ], "doi": "10.1109/iccv.2019.00633", "ref_id": "b17", "title": "SCSampler: Sampling Salient Clips From Video for Efficient Action Recognition", "year": "2019" }, { "authors": [ "S Kullback" ], "doi": "", "ref_id": "b18", "title": "Information Theory and Statistics", "year": "1997" }, { "authors": [ "Vikas Kumar", "Shivansh Rao", "Li Yu" ], "doi": "10.1007/978-3-030-66415-2_53", "ref_id": "b19", "title": "Noisy Student Training Using Body Language Dataset Improves Facial Expression Recognition", "year": "2020" }, { "authors": [ "S Li", "W Zheng", "Y Zong", "C Lu", "C Tang", "X Jiang", "J Liu", "W Xia" ], "doi": "", "ref_id": "b20", "title": "Bi-modality fusion for emotion recognition in the wild", "year": "2019" }, { "authors": [ "Jaebong Lim", "Yunju Baek", "Bumhee Chae" ], "doi": "10.1109/access.2022.3228573", "ref_id": "b21", "title": "Temporal Early Exiting With Confidence Calibration for Driver Identification Based on Driving Sensing Data", "year": "2022" }, { "authors": [ "Jintao Lin", "Haodong Duan", "Kai Chen", "Dahua Lin", "Limin Wang" ], "doi": "10.1109/cvpr52688.2022.01352", "ref_id": "b22", "title": "OCSampler: Compressing Videos to One Clip with Single-step Sampling", "year": "2022" }, { "authors": [ "Chuanhe Liu", "Tianhao Tang", "Kui Lv", "Minghao Wang" ], "doi": "10.1145/3242969.3264989", "ref_id": "b23", "title": "Multi-Feature Based Emotion Recognition for Video Clips", "year": "2018" }, { "authors": [ "Ilya Makarov", "Mikhail Tokmakov", "Pavel Polyakov", "Peter Zyuzin", "Maxim Martynov", "Oleg Konoplya", "George Kuznetsov", "Ivan Guschenko-Cheverda", "Maxim Uriev", "Ivan Mokeev", "Olga Gerasimova", "Lada Tokmakova", "Alexey Kosmachev" ], "doi": "10.1145/2964284.2973826", "ref_id": "b24", "title": "First-Person Shooter Game for Virtual Reality Headset with Advanced Multi-Agent Intelligent System", "year": "2016" }, { "authors": [ "Debin Meng", "Xiaojiang Peng", "Kai Wang", "Yu Qiao" ], "doi": "10.1109/icip.2019.8803603", "ref_id": "b25", "title": "Frame Attention Networks for Facial Expression Recognition in Videos", "year": "2019" }, { "authors": [ "Yue Meng", "Chung-Ching Lin", "Rameswar Panda", "Prasanna Sattigeri", "Leonid Karlinsky", "Aude Oliva", "Kate Saenko", "Rogerio Feris" ], "doi": "10.1007/978-3-030-58571-6_6", "ref_id": "b26", "title": "AR-Net: Adaptive Frame Resolution for Efficient Action Recognition", "year": "2020" }, { "authors": [ "Ali Mollahosseini", "Behzad Hasani", "Mohammad H Mahoor" ], "doi": "10.1109/taffc.2017.2740923", "ref_id": "b27", "title": "AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild", "year": "2017" }, { "authors": [ "Kim Ngan Phan", "Hong-Hai Nguyen", "Van-Thong Huynh", "Soo-Hyung Kim" ], "doi": "10.1109/cvprw56347.2022.00280", "ref_id": "b28", "title": "Facial Expression Classification using Fusion of Deep Neural Network in Video", "year": "2022" }, { "authors": [ "A Raviv", "Y Dinai", "I Drozdov", "N Zehngut", "I Goldin", "S I R Center" ], "doi": "", "ref_id": "b29", "title": "D-step: Dynamic spatio-temporal pruning", "year": "2022" }, { "authors": [ "Elena Ryumina", "Denis Dresvyanskiy", "Alexey Karpov" ], "doi": "10.1016/j.neucom.2022.10.013", "ref_id": "b30", "title": "In search of a robust facial expressions recognition model: A large-scale visual cross-corpus study", "year": "2022" }, { "authors": [ "Andrey V Savchenko" ], "doi": "10.1109/ijcnn48605.2020.9207379", "ref_id": "b31", "title": "Sequential Analysis with Specified Confidence Level and Adaptive Convolutional Neural Networks in Image Recognition", "year": "2020" }, { "authors": [ "Andrey V Savchenko" ], "doi": "10.1109/sisy52375.2021.9582508", "ref_id": "b32", "title": "Facial expression and attributes recognition based on multi-task learning of lightweight neural networks", "year": "2021" }, { "authors": [ "A V Savchenko" ], "doi": "", "ref_id": "b33", "title": "Fast inference in convolutional neural networks based on sequential three-way decisions", "year": "2021" }, { "authors": [ "A V Savchenko" ], "doi": "", "ref_id": "b34", "title": "Video-based frame-level facial analysis of affective behavior on mobile devices using EfficientNets", "year": "2022" }, { "authors": [ "Andrey V Savchenko" ], "doi": "10.1007/978-3-031-25075-0_4", "ref_id": "b35", "title": "MT-EmotiEffNet for Multi-task Human Affective Behavior Analysis and Learning from Synthetic Data", "year": "2023" }, { "authors": [ "A V Savchenko", "L V Savchenko", "I Makarov" ], "doi": "", "ref_id": "b36", "title": "Classifying emotions and engagement in online learning based on a single facial expression recognition neural network", "year": "2022" }, { "authors": [ "Ximeng Sun", "Rameswar Panda", "Chun-Fu Richard Chen", "Aude Oliva", "Rogerio Feris", "Kate Saenko" ], "doi": "10.1109/iccv48922.2021.00728", "ref_id": "b37", "title": "Dynamic Network Quantization for Efficient Video Inference", "year": "2021" }, { "authors": [ "Huanjie Tao", "Qianyue Duan" ], "doi": "10.1016/j.eswa.2022.119371", "ref_id": "b38", "title": "An adaptive frame selection network with enhanced dilated convolution for video smoke recognition", "year": "2023" }, { "authors": [ "S Teerapittayanon", "B Mcdanel", "H Kung", "Branchynet" ], "doi": "", "ref_id": "b39", "title": "Fast inference via early exiting from deep neural networks", "year": "2016" }, { "authors": [ "A Wald" ], "doi": "", "ref_id": "b40", "title": "Sequential Analysis", "year": "2013" }, { "authors": [ "Yulin Wang", "Zhaoxi Chen", "Haojun Jiang", "Shiji Song", "Yizeng Han", "Gao Huang" ], "doi": "10.1109/iccv48922.2021.01594", "ref_id": "b41", "title": "Adaptive Focus for Efficient Video Recognition", "year": "2021" }, { "authors": [ "Y Wang", "Y Sun", "Y Huang", "Z Liu", "S Gao", "W Zhang", "W Ge", "W Zhang" ], "doi": "", "ref_id": "b42", "title": "FERV39k: A large-scale multi-scene dataset for facial expression recognition in videos", "year": "2022" }, { "authors": [ "Zuxuan Wu", "Hengduo Li", "Yingbin Zheng", "Caiming Xiong", "Yu-Gang Jiang", "Larry S Davis" ], "doi": "10.1007/s11263-021-01508-1", "ref_id": "b43", "title": "A Coarse-to-Fine Framework for Resource Efficient Video Recognition", "year": "2019" }, { "authors": [ "Zuxuan Wu", "Caiming Xiong", "Chih-Yao Ma", "Richard Socher", "Larry S Davis" ], "doi": "10.1109/cvpr.2019.00137", "ref_id": "b44", "title": "AdaFrame: Adaptive Frame Selection for Fast Video Recognition", "year": "2019" }, { "authors": [ "Boyang Xia", "Wenhao Wu", "Haoran Wang", "Rui Su", "Dongliang He", "Haosen Yang", "Xiaoran Fan", "Wanli Ouyang" ], "doi": "10.1007/978-3-031-19830-4_40", "ref_id": "b45", "title": "NSNet: Non-saliency Suppression Sampler for Efficient Video Recognition", "year": "2022" }, { "authors": [ "F Xue", "Z Tan", "Y Zhu", "Z Ma", "G Guo" ], "doi": "", "ref_id": "b46", "title": "Coarseto-fine cascaded networks with smooth predicting for video facial expression recognition", "year": "2022" }, { "authors": [ "Serena Yeung", "Olga Russakovsky", "Greg Mori", "Li Fei-Fei" ], "doi": "10.1109/cvpr.2016.293", "ref_id": "b47", "title": "End-to-End Learning of Action Detection from Frame Glimpses in Videos", "year": "2016" }, { "authors": [ "Wei Zhang", "Feng Qiu", "Suzhen Wang", "Hao Zeng", "Zhimeng Zhang", "Rudong An", "Bowen Ma", "Yu Ding" ], "doi": "10.1109/cvprw56347.2022.00271", "ref_id": "b48", "title": "Transformer-based Multimodal Information Fusion for Facial Expression Analysis", "year": "2022" }, { "authors": [ "Wei Zhang", "Bowen Ma", "Feng Qiu", "Yu Ding" ], "doi": "10.1109/cvprw59228.2023.00615", "ref_id": "b49", "title": "Multi-modal Facial Affective Analysis based on Masked Autoencoder", "year": "2023" }, { "authors": [ "Hengshun Zhou", "Debin Meng", "Yuanyuan Zhang", "Xiaojiang Peng", "Jun Du", "Kai Wang", "Yu Qiao" ], "doi": "10.1145/3340555.3355713", "ref_id": "b50", "title": "Exploring Emotion Features and Fusion Strategies for Audio-Video Emotion Recognition", "year": "2019" } ]
[]
[ "f2907e2529494030", "8eb6c5da03f1cca9", "e0f095dcfc4256ef", "f426041f3a3a3b03", "a99e9cbc2f6b0c89", "c853657d862576b1", "695a9c9d98310c17", "59224b79bc0cea0d", "ddd750fc732203de", "a22bd8913aba417a", "00de840419364031", "6309baa59e2ab0b5", "46b493c90dca6684", "03a34f875e755776", "062f344b525c4063", "ac9be4a73208a609", "9f995720df26926f", "bbe05697461f5491", "c28beb635ec1b9d2", "6d93d44299b6d25d", "941703f19ae91177", "ac6cd557f5a1f29a", "78cafa8df548ed7e", "56f98545c93a9f56", "7b11651ddc7bd33d", "969ccb9586f0da1d", "208e1dde1328815a", "7eab088e5a68762a", "38e4687c1c325835", "cc040095ea110612", "0c4c21c13c386959", "698b1be0cb212246", "f642c5b174b6ab70", "8202c3b9469468e3", "60f4fac77a3b34eb", "e1735da257430983", "040f3b28d4b947d4", "707cd939b12f7d9e", "6dc416371733d443", "10ccfb3247a72e40", "edfd01864447892d", "aa9da2848952a0de", "73ab525ced0cd38d", "48fdcf631c57e5b6", "a44628b82a0edd9f", "5ddf01f15d939054", "43eb133a84eadec0", "01f3231d09d195b2", "97d7fe07556fe476", "589da59136e47326", "d84016899887270a" ]
Lhyy8H75KA
Scaling Vision Transformers to 22 Billion Parameters
data/openreview_paper/ICML_2023_oral/Lhyy8H75KA//paper.pdf
123
0
[]
[ { "authors": [ "Samira Abnar", "Willem Zuidema" ], "doi": "10.18653/v1/2020.acl-main.385", "ref_id": "b0", "title": "Quantifying Attention Flow in Transformers", "year": "2020" }, { "authors": [ "S Abnar", "M Dehghani", "B Neyshabur", "H Sedghi" ], "doi": "", "ref_id": "b1", "title": "Exploring the limits of large scale pre-training", "year": "2021" }, { "authors": [ "T Adler", "J Brandstetter", "M Widrich", "A Mayr", "D P Kreil", "M Kopp", "G Klambauer", "S Hochreiter" ], "doi": "", "ref_id": "b2", "title": "Crossdomain few-shot learning by representation fusion", "year": "2020" }, { "authors": [ "O Aka", "K Burke", "A Bauerle", "C Greer", "M Mitchell" ], "doi": "", "ref_id": "b3", "title": "Measuring model biases in the absence of ground truth", "year": "2021" }, { "authors": [ "I Alabdulmohsin", "M Lucic" ], "doi": "", "ref_id": "b4", "title": "A near optimal algorithm for debiasing trained machine learning models", "year": "2021" }, { "authors": [ "A Andreassen", "Y Bahri", "B Neyshabur", "R Roelofs" ], "doi": "", "ref_id": "b5", "title": "The evolution of out-of-distribution robustness throughout fine-tuning", "year": "2021" }, { "authors": [ "A Barbu", "D Mayo", "J Alverio", "W Luo", "C Wang", "D Gutfreund", "J Tenenbaum", "B Katz" ], "doi": "", "ref_id": "b6", "title": "ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models", "year": "2019" }, { "authors": [ "C Beattie", "J Z Leibo", "D Teplyashin", "T Ward", "M Wainwright", "H Küttler", "A Lefrancq", "S Green", "V Valdés", "A Sadik" ], "doi": "", "ref_id": "b7", "title": "", "year": "2016" }, { "authors": [ "L Beyer", "O J Hénaff", "A Kolesnikov", "X Zhai", "A V Oord" ], "doi": "", "ref_id": "b8", "title": "Are we done with imagenet?", "year": "2020" }, { "authors": [ "Lucas Beyer", "Pavel Izmailov", "Alexander Kolesnikov", "Mathilde Caron", "Simon Kornblith", "Xiaohua Zhai", "Matthias Minderer", "Michael Tschannen", "Ibrahim Alabdulmohsin", "Filip Pavetic" ], "doi": "10.1109/cvpr52729.2023.01393", "ref_id": "b9", "title": "FlexiViT: One Model for All Patch Sizes", "year": "2022" }, { "authors": [ "L Beyer", "X Zhai", "A Royer", "L Markeeva", "R Anil", "A Kolesnikov" ], "doi": "", "ref_id": "b10", "title": "Knowledge distillation: A good teacher is patient and consistent", "year": "2022" }, { "authors": [ "J Bradbury", "R Frostig", "P Hawkins", "M J Johnson", "C Leary", "D Maclaurin", "G Necula", "A Paszke", "J Vanderplas", "S Wanderman-Milne", "Q Zhang" ], "doi": "", "ref_id": "b11", "title": "JAX: composable transformations of Python+NumPy programs", "year": "2018" }, { "authors": [ "J Buolamwini", "T Gebru" ], "doi": "", "ref_id": "b12", "title": "Gender shades: Intersectional accuracy disparities in commercial gender classification", "year": "2018" }, { "authors": [ "Richard H Byrd", "Peihuang Lu", "Jorge Nocedal", "Ciyou Zhu" ], "doi": "10.1137/0916069", "ref_id": "b13", "title": "A Limited Memory Algorithm for Bound Constrained Optimization", "year": "1995" }, { "authors": [ "Aylin Caliskan", "Joanna J Bryson", "Arvind Narayanan" ], "doi": "10.1126/science.aal4230", "ref_id": "b14", "title": "Semantics derived automatically from language corpora contain human-like biases", "year": "2017" }, { "authors": [ "Xi Chen", "Josip Djolonga", "Piotr Padlewski", "Basil Mustafa", "Soravit Changpinyo", "Jialin Wu", "Carlos Riquelme Ruiz", "Sebastian Goodman", "Xiao Wang", "Yi Tay", "Siamak Shakeri", "Mostafa Dehghani", "Daniel Salz", "Mario Lucic", "Michael Tschannen", "Arsha Nagrani", "Hexiang Hu", "Mandar Joshi", "Bo Pang", "Ceslee Montgomery", "Paulina Pietrzyk", "Marvin Ritter", "A J Piergiovanni", "Matthias Minderer", "Filip Pavetic", "Austin Waters", "Gang Li", "Ibrahim Alabdulmohsin", "Lucas Beyer", "Julien Amelot", "Kenton Lee", "Andreas Peter Steiner", "Yang Li", "Daniel Keysers", "Anurag Arnab", "Yuanzhong Xu", "Keran Rong", "Alexander Kolesnikov", "Mojtaba Seyedhosseini", "Anelia Angelova", "Xiaohua Zhai", "Neil Houlsby", "Radu Soricut" ], "doi": "10.1109/cvpr52733.2024.01368", "ref_id": "b15", "title": "On Scaling Up a Multilingual Vision and Language Model", "year": "2022" }, { "authors": [ "Gong Cheng", "Junwei Han", "Xiaoqiang Lu" ], "doi": "10.1109/jproc.2017.2675998", "ref_id": "b16", "title": "Remote Sensing Image Scene Classification: Benchmark and State of the Art", "year": "2017" }, { "authors": [ "A Chowdhery", "S Narang", "J Devlin", "M Bosma", "G Mishra", "A Roberts", "P Barham", "H W Chung", "C Sutton", "S Gehrmann" ], "doi": "", "ref_id": "b17", "title": "Scaling language modeling with pathways", "year": "2022" }, { "authors": [ "H W Chung", "L Hou", "S Longpre", "B Zoph", "Y Tay", "W Fedus", "E Li", "X Wang", "M Dehghani", "S Brahma" ], "doi": "", "ref_id": "b18", "title": "Scaling instruction-finetuned language models", "year": "2022" }, { "authors": [ "Mircea Cimpoi", "Subhransu Maji", "Iasonas Kokkinos", "Sammy Mohamed", "Andrea Vedaldi" ], "doi": "10.1109/cvpr.2014.461", "ref_id": "b19", "title": "Describing Textures in the Wild", "year": "2014" }, { "authors": [ "Mark Collier", "Basil Mustafa", "Efi Kokiopoulou", "Rodolphe Jenatton", "Jesse Berent" ], "doi": "10.1109/cvpr46437.2021.00160", "ref_id": "b20", "title": "Correlated Input-Dependent Label Noise in Large-Scale Image Classification", "year": "2021" }, { "authors": [ "J.-B Cordonnier", "A Loukas", "M Jaggi" ], "doi": "", "ref_id": "b21", "title": "On the relationship between self-attention and convolutional layers", "year": "2019" }, { "authors": [ "Yin Cui", "Yang Song", "Chen Sun", "Andrew Howard", "Serge Belongie" ], "doi": "10.1109/cvpr.2018.00432", "ref_id": "b22", "title": "Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning", "year": "2018" }, { "authors": [ "M Dehghani", "A Arnab", "L Beyer", "A Vaswani", "Y Tay" ], "doi": "", "ref_id": "b23", "title": "The efficiency misnomer", "year": "2021" }, { "authors": [ "M Dehghani", "Y Tay", "A A Gritsenko", "Z Zhao", "N Houlsby", "F Diaz", "D Metzler", "O Vinyals" ], "doi": "", "ref_id": "b24", "title": "The benchmark lottery", "year": "2021" }, { "authors": [ "M Dehghani", "A Gritsenko", "A Arnab", "M Minderer", "Y Tay" ], "doi": "", "ref_id": "b25", "title": "Scenic: A jax library for computer vision research and beyond", "year": "2022" }, { "authors": [ "J Deng", "W Dong", "R Socher", "L.-J Li", "K Li", "L Fei-Fei" ], "doi": "", "ref_id": "b26", "title": "ImageNet: A large-scale hierarchical image database", "year": "2009" }, { "authors": [ "Jessica Deuschel", "Bettina Finzel", "Ines Rieger" ], "doi": "10.20378/irb-50304", "ref_id": "b27", "title": "Uncovering the Bias in Facial Expressions", "year": "2020" }, { "authors": [ "Josip Djolonga", "Jessica Yung", "Michael Tschannen", "Rob Romijnders", "Lucas Beyer", "Alexander Kolesnikov", "Joan Puigcerver", "Matthias Minderer", "Alexander D'amour", "Dan Moldovan", "Sylvain Gelly", "Neil Houlsby", "Xiaohua Zhai", "Mario Lucic" ], "doi": "10.1109/cvpr46437.2021.01619", "ref_id": "b28", "title": "On Robustness and Transferability of Convolutional Neural Networks", "year": "2020" }, { "authors": [ "Josip Djolonga", "Jessica Yung", "Michael Tschannen", "Rob Romijnders", "Lucas Beyer", "Alexander Kolesnikov", "Joan Puigcerver", "Matthias Minderer", "Alexander D'amour", "Dan Moldovan", "Sylvain Gelly", "Neil Houlsby", "Xiaohua Zhai", "Mario Lucic" ], "doi": "10.1109/cvpr46437.2021.01619", "ref_id": "b29", "title": "On Robustness and Transferability of Convolutional Neural Networks", "year": "2021" }, { "authors": [ "A Dosovitskiy", "L Beyer", "A Kolesnikov", "D Weissenborn", "X Zhai", "T Unterthiner", "M Dehghani", "M Minderer", "G Heigold", "S Gelly", "J Uszkoreit", "N Houlsby" ], "doi": "", "ref_id": "b30", "title": "An image is worth 16x16 words: Transformers for image recognition at scale", "year": "2021" }, { "authors": [ "Cynthia Dwork", "Moritz Hardt", "Toniann Pitassi", "Omer Reingold", "Richard Zemel" ], "doi": "10.1145/2090236.2090255", "ref_id": "b31", "title": "Fairness through awareness", "year": "2012" }, { "authors": [ "D Eigen", "C Puhrsch", "R Fergus" ], "doi": "", "ref_id": "b32", "title": "Depth map prediction from a single image using a multi-scale deep network", "year": "2014" }, { "authors": [ "R El-Yaniv", "Y Wiener" ], "doi": "", "ref_id": "b33", "title": "On the foundations of noisefree selective classification", "year": "2010" }, { "authors": [ "U Evci", "V Dumoulin", "H Larochelle", "M C Mozer" ], "doi": "", "ref_id": "b34", "title": "Head2Toe: Utilizing intermediate representations for better transfer learning", "year": "2022" }, { "authors": [ "Mark Everingham", "Luc Van Gool", "Christopher K I Williams", "John Winn", "Andrew Zisserman" ], "doi": "10.1007/s11263-009-0275-4", "ref_id": "b35", "title": "The Pascal Visual Object Classes (VOC) Challenge", "year": "2010" }, { "authors": [ "W Fedus", "B Zoph", "N Shazeer" ], "doi": "", "ref_id": "b36", "title": "Switch transformers: Scaling to trillion parameter models with simple and efficient sparsity", "year": "2021" }, { "authors": [ "Jessica Li" ], "doi": "10.23860/thesis-li-jessica-2023", "ref_id": "b37", "title": "Exploring CLIP Feature Vectors for Improved Out-of-Distribution Detection", "year": "2021" }, { "authors": [ "A Geiger", "P Lenz", "C Stiller", "R Urtasun" ], "doi": "10.1177/0278364913491297", "ref_id": "b38", "title": "Vision meets robotics: The KITTI dataset", "year": "2013" }, { "authors": [ "Robert Geirhos", "Patricia Rubisch", "Jonas Rauber", "Carlos R Medina Temme", "Claudio Michaelis", "Wieland Brendel", "Matthias Bethge", "Felix A Wichmann" ], "doi": "10.1167/19.10.209c", "ref_id": "b39", "title": "Inducing a human-like shape bias leads to emergent human-level distortion robustness in CNNs", "year": "2019" }, { "authors": [ "Robert Geirhos", "Kantharaju Narayanappa", "Benjamin Mitzkus", "Tizian Thieringer", "Matthias Bethge", "Felix A Wichmann", "Wieland Brendel" ], "doi": "10.1167/jov.22.14.3273", "ref_id": "b40", "title": "The bittersweet lesson: data-rich models narrow the behavioural gap to human vision", "year": "2021" }, { "authors": [ "J H Gilmer", "A Schioppa", "J Cohen" ], "doi": "10.4324/9781003451389-5", "ref_id": "b41", "title": "Assessing the effectiveness of administrative training in Africa", "year": "2023" }, { "authors": [ "C Guo", "G Pleiss", "Y Sun", "K Q Weinberger" ], "doi": "", "ref_id": "b42", "title": "On calibration of modern neural networks", "year": "2017" }, { "authors": [ "J Heek", "A Levskaya", "A Oliver", "M Ritter", "B Rondepierre", "A Steiner", "M Van Zee" ], "doi": "", "ref_id": "b43", "title": "Flax: A neural network library and ecosystem for JAX", "year": "2020" }, { "authors": [ "Patrick Helber", "Benjamin Bischke", "Andreas Dengel", "Damian Borth" ], "doi": "10.1109/jstars.2019.2918242", "ref_id": "b44", "title": "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", "year": "2019" }, { "authors": [ "Lisa Anne Hendricks", "Kaylee Burns", "Kate Saenko", "Trevor Darrell", "Anna Rohrbach" ], "doi": "10.1007/978-3-030-01219-9_47", "ref_id": "b45", "title": "Women Also Snowboard: Overcoming Bias in Captioning Models", "year": "2018" }, { "authors": [ "D Hendrycks", "T Dietterich" ], "doi": "", "ref_id": "b46", "title": "Benchmarking neural network robustness to common corruptions and perturbations", "year": "2019" }, { "authors": [ "D Hendrycks", "S Basart", "M Mazeika", "M Mostajabi", "J Steinhardt", "D Song" ], "doi": "", "ref_id": "b47", "title": "Scaling out-ofdistribution detection for real-world settings", "year": "2019" }, { "authors": [ "D Hendrycks", "S Basart", "N Mu", "S Kadavath", "F Wang", "E Dorundo", "R Desai", "T Zhu", "S Parajuli", "M Guo", "D Song", "J Steinhardt", "J Gilmer" ], "doi": "", "ref_id": "b48", "title": "The many faces of robustness: A critical analysis of out-of-distribution generalization", "year": "2020" }, { "authors": [ "Dan Hendrycks", "Kevin Zhao", "Steven Basart", "Jacob Steinhardt", "Dawn Song" ], "doi": "10.1109/cvpr46437.2021.01501", "ref_id": "b49", "title": "Natural Adversarial Examples", "year": "2021" }, { "authors": [ "M Hermann", "B Ruf", "M Weinmann", "S Hinz" ], "doi": "10.5194/isprs-annals-v-2-2020-357-2020", "ref_id": "b50", "title": "SELF-SUPERVISED LEARNING FOR MONOCULAR DEPTH ESTIMATION FROM AERIAL IMAGERY", "year": "2020" }, { "authors": [ "G Hinton", "O Vinyals", "J Dean" ], "doi": "", "ref_id": "b51", "title": "Distilling the knowledge in a neural network", "year": "2015" }, { "authors": [ "C Jia", "Y Yang", "Y Xia", "Y.-T Chen", "Z Parekh", "H Pham", "Q Le", "Y.-H Sung", "Z Li", "T Duerig" ], "doi": "", "ref_id": "b52", "title": "Scaling up visual and vision-language representation learning with noisy text supervision", "year": "2021" }, { "authors": [ "Justin Johnson", "Bharath Hariharan", "Laurens Van Der Maaten", "Li Fei-Fei", "C Lawrence Zitnick", "Ross Girshick" ], "doi": "10.1109/cvpr.2017.215", "ref_id": "b53", "title": "CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning", "year": "2017" }, { "authors": [ "Norman P Jouppi", "Doe Hyun Yoon", "George Kurian", "Sheng Li", "Nishant Patil", "James Laudon", "Cliff Young", "David Patterson" ], "doi": "10.1145/3360307", "ref_id": "b54", "title": "A domain-specific supercomputer for training deep neural networks", "year": "2020. 2015" }, { "authors": [ "Jakob Nikolas Kather", "Cleo-Aron Weis", "Francesco Bianconi", "Susanne M Melchers", "Lothar R Schad", "Timo Gaiser", "Alexander Marx", "Frank Gerrit Zöllner" ], "doi": "10.1038/srep27988", "ref_id": "b55", "title": "Multi-class texture analysis in colorectal cancer histology", "year": "2016" }, { "authors": [ "W Kay", "J Carreira", "K Simonyan", "B Zhang", "C Hillier", "S Vijayanarasimhan", "F Viola", "T Green", "T Back", "P Natsev" ], "doi": "", "ref_id": "b56", "title": "The kinetics human action video dataset", "year": "2017" }, { "authors": [ "A Khalifa", "M C Mozer", "H Sedghi", "B Neyshabur", "I Alabdulmohsin" ], "doi": "", "ref_id": "b57", "title": "Layer-stack temperature scaling", "year": "2022" }, { "authors": [ "D P Kingma", "J Ba", "Adam" ], "doi": "", "ref_id": "b58", "title": "A method for stochastic optimization", "year": "2015" }, { "authors": [ "I D Kivlichan", "Z Lin", "J Liu", "L Vasserman" ], "doi": "", "ref_id": "b59", "title": "Measuring and improving model-moderator collaboration using uncertainty estimation", "year": "2021" }, { "authors": [ "Alexander Kolesnikov", "Lucas Beyer", "Xiaohua Zhai", "Joan Puigcerver", "Jessica Yung", "Sylvain Gelly", "Neil Houlsby" ], "doi": "10.1007/978-3-030-58558-7_29", "ref_id": "b60", "title": "Big Transfer (BiT): General Visual Representation Learning", "year": "2020" }, { "authors": [ "Jonathan Krause", "Michael Stark", "Jia Deng", "Li Fei-Fei" ], "doi": "10.1109/iccvw.2013.77", "ref_id": "b61", "title": "3D Object Representations for Fine-Grained Categorization", "year": "2013" }, { "authors": [ "A Krizhevsky", "G Hinton" ], "doi": "10.7717/peerjcs.633/fig-5", "ref_id": "b62", "title": "Figure 5: Initial cross entropy values of samples from CIFAR-100 (Krizhevsky, 2009) on SqueezeNet (Iandola et al., 2016) when learning 10 classes at a time using the same learning settings as shown in Table 1.", "year": "2009" }, { "authors": [ "Taku Kudo", "John Richardson" ], "doi": "10.18653/v1/d18-2012", "ref_id": "b63", "title": "SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing", "year": "November 2018" }, { "authors": [ "M Kumar", "N Houlsby", "N Kalchbrenner", "E D Cubuk" ], "doi": "", "ref_id": "b64", "title": "Do better imagenet classifiers assess perceptual similarity better", "year": "2022" }, { "authors": [ "Y Lecun", "F J Huang", "L Bottou" ], "doi": "", "ref_id": "b65", "title": "Learning methods for generic object recognition with invariance to pose and lighting", "year": "2004" }, { "authors": [ "F.-F Li", "M Andreeto", "M Ranzato", "P Perona", "Caltech" ], "doi": "10.22002/D1.20086", "ref_id": "b66", "title": "", "year": "2022" }, { "authors": [ "Ziwei Liu", "Ping Luo", "Xiaogang Wang", "Xiaoou Tang" ], "doi": "10.1109/iccv.2015.425", "ref_id": "b67", "title": "Deep Learning Face Attributes in the Wild", "year": "2015" }, { "authors": [ "I Loshchilov", "F Hutter", "Sgdr" ], "doi": "", "ref_id": "b68", "title": "Stochastic gradient descent with warm restarts", "year": "2017" }, { "authors": [ "Dhruv Mahajan", "Ross Girshick", "Vignesh Ramanathan", "Kaiming He", "Manohar Paluri", "Yixuan Li", "Ashwin Bharambe", "Laurens Van Der Maaten" ], "doi": "10.1007/978-3-030-01216-8_12", "ref_id": "b69", "title": "Exploring the Limits of Weakly Supervised Pretraining", "year": "2018" }, { "authors": [ "L Matthey", "I Higgins", "D Hassabis", "A Lerchner" ], "doi": "", "ref_id": "b70", "title": "dSprites: Disentanglement testing sprites dataset", "year": "2017" }, { "authors": [ "M Minderer", "J Djolonga", "R Romijnders", "F Hubis", "X Zhai", "N Houlsby", "D Tran", "M Lucic" ], "doi": "", "ref_id": "b71", "title": "Revisiting the calibration of modern neural networks", "year": "2021" }, { "authors": [ "Margaret Mitchell", "Simone Wu", "Andrew Zaldivar", "Parker Barnes", "Lucy Vasserman", "Ben Hutchinson", "Elena Spitzer", "Inioluwa Deborah Raji", "Timnit Gebru" ], "doi": "10.1145/3287560.3287596", "ref_id": "b72", "title": "Model Cards for Model Reporting", "year": "2019" }, { "authors": [ "Mathew Monfort", "Carl Vondrick", "Aude Oliva", "Alex Andonian", "Bolei Zhou", "Kandan Ramakrishnan", "Sarah Adel Bargal", "Tom Yan", "Lisa Brown", "Quanfu Fan", "Dan Gutfreund" ], "doi": "10.1109/tpami.2019.2901464", "ref_id": "b73", "title": "Moments in Time Dataset: One Million Videos for Event Understanding", "year": "2019" }, { "authors": [ "Roozbeh Mottaghi", "Xianjie Chen", "Xiaobai Liu", "Nam-Gyu Cho", "Seong-Whan Lee", "Sanja Fidler", "Raquel Urtasun", "Alan Yuille" ], "doi": "10.1109/cvpr.2014.119", "ref_id": "b74", "title": "The Role of Context for Object Detection and Semantic Segmentation in the Wild", "year": "2014" }, { "authors": [ "M P Naeini", "G Cooper", "M Hauskrecht" ], "doi": "", "ref_id": "b75", "title": "Obtaining well calibrated probabilities using bayesian binning", "year": "2015" }, { "authors": [ "Y Netzer", "T Wang", "A Coates", "A Bissacco", "B Wu", "A Y Ng" ], "doi": "", "ref_id": "b76", "title": "Reading digits in natural images with unsupervised feature learning", "year": "2011. 2011" }, { "authors": [ "Maria-Elena Nilsback", "Andrew Zisserman" ], "doi": "10.1109/icvgip.2008.47", "ref_id": "b77", "title": "Automated Flower Classification over a Large Number of Classes", "year": "2008" }, { "authors": [ "Sinno Jialin Pan", "Qiang Yang" ], "doi": "10.1109/tkde.2009.191", "ref_id": "b78", "title": "A Survey on Transfer Learning", "year": "2010" }, { "authors": [ "O M Parkhi", "A Vedaldi", "A Zisserman", "C Jawahar" ], "doi": "", "ref_id": "b79", "title": "Cats and dogs", "year": "2012. 2012" }, { "authors": [ "Hieu Pham", "Zihang Dai", "Golnaz Ghiasi", "Kenji Kawaguchi", "Hanxiao Liu", "Adams Wei Yu", "Jiahui Yu", "Yi-Ting Chen", "Minh-Thang Luong", "Yonghui Wu", "Mingxing Tan", "Quoc V Le" ], "doi": "10.1016/j.neucom.2023.126658", "ref_id": "b80", "title": "Combined scaling for zero-shot transfer learning", "year": "2021" }, { "authors": [ "R Pope", "S Douglas", "A Chowdhery", "J Devlin", "J Bradbury", "A Levskaya", "J Heek", "K Xiao", "S Agrawal", "J Dean" ], "doi": "", "ref_id": "b81", "title": "Efficiently scaling transformer inference", "year": "2022" }, { "authors": [ "A Radford", "J W Kim", "C Hallacy", "A Ramesh", "G Goh", "S Agarwal", "G Sastry", "A Askell", "P Mishkin", "J Clark" ], "doi": "", "ref_id": "b82", "title": "Learning transferable visual models from natural language supervision", "year": "2021" }, { "authors": [ "C Raffel", "N Shazeer", "A Roberts", "K Lee", "S Narang", "M Matena", "Y Zhou", "W Li", "P J Liu" ], "doi": "", "ref_id": "b83", "title": "Exploring the limits of transfer learning with a unified text-to-text transformer", "year": "2019" }, { "authors": [ "Rene Ranftl", "Alexey Bochkovskiy", "Vladlen Koltun" ], "doi": "10.1109/iccv48922.2021.01196", "ref_id": "b84", "title": "Vision Transformers for Dense Prediction", "year": "2021" }, { "authors": [ "B Recht", "R Roelofs", "L Schmidt", "V Shankar" ], "doi": "", "ref_id": "b85", "title": "Do ImageNet classifiers generalize to ImageNet?", "year": "2019" }, { "authors": [ "C Riquelme", "J Puigcerver", "B Mustafa", "M Neumann", "R Jenatton", "A Susano Pinto", "D Keysers", "N Houlsby" ], "doi": "", "ref_id": "b86", "title": "Scaling vision with sparse mixture of experts", "year": "2021" }, { "authors": [ "Chitwan Saharia", "William Chan", "Huiwen Chang", "Chris Lee", "Jonathan Ho", "Tim Salimans", "David Fleet", "Mohammad Norouzi" ], "doi": "10.1145/3528233.3530757", "ref_id": "b87", "title": "Palette: Image-to-Image Diffusion Models", "year": "2022" }, { "authors": [ "Robin Strudel", "Ricardo Garcia", "Ivan Laptev", "Cordelia Schmid" ], "doi": "10.1109/iccv48922.2021.00717", "ref_id": "b88", "title": "Segmenter: Transformer for Semantic Segmentation", "year": "2021" }, { "authors": [ "Chen Sun", "Abhinav Shrivastava", "Saurabh Singh", "Abhinav Gupta" ], "doi": "10.1109/iccv.2017.97", "ref_id": "b89", "title": "Revisiting Unreasonable Effectiveness of Data in Deep Learning Era", "year": "2017" }, { "authors": [ "P Sun", "H Kretzschmar", "X Dotiwalla", "A Chouard", "V Patnaik", "P Tsui", "J Guo", "Y Zhou", "Y Chai", "B Caine" ], "doi": "", "ref_id": "b90", "title": "Scalability in perception for autonomous driving: Waymo open dataset", "year": "2020" }, { "authors": [ "M Sundararajan", "A Taly", "Q Yan" ], "doi": "", "ref_id": "b91", "title": "Axiomatic attribution for deep networks", "year": "2017" }, { "authors": [ "C Szegedy", "W Liu", "Y Jia", "P Sermanet", "S Reed", "D Anguelov", "D Erhan", "V Vanhoucke", "A Rabinovich" ], "doi": "", "ref_id": "b92", "title": "Going deeper with convolutions", "year": "2015" }, { "authors": [ "R Taori", "A Dave", "V Shankar", "N Carlini", "B Recht", "L Schmidt" ], "doi": "", "ref_id": "b93", "title": "Measuring robustness to natural distribution shifts in image classification", "year": "2020" }, { "authors": [ "Y Tay", "M Dehghani", "V Q Tran", "X Garcia", "D Bahri", "T Schuster", "H S Zheng", "N Houlsby", "D Metzler" ], "doi": "", "ref_id": "b94", "title": "Unifying language learning paradigms", "year": "2022" }, { "authors": [ "Eu Wern Teh", "Graham W Taylor" ], "doi": "10.1109/isbi45749.2020.9098533", "ref_id": "b95", "title": "Learning with Less Data Via Weakly Labeled Patch Classification in Digital Pathology", "year": "2019" }, { "authors": [ "Hugo Touvron", "Matthieu Cord", "Hervé Jégou" ], "doi": "10.1007/978-3-031-20053-3_30", "ref_id": "b96", "title": "DeiT III: Revenge of the ViT", "year": "2022" }, { "authors": [ "D Tran", "J Liu", "M W Dusenberry", "D Phan", "M Collier", "J Ren", "K Han", "Z Wang", "Z Mariet", "H Hu" ], "doi": "", "ref_id": "b97", "title": "Towards reliability using pretrained large model extensions", "year": "2022" }, { "authors": [ "Catherine Wah", "Steve Branson", "Pietro Perona", "Serge Belongie" ], "doi": "10.1109/iccv.2011.6126539", "ref_id": "b98", "title": "Multiclass recognition and part localization with humans in the loop", "year": "2011" }, { "authors": [ "B Wang", "A Komatsuzaki" ], "doi": "", "ref_id": "b99", "title": "GPT-J-6B: A 6 Billion Parameter Autoregressive Language Model", "year": "May 2021" }, { "authors": [ "Shibo Wang", "Jinliang Wei", "Amit Sabne", "Andy Davis", "Berkin Ilbeyi", "Blake Hechtman", "Dehao Chen", "Karthik Srinivasa Murthy", "Marcello Maggioni", "Qiao Zhang", "Sameer Kumar", "Tongfei Guo", "Yuanzhong Xu", "Zongwei Zhou" ], "doi": "10.1145/3567955.3567959", "ref_id": "b100", "title": "Overlap Communication with Dependent Computation via Decomposition in Large Deep Learning Models", "year": "2022" }, { "authors": [ "Y Wang", "K Li", "Y Li", "Y He", "B Huang", "Z Zhao", "H Zhang", "J Xu", "Y Liu", "Z Wang", "S Xing", "G Chen", "J Pan", "J Yu", "Y Wang", "L Wang", "Y Qiao", "Internvideo" ], "doi": "", "ref_id": "b101", "title": "General video foundation models via generative and discriminative learning", "year": "2022" }, { "authors": [ "Z Wang", "K Qinami", "I C Karakozis", "K Genova", "P Nair", "K Hata", "O Russakovsky" ], "doi": "", "ref_id": "b102", "title": "Towards fairness in visual recognition: Effective strategies for bias mitigation", "year": "2020" }, { "authors": [ "J Wei", "Y Tay", "R Bommasani", "C Raffel", "B Zoph", "S Borgeaud", "D Yogatama", "M Bosma", "D Zhou", "D Metzler" ], "doi": "", "ref_id": "b103", "title": "Emergent abilities of large language models", "year": "2022" }, { "authors": [ "Y Wen", "D Tran", "J Ba" ], "doi": "", "ref_id": "b104", "title": "Batchensemble: an alternative approach to efficient ensemble and lifelong learning", "year": "2019" }, { "authors": [ "Jianxiong Xiao", "James Hays", "Krista A Ehinger", "Aude Oliva", "Antonio Torralba" ], "doi": "10.1109/cvpr.2010.5539970", "ref_id": "b105", "title": "SUN database: Large-scale scene recognition from abbey to zoo", "year": "2010" }, { "authors": [ "Tete Xiao", "Yingcheng Liu", "Bolei Zhou", "Yuning Jiang", "Jian Sun" ], "doi": "10.1007/978-3-030-01228-1_26", "ref_id": "b106", "title": "Unified Perceptual Parsing for Scene Understanding", "year": "2018" }, { "authors": [ "Yi Yang", "Shawn Newsam" ], "doi": "10.1145/1869790.1869829", "ref_id": "b107", "title": "Bag-of-visual-words and spatial extensions for land-use classification", "year": "2010" }, { "authors": [ "J Yu", "Z Wang", "V Vasudevan", "L Yeung", "M Seyedhosseini", "Y Wu" ], "doi": "", "ref_id": "b108", "title": "Coca: Contrastive captioners are imagetext foundation models", "year": "2022" }, { "authors": [ "J Yu", "Y Xu", "J Y Koh", "T Luong", "G Baid", "Z Wang", "V Vasudevan", "A Ku", "Y Yang", "B K Ayan" ], "doi": "", "ref_id": "b109", "title": "Scaling autoregressive models for content-rich text-to-image generation", "year": "2022" }, { "authors": [ "Muhammad Bilal Zafar", "Isabel Valera", "Manuel Gomez Rodriguez", "Krishna P Gummadi" ], "doi": "10.1145/3038912.3052660", "ref_id": "b110", "title": "Fairness Beyond Disparate Treatment & Disparate Impact", "year": "2017" }, { "authors": [ "X Zhai", "J Puigcerver", "A Kolesnikov", "P Ruyssen", "C Riquelme", "M Lucic", "J Djolonga", "A S Pinto", "M Neumann", "A Dosovitskiy" ], "doi": "", "ref_id": "b111", "title": "A large-scale study of representation learning with the visual task adaptation benchmark", "year": "2019" }, { "authors": [ "Xiaohua Zhai", "Alexander Kolesnikov", "Neil Houlsby", "Lucas Beyer" ], "doi": "10.1109/cvpr52688.2022.01179", "ref_id": "b112", "title": "Scaling Vision Transformers", "year": "2022" }, { "authors": [ "Xiaohua Zhai", "Xiao Wang", "Basil Mustafa", "Andreas Steiner", "Daniel Keysers", "Alexander Kolesnikov", "Lucas Beyer" ], "doi": "10.1109/cvpr52688.2022.01759", "ref_id": "b113", "title": "LiT: Zero-Shot Transfer with Locked-image text Tuning", "year": "2022" }, { "authors": [ "B Zhang", "R Sennrich" ], "doi": "", "ref_id": "b114", "title": "Root mean square layer normalization", "year": "2019" }, { "authors": [ "R Zhang", "P Isola", "A A Efros", "E Shechtman", "O Wang" ], "doi": "", "ref_id": "b115", "title": "The unreasonable effectiveness of deep features as a perceptual metric", "year": "2018" }, { "authors": [ "G Zhao", "X Sun", "J Xu", "Z Zhang", "L Luo", "Muse" ], "doi": "", "ref_id": "b116", "title": "Parallel multi-scale attention for sequence to sequence learning", "year": "2019" }, { "authors": [ "Jieyu Zhao", "Tianlu Wang", "Mark Yatskar", "Vicente Ordonez", "Kai-Wei Chang" ], "doi": "10.18653/v1/d17-1323", "ref_id": "b117", "title": "Men Also Like Shopping: Reducing Gender Bias Amplification using Corpus-level Constraints", "year": "2017" }, { "authors": [ "Bolei Zhou", "Agata Lapedriza", "Aditya Khosla", "Aude Oliva", "Antonio Torralba" ], "doi": "10.1109/tpami.2017.2723009", "ref_id": "b118", "title": "Places: A 10 Million Image Database for Scene Recognition", "year": "2017" }, { "authors": [ "Bolei Zhou", "Hang Zhao", "Xavier Puig", "Sanja Fidler", "Adela Barriuso", "Antonio Torralba" ], "doi": "10.1109/cvpr.2017.544", "ref_id": "b119", "title": "Scene Parsing through ADE20K Dataset", "year": "2017" }, { "authors": [ "Bapps) ; Zhang" ], "doi": "10.7717/peerj.18888/table-2", "ref_id": "b120", "title": "Table 2: Details of the NOS (Oh et al., 2023; Roderburg et al., 2021; Kurita et al., 2017; Musicco et al., 2013; Jørgensen et al., 2012; Khan et al., 2011; Baxter et al., 2009; Ren et al., 2022; Valentine et al., 2022; Ording et al., 2019; Heun et al., 2013; Ou et al., 2013; Attner et al., 2010).", "year": "2018. 2011. 2022. 2013. 2015. 2009. 2009. 2017. 2017. 2016" }, { "authors": [ "Beattie" ], "doi": "10.7717/peerj.20146/fig-2", "ref_id": "b121", "title": "Figure 2: Analysis of the risk of bias in accordance with the cochrane collaboration guidelines (Sigal et al., 2007; Church et al., 2010; Lambers et al., 2008; Tomas-Carus et al., 2016; Seyedizadeh, Cheragh-Birjandi & Hamedi Nia, 2020; Johansen et al., 2017; Macdonald et al., 2021; Aylin et al., 2009; Myers et al., 2013; Balducci et al., 2010; Reid et al., 2010; Stomby et al., 2017; Callisaya et al., 2017; Newton et al., 2020; Sénéchal et al., 2013; Annibalini et al., 2017; Donyaei et al., 2024; Larose et al., 2010; Byrkjeland et al., 2015; Banitalebi et al., 2019; Sparks et al., 2013; Banitalebi et al., 2021; Kadoglou et al., 2013; De Oliveira et al., 2012; Jamshidpour, Bahrpeyma & Khatami, 2020; Delevatti et al., 2022, 2020; Kang, Ko & Baek, 2016; Ghodrati et al., 2023; Martínez-Velilla et al., 2021; Espeland et al., 2017; Szilágyi et al., 2019; Jeon et al., 2020; Cai et al., 2023; Venkataraman et al., 2019; Yue et al., 2023; Ahmad et al., 2020).", "year": "2016. 2017. 2017. 2014. 2019. 2008. 2009. 2018. 2019. 2020. 2021. 2019. 2022. 2017. 2013. 2019. 2019. 2014. 2010. 2019. 2012. 2017. 2017. 2015. 2004. 2004. 2010" }, { "authors": [ "Netzer" ], "doi": "10.7717/peerj-cs.3495/fig-3", "ref_id": "b122", "title": "Figure 3: A selection of images from the UC Merced dataset (Yang & Newsam, 2010).", "year": "2011. 2010. 2020" } ]
[]
[ "1fa041a12ad52a74", "7377ba10903cdcd3", "7e63d79190b6b37b", "7d291c7124de8053", "a2e8778005b06418", "3cd59af8a76471c0", "4622086a4ae816d4", "2d2e4c86b60a6d69", "43490d6251009fc3", "8fd909b167d50654", "e8c8290c83e9c957", "93ba50b1acee2748", "2986fa811b91d3c6", "3a3c326fefa5cf15", "9b99e48c42d772d7", "ec224fd23e81fe74", "8d38dd60d537cc22", "f240fc5d37c96edd", "1a24dc8003b4b7ee", "d098c8b1644683ce", "3e75352b7b5312e2", "7f9b8fd881dcf83e", "377576873e1a3124", "ce24fb23d747d06c", "108e8db6002ffd70", "10acdc6feace3a89", "d49bee4f792b8dbc", "c68f70cf24bd008f", "6b7fe5d078266408", "8ce19989bf23a09c", "0b1cb47ac4ba5a71", "edec86a8979f9263", "514a695c1a577652", "276a3e033f99a81d", "568e9c2092bafab5", "228290feadaa8ffd", "57b7db8c93b0b4ba", "05e6b50d9cceabbe", "9b942aa38f7df02b", "f38db7622ff4c087", "de31b2e25927aab7", "1df10dbb8a5b4f23", "906c5f102c2c9ed8", "6116f6051b7b9a3f", "5fa9aa2730f12ca2", "d124cc8a5eee7fdb", "8cf06daec5e720ed", "daddaf32f0761761", "3afb4e7e8bee1feb", "ac7017d6f8dfa6d4", "43435fd2e4ea93bd", "ad0c688e26ebaa3e", "ade13a414911549c", "f44a04269bc256d3", "19f151d5608de85a", "05201cb802205a17", "05b811f9a74ef27f", "b5b17ffceff4c4d5", "efa52fc16696aff7", "505d6b0f681ecdef", "9cadae0d0fa29b58", "810e959b5eec514d", "ed10b7a0d3a6750e", "6d2a0db406c543ec", "de585cd958fd5312", "d66cf09b420b5e4c", "697e9ed710f842c7", "364f7248dae178e7", "f4ec8d727332361a", "f02638b8b0e9bc28", "732d3a8ed4ed9375", "f0cde89cfcb14c55", "a2a32511ba50d79c", "0de910871ec4f42c", "3fe2a9c1c6372e72", "05c3406a8b08848e", "50bb059ad5c2e9d2", "3823d2f9dd6b1f6b", "76b0143f8f19b50f", "6db1a1c7d4968175", "fdeb3ad689d044cf", "bd532648cce414da", "d2cb36a6296098c3", "0ef97d43aa0a44f5", "0f7b41762087fc55", "1a474da2a92cd959", "bb265f425c3ee0b0", "70d3b63a2322c839", "50842a9664f5b5f8", "c5e30ce54ede3a8a", "41bafa2fe2388797", "71baa4bfc33b0622", "23ed76ea41f28d97", "39a1b2db553e3fc0", "a77ba16b950c9cf5", "b2bc3b17325b189a", "216fe3367e48c775", "8ad952229ed78fcf", "f87fba28b64598eb", "fcbe8ad4a2f72e6c", "a6a54a27b6156ef0", "b6f37573c2adae1e", "16de30e5f1e85bee", "605969fef7551d56", "659bab77a9b85d70", "c77564062b110d4a", "4534142c2d9f35c1", "3e96cc8615f0b26f", "7f41b37446fb0320", "4986a56958f273d6", "9e4c735092dc72d0", "80ecff57203f681d", "e8f2c9b3cc2abee4", "b4a9d2a706dc1cd1", "03f6444dcf42fbe8", "54621c0c0e4b34c1", "45d6f97b228977be", "e37679670a0388bb", "66e840a8719381e7", "ae82ba4f9f1fe10d", "ba24fec20280bccb", "808a4dbac5dc6a24", "1f996a0a2a719ec5" ]
cjWHQpEqaZ
Robustly Learning a Single Neuron via Sharpness
data/openreview_paper/ICML_2023_oral/cjWHQpEqaZ//paper.pdf
14
0
[]
[ { "authors": [ "P Auer", "M Herbster", "M K Warmuth" ], "doi": "10.7551/mitpress/1120.003.0002", "ref_id": "b0", "title": "NIPS Committees", "year": "1995" }, { "authors": [ "P Awasthi", "A Tang", "A Vijayaraghavan" ], "doi": "", "ref_id": "b1", "title": "Agnostic learning of general relu activation using gradient descent", "year": "2022" }, { "authors": [ "P Bartlett", "M Jordan", "J Mcauliffe" ], "doi": "", "ref_id": "b2", "title": "Convexity, classification, and risk bounds", "year": "2006" }, { "authors": [ "Jérôme Bolte", "Trong Phong Nguyen", "Juan Peypouquet", "Bruce W Suter" ], "doi": "10.1007/s10107-016-1091-6", "ref_id": "b3", "title": "From error bounds to the complexity of first-order descent methods for convex functions", "year": "2017" }, { "authors": [ "M Liu", "X Zhang", "L Zhang", "R Jin", "T Yang" ], "doi": "", "ref_id": "b4", "title": "Fast rates of erm and stochastic approximation: Adaptive to error bound conditions", "year": "2018" }, { "authors": [ "S Łojasiewicz" ], "doi": "", "ref_id": "b5", "title": "Une propriété topologique des sousensembles analytiques réels", "year": "1963" }, { "authors": [ "Stanislas Łojasiewicz" ], "doi": "10.5802/aif.1384", "ref_id": "b6", "title": "Sur la géométrie semi- et sous- analytique", "year": "1993" }, { "authors": [ "P Manurangsi", "D Reichman" ], "doi": "", "ref_id": "b7", "title": "The computational complexity of training relu (s)", "year": "2018" }, { "authors": [ "J.-S Pang" ], "doi": "10.1007/bf02614322", "ref_id": "b8", "title": "Error bounds in mathematical programming", "year": "1997" }, { "authors": [ "P Ramachandran", "B Zoph", "Q V Le" ], "doi": "", "ref_id": "b9", "title": "Searching for activation functions", "year": "2017" }, { "authors": [ "V Roulet", "A Aspremont", "Sharpness" ], "doi": "", "ref_id": "b10", "title": "restart and acceleration", "year": "2017" }, { "authors": [ "J Síma" ], "doi": "", "ref_id": "b11", "title": "Training a single sigmoidal neuron is hard", "year": "2002" }, { "authors": [ "M Soltanolkotabi" ], "doi": "", "ref_id": "b12", "title": "Learning ReLUs via gradient descent", "year": "2017" }, { "authors": [ "G Yehudai", "O Shamir" ], "doi": "", "ref_id": "b13", "title": "Learning a single neuron with gradient methods", "year": "2020" } ]
[]
[ "a30842c14b91a707", "24b9be279f629761", "5078e5f0ab1c9c90", "b97a06db93f168bf", "311c5ce3c72c8bdc", "8c7b157080617602", "728956b8f0817f60", "acc2a340ccac4069", "aad2f109827330b1", "a9687647df94c0d3", "a758d04b4b524714", "719a2eb9421d30e5", "582797a8399d1780", "b1374bc2fa704b30" ]
y6gg68aGiq
Tighter Information-Theoretic Generalization Bounds from Supersamples
data/openreview_paper/ICML_2023_oral/y6gg68aGiq//paper.pdf
57
1
[ { "authors": [ "T M Cover", "J A Thomas" ], "doi": "10.1002/9780470048146.scard", "ref_id": "b5", "title": "Wiley Series in Telecommunications and Signal Processing", "year": "2006" } ]
[ { "authors": [ "A Asadi", "E Abbe", "S Verdú" ], "doi": "", "ref_id": "b0", "title": "Chaining mutual information and tightening generalization bounds", "year": "2018" }, { "authors": [ "P L Bartlett", "S Mendelson" ], "doi": "", "ref_id": "b1", "title": "Rademacher and gaussian complexities: Risk bounds and structural results", "year": "Nov. 2002" }, { "authors": [ "Y Bu", "S Zou", "V V Veeravalli" ], "doi": "", "ref_id": "b2", "title": "Tightening mutual information based bounds on generalization error", "year": "2019. 2019" }, { "authors": [ "O Catoni" ], "doi": "10.1214/lnms/1199996417", "ref_id": "b3", "title": "Chapter 3: Transductive PAC-Bayesian learning", "year": "2007" }, { "authors": [ "E Clerico", "A Shidani", "G Deligiannidis", "A Doucet" ], "doi": "", "ref_id": "b4", "title": "Chained generalisation bounds", "year": "02-05 Jul 2022" }, { "authors": [ "T M Cover", "J A Thomas" ], "doi": "10.1002/9780470048146.scard", "ref_id": "b5", "title": "Wiley Series in Telecommunications and Signal Processing", "year": "2006" }, { "authors": [ "V Cédric" ], "doi": "", "ref_id": "b6", "title": "Optimal Transport: Old and New (Grundlehren der mathematischen Wissenschaften", "year": "2008" }, { "authors": [ "Jia Deng", "Wei Dong", "Richard Socher", "Li-Jia Li", "Kai Li", "Li Fei-Fei" ], "doi": "10.1109/cvpr.2009.5206848", "ref_id": "b7", "title": "ImageNet: A large-scale hierarchical image database", "year": "2009. 2009" }, { "authors": [ "Z Goldfeld", "K Greenewald" ], "doi": "", "ref_id": "b8", "title": "Sliced mutual information: A scalable measure of statistical dependence", "year": "2021" }, { "authors": [ "Z Goldfeld", "K Greenewald", "T Nuradha", "G Reeves" ], "doi": "", "ref_id": "b9", "title": "k$-sliced mutual information: A quantitative study of scalability with dimension", "year": "2022" }, { "authors": [ "P Grunwald", "T Steinke", "L Zakynthinou" ], "doi": "", "ref_id": "b10", "title": "Pac-bayes, mac-bayes and conditional mutual information: Fast rate bounds that handle general vc classes", "year": "2021" }, { "authors": [ "H Hafez-Kolahi", "Z Golgooni", "S Kasaei", "M Soleymani" ], "doi": "", "ref_id": "b11", "title": "Conditioning and processing: Techniques to improve information-theoretic generalization bounds", "year": "2020" }, { "authors": [ "M Haghifam", "J Negrea", "A Khisti", "D M Roy", "G K Dziugaite" ], "doi": "", "ref_id": "b12", "title": "Sharpened generalization bounds based on conditional mutual information and an application to noisy, iterative algorithms", "year": "2020" }, { "authors": [ "Mahdi Haghifam", "Shay Moran", "Daniel M Roy", "Gintare Karolina Dziugiate" ], "doi": "10.1109/isit50566.2022.9834400", "ref_id": "b13", "title": "Understanding Generalization via Leave-One-Out Conditional Mutual Information", "year": "2021" }, { "authors": [ "Mahdi Haghifam", "Shay Moran", "Daniel M Roy", "Gintare Karolina Dziugiate" ], "doi": "10.1109/isit50566.2022.9834400", "ref_id": "b14", "title": "Understanding Generalization via Leave-One-Out Conditional Mutual Information", "year": "2022" }, { "authors": [ "M Haghifam", "B Rodríguez-Gálvez", "R Thobaben", "M Skoglund", "D M Roy", "G K Dziugaite" ], "doi": "", "ref_id": "b15", "title": "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization", "year": "2023" }, { "authors": [ "H Harutyunyan", "M Raginsky", "G V Steeg", "A Galstyan" ], "doi": "", "ref_id": "b16", "title": "Information-theoretic generalization bounds for blackbox learning algorithms", "year": "2021" }, { "authors": [ "H He", "H Yan", "V Y Tan" ], "doi": "", "ref_id": "b17", "title": "Information-theoretic characterization of the generalization error for iterative semisupervised learning", "year": "2022" }, { "authors": [ "Kaiming He", "Xiangyu Zhang", "Shaoqing Ren", "Jian Sun" ], "doi": "10.1109/cvpr.2016.90", "ref_id": "b18", "title": "Deep Residual Learning for Image Recognition", "year": "2016" }, { "authors": [ "Fredrik Hellstrom", "Giuseppe Durisi" ], "doi": "10.1109/jsait.2020.3040992", "ref_id": "b19", "title": "Generalization Bounds via Information Density and Conditional Information Density", "year": "2020" }, { "authors": [ "Fredrik Hellstrom", "Giuseppe Durisi" ], "doi": "10.1109/isit45174.2021.9517731", "ref_id": "b20", "title": "Fast-Rate Loss Bounds via Conditional Information Measures with Applications to Neural Networks", "year": "2021. 2021" }, { "authors": [ "F Hellström", "G Durisi" ], "doi": "", "ref_id": "b21", "title": "A new family of generalization bounds using samplewise evaluated CMI", "year": "2022" }, { "authors": [ "F Hellström", "G Durisi" ], "doi": "", "ref_id": "b22", "title": "Evaluated CMI bounds for meta learning: Tightness and expressiveness", "year": "2022" }, { "authors": [ "Wassily Hoeffding" ], "doi": "10.1080/01621459.1963.10500830", "ref_id": "b23", "title": "Probability Inequalities for Sums of Bounded Random Variables", "year": "1963" }, { "authors": [ "S Jastrzębski", "Z Kenton", "D Arpit", "N Ballas", "A Fischer", "Y Bengio", "A Storkey" ], "doi": "", "ref_id": "b24", "title": "Three factors influencing minima in sgd", "year": "2017" }, { "authors": [ "S M Kakade", "K Sridharan", "A Tewari" ], "doi": "", "ref_id": "b25", "title": "On the complexity of linear prediction: Risk bounds, margin bounds, and regularization", "year": "2008" }, { "authors": [ "A Krizhevsky" ], "doi": "", "ref_id": "b26", "title": "Learning multiple layers of features from tiny images", "year": "2009" }, { "authors": [ "Y Lecun", "C Cortes", "C Burges" ], "doi": "", "ref_id": "b27", "title": "Mnist handwritten digit database", "year": "2010" }, { "authors": [ "J Negrea", "M Haghifam", "G K Dziugaite", "A Khisti", "D M Roy" ], "doi": "", "ref_id": "b28", "title": "Information-theoretic generalization bounds for sgld via data-dependent estimates", "year": "2019" }, { "authors": [ "G Neu", "G K Dziugaite", "M Haghifam", "D M Roy" ], "doi": "", "ref_id": "b29", "title": "Information-theoretic generalization bounds for stochastic gradient descent", "year": "2021" }, { "authors": [ "F Pedregosa", "G Varoquaux", "A Gramfort", "V Michel", "B Thirion", "O Grisel", "M Blondel", "P Prettenhofer", "R Weiss", "V Dubourg", "J Vanderplas", "A Passos", "D Cournapeau", "M Brucher", "M Perrot", "E Duchesnay" ], "doi": "", "ref_id": "b30", "title": "Scikit-learn: Machine learning in Python", "year": "2011" }, { "authors": [ "Ankit Pensia", "Varun Jog", "Po-Ling Loh" ], "doi": "10.1109/isit.2018.8437571", "ref_id": "b31", "title": "Generalization Error Bounds for Noisy, Iterative Algorithms", "year": "2018. 2018" }, { "authors": [ "Y Polyanskiy", "Y Wu" ], "doi": "", "ref_id": "b32", "title": "Lecture notes on information theory", "year": "2019. 2019" }, { "authors": [ "M Raginsky", "A Rakhlin", "M Telgarsky" ], "doi": "", "ref_id": "b33", "title": "Non-convex learning via stochastic gradient langevin dynamics: a nonasymptotic analysis", "year": "2017" }, { "authors": [ "M R Rammal", "A Achille", "A Golatkar", "S Diggavi", "S Soatto" ], "doi": "10.4324/9780080966236-11", "ref_id": "b34", "title": "The techni cal/informa tion environm ents", "year": "2022" }, { "authors": [ "Borja Rodriguez-Galvez", "German Bassi", "Ragnar Thobaben", "Mikael Skoglund" ], "doi": "10.1109/itw46852.2021.9457578", "ref_id": "b35", "title": "On Random Subset Generalization Error Bounds and the Stochastic Gradient Langevin Dynamics Algorithm", "year": "2021" }, { "authors": [ "Borja Rodriguez-Galvez", "German Bassi", "Ragnar Thobaben", "Mikael Skoglund" ], "doi": "10.1109/itw46852.2021.9457578", "ref_id": "b36", "title": "On Random Subset Generalization Error Bounds and the Stochastic Gradient Langevin Dynamics Algorithm", "year": "2021" }, { "authors": [ "Daniel Russo", "James Zou" ], "doi": "10.1109/tit.2019.2945779", "ref_id": "b37", "title": "How Much Does Your Data Exploration Overfit? Controlling Bias via Information Usage", "year": "2016" }, { "authors": [ "Daniel Russo", "James Zou" ], "doi": "10.1109/tit.2019.2945779", "ref_id": "b38", "title": "How Much Does Your Data Exploration Overfit? Controlling Bias via Information Usage", "year": "2019" }, { "authors": [ "Y Seldin", "F Laviolette", "N Cesa-Bianchi", "J Shawe-Taylor", "P Auer" ], "doi": "10.1109/tit.2012.2211334", "ref_id": "b39", "title": "PAC-Bayesian Inequalities for Martingales", "year": "2012" }, { "authors": [ "C E Shannon" ], "doi": "10.1002/j.1538-7305.1948.tb01338.x", "ref_id": "b40", "title": "A Mathematical Theory of Communication", "year": "1948" }, { "authors": [ "T Steinke", "L Zakynthinou" ], "doi": "", "ref_id": "b41", "title": "Reasoning about generalization via conditional mutual information", "year": "2020" }, { "authors": [ "I O Tolstikhin", "Y Seldin" ], "doi": "", "ref_id": "b42", "title": "Pac-bayes-empiricalbernstein inequality", "year": "2013" }, { "authors": [ "Vladimir N Vapnik" ], "doi": "10.1007/978-1-4757-3264-1_8", "ref_id": "b43", "title": "Direct Methods in Statistical Learning Theory", "year": "1998" }, { "authors": [ "H Wang", "Y Huang", "R Gao", "F Calmon" ], "doi": "", "ref_id": "b44", "title": "Analyzing the generalization capability of sgld using properties of gaussian channels", "year": "2021" }, { "authors": [ "Z Wang", "Y Mao" ], "doi": "", "ref_id": "b45", "title": "On the generalization of models trained with SGD: Information-theoretic bounds and implications", "year": "2022" }, { "authors": [ "Z Wang", "Y Mao" ], "doi": "", "ref_id": "b46", "title": "Two facets of sde under an information-theoretic lens: Generalization of sgd via training trajectories and via terminal states", "year": "2022" }, { "authors": [ "Z Wang", "Y Mao" ], "doi": "", "ref_id": "b47", "title": "Information-theoretic analysis of unsupervised domain adaptation", "year": "2023" }, { "authors": [ "Xuetong Wu", "Jonathan H Manton", "Uwe Aickelin", "Jingge Zhu" ], "doi": "10.1109/isit44484.2020.9173989", "ref_id": "b48", "title": "Information-theoretic analysis for transfer learning", "year": "2020. 2020" }, { "authors": [ "A Xu", "M Raginsky" ], "doi": "", "ref_id": "b49", "title": "Information-theoretic analysis of generalization capability of learning algorithms", "year": "2017" }, { "authors": [ "J Yang", "S Sun", "D M Roy" ], "doi": "", "ref_id": "b50", "title": "Fast-rate pac-bayes generalization bounds via shifted rademacher processes", "year": "2019" }, { "authors": [ "R W Yeung" ], "doi": "10.1109/18.79902", "ref_id": "b51", "title": "A new outlook on Shannon's information measures", "year": "1991" }, { "authors": [ "Chiyuan Zhang", "Samy Bengio", "Moritz Hardt", "Benjamin Recht", "Oriol Vinyals" ], "doi": "10.1145/3446776", "ref_id": "b52", "title": "Understanding deep learning (still) requires rethinking generalization", "year": "2017" }, { "authors": [ "Chiyuan Zhang", "Samy Bengio", "Moritz Hardt", "Benjamin Recht", "Oriol Vinyals" ], "doi": "10.1145/3446776", "ref_id": "b53", "title": "Understanding deep learning (still) requires rethinking generalization", "year": "2021" }, { "authors": [ "N Zhivotovskiy", "S Hanneke" ], "doi": "10.1016/j.tcs.2017.12.029", "ref_id": "b54", "title": "Localization of VC classes: Beyond local Rademacher complexities", "year": "2018" }, { "authors": [ "Ruida Zhou", "Chao Tian", "Tie Liu" ], "doi": "10.1109/tit.2022.3144615", "ref_id": "b55", "title": "Individually Conditional Individual Mutual Information Bound on Generalization Error", "year": "2022" }, { "authors": [ "Ruida Zhou", "Chao Tian", "Tie Liu" ], "doi": "10.1109/isit50566.2022.9834702", "ref_id": "b56", "title": "Stochastic Chaining and Strengthened Information-Theoretic Generalization Bounds", "year": "2022. 2022" } ]
[ "6124cec145709029" ]
[ "639ad34b7a2e2fb1", "ab00837062707a69", "8212ce60777d4153", "496c21d8614e7242", "34cd72d6c8c58ab1", "6124cec145709029", "58152847cbff932c", "7c3cb27d0975ea4f", "c724872f81ca6d4c", "1f995ce76d51666e", "dc2e94e81a9286fb", "8b6b3020f83fa0d7", "a1a522458136e513", "410abd68440f1549", "5a1dc2ad933bcaed", "6e119b311687728f", "490a47bb448fe5ad", "e867a90f3e8897e8", "39ea51c87cdfdcfb", "c3bc6dad2ce89aa0", "36431050f8d88bfb", "376b491b3b3cc632", "397e0d51d742b283", "876e29840330d7f4", "8c4447a2d84f6905", "385010c1dd00d011", "0c75b99cd5e726b0", "5d85c2ba04e619d5", "ded7ede442b3ffc2", "7fdf9fe151ff82ae", "39532d491be5ad09", "14420a756f20cf7e", "7beaee70c0f08888", "f79dcf3389805ed3", "c713f353ef79f7f0", "f538ff7b204988d4", "f538ff7b204988d4", "748f3c3280693092", "ecc2b456bbdb1101", "5e507ea92abb41c4", "10b53d2818eac7d7", "c70d0d489ff4b4f5", "9a480a1ee48f4083", "6fed95666820ce87", "b7d6dce473e55b1a", "43114ba78b89525a", "7ebc40fcae28bcd3", "e623631419d9effa", "685280cb6b77875b", "a068db16c57cfdba", "f0f01b017bd3fb0d", "3d8d6616713ddd59", "afd3ae5ad8848d33", "9eec93a28e8c5713", "5d10e19cfc191d69", "04440b2df35894b5", "63fddac42138d92e" ]
wLAMOoL0KD
Rockmate: an Efficient, Fast, Automatic and Generic Tool for Re-materialization in PyTorch
data/openreview_paper/ICML_2023_oral/wLAMOoL0KD//paper.pdf
22
16
[ { "authors": [ "Minsoo Rhu", "Natalia Gimelshein", "Jason Clemons", "Arslan Zulfiqar", "Stephen W Keckler" ], "doi": "10.1109/micro.2016.7783721", "ref_id": "b20", "title": "vDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design", "year": "2016" }, { "authors": [ "M Kusumoto", "T Inoue", "G Watanabe", "T Akiba", "M Koyama" ], "doi": "", "ref_id": "b14", "title": "A graph theoretic framework of recomputation algorithms for memory-efficient backpropagation", "year": "2019" }, { "authors": [ "M Kirisame", "S Lyubomirsky", "A Haan", "J Brennan", "M He", "J Roesch", "T Chen", "Z Tatlock" ], "doi": "", "ref_id": "b12", "title": "Dynamic tensor rematerialization", "year": "2020" }, { "authors": [ "D Das", "S Avancha", "D Mudigere", "K Vaidynathan", "S Sridharan", "D Kalamkar", "B Kaul", "P Dubey" ], "doi": "", "ref_id": "b9", "title": "Distributed deep learning using synchronous stochastic gradient descent", "year": "2016" }, { "authors": [ "Tung D Le", "Haruki Imai", "Yasushi Negishi", "Kiyokuni Kawachiya" ], "doi": "10.1145/3315573.3329984", "ref_id": "b15", "title": "Automatic GPU memory management for large neural models in TensorFlow", "year": "2018" }, { "authors": [ "Deepak Narayanan", "Aaron Harlap", "Amar Phanishayee", "Vivek Seshadri", "Nikhil R Devanur", "Gregory R Ganger", "Phillip B Gibbons", "Matei Zaharia" ], "doi": "10.1145/3341301.3359646", "ref_id": "b17", "title": "PipeDream", "year": "2019" }, { "authors": [ "S G Patil", "P Jain", "P Dutta", "I Stoica", "J Gonzalez", "Poet" ], "doi": "", "ref_id": "b19", "title": "Training neural networks on tiny devices with integrated rematerialization and paging", "year": "2022" }, { "authors": [ "Y Huang", "Y Cheng", "A Bapna", "O Firat", "D Chen", "M Chen", "H Lee", "J Ngiam", "Q V Le", "Y Wu" ], "doi": "", "ref_id": "b10", "title": "Gpipe: Efficient training of giant neural networks using pipeline parallelism", "year": "2019" }, { "authors": [ "T Chen", "B Xu", "C Zhang", "C Guestrin" ], "doi": "", "ref_id": "b8", "title": "Training deep nets with sublinear memory cost", "year": "2016" }, { "authors": [ "Sanjith Athlur", "Nitika Saran", "Muthian Sivathanu", "Ramachandran Ramjee", "Nipun Kwatra" ], "doi": "10.1145/3492321.3519584", "ref_id": "b0", "title": "Varuna", "year": "2022" }, { "authors": [ "Paras Jain", "Ajay Jain", "Tianjun Zhang", "Pieter Abbeel", "Joseph Gonzalez", "Ion Stoica" ], "doi": "10.18653/v1/2021.emnlp-main.482", "ref_id": "b11", "title": "Contrastive Code Representation Learning", "year": "2020" }, { "authors": [ "B Steiner", "M Elhoushi", "J Kahn", "J Hegarty", "Olla" ], "doi": "", "ref_id": "b21", "title": "Optimizing the lifetime and location of arrays to reduce the memory usage of neural networks", "year": "2022" }, { "authors": [ "R Kumar", "M Purohit", "Z Svitkina", "E Vee", "J Wang" ], "doi": "", "ref_id": "b13", "title": "Efficient rematerialization for deep networks", "year": "2019" }, { "authors": [ "Jianjin Liao", "Mingzhen Li", "Hailong Yang", "Qingxiao Sun", "Biao Sun", "Jiwei Hao", "Tianyu Feng", "Fengwei Yu", "Shengdong Chen", "Ye Tao", "Zicheng Zhang", "Zhongzhi Luan", "Depei Qian" ], "doi": "10.1109/ipdps54959.2023.00025", "ref_id": "b16", "title": "Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU", "year": "2022" }, { "authors": [ "Uwe Naumann" ], "doi": "10.1007/978-3-540-68942-3_2", "ref_id": "b18", "title": "Call Tree Reversal is NP-Complete", "year": "2008" }, { "authors": [ "O Beaumont", "L Eyraud-Dubois", "A Shilova", "X Zhao" ], "doi": "", "ref_id": "b7", "title": "Weight Offloading Strategies for Training Large DNN Models", "year": "February 2022" } ]
[ { "authors": [ "Sanjith Athlur", "Nitika Saran", "Muthian Sivathanu", "Ramachandran Ramjee", "Nipun Kwatra" ], "doi": "10.1145/3492321.3519584", "ref_id": "b0", "title": "Varuna", "year": "2022" }, { "authors": [ "O Beaumont", "L Eyraud-Dubois", "J Hermann", "A Joly", "A Shilova", "Rotor" ], "doi": "", "ref_id": "b1", "title": "", "year": "2019" }, { "authors": [ "O Beaumont", "L Eyraud-Dubois", "J Hermann", "A Joly", "A Shilova" ], "doi": "", "ref_id": "b2", "title": "Optimal checkpointing for heterogeneous chains: how to train deep neural networks with limited memory", "year": "2019" }, { "authors": [ "Olivier Beaumont", "Lionel Eyraud-Dubois", "Alena Shilova" ], "doi": "10.1007/978-3-030-57675-2_10", "ref_id": "b3", "title": "Optimal GPU-CPU Offloading Strategies for Deep Neural Network Training", "year": "2020" }, { "authors": [ "Olivier Beaumont", "Julien Herrmann", "Guillaume Pallez (aupy)", "Alena Shilova" ], "doi": "10.1098/rsta.2019.0049", "ref_id": "b4", "title": "Optimal memory-aware backpropagation of deep join networks", "year": "2166. 2020" }, { "authors": [ "Olivier Beaumont", "Lionel Eyraud-Dubois", "Alena Shilova" ], "doi": "10.1109/ipdpsw55747.2022.00174", "ref_id": "b5", "title": "MadPipe: Memory Aware Dynamic Programming Algorithm for Pipelined Model Parallelism", "year": "2021" }, { "authors": [ "Olivier Beaumont", "Lionel Eyraud-Dubois", "Alena Shilova" ], "doi": "10.1007/978-3-030-85665-6_12", "ref_id": "b6", "title": "Pipelined Model Parallelism: Complexity Results and Memory Considerations", "year": "2021" }, { "authors": [ "O Beaumont", "L Eyraud-Dubois", "A Shilova", "X Zhao" ], "doi": "", "ref_id": "b7", "title": "Weight Offloading Strategies for Training Large DNN Models", "year": "February 2022" }, { "authors": [ "T Chen", "B Xu", "C Zhang", "C Guestrin" ], "doi": "", "ref_id": "b8", "title": "Training deep nets with sublinear memory cost", "year": "2016" }, { "authors": [ "D Das", "S Avancha", "D Mudigere", "K Vaidynathan", "S Sridharan", "D Kalamkar", "B Kaul", "P Dubey" ], "doi": "", "ref_id": "b9", "title": "Distributed deep learning using synchronous stochastic gradient descent", "year": "2016" }, { "authors": [ "Y Huang", "Y Cheng", "A Bapna", "O Firat", "D Chen", "M Chen", "H Lee", "J Ngiam", "Q V Le", "Y Wu" ], "doi": "", "ref_id": "b10", "title": "Gpipe: Efficient training of giant neural networks using pipeline parallelism", "year": "2019" }, { "authors": [ "Paras Jain", "Ajay Jain", "Tianjun Zhang", "Pieter Abbeel", "Joseph Gonzalez", "Ion Stoica" ], "doi": "10.18653/v1/2021.emnlp-main.482", "ref_id": "b11", "title": "Contrastive Code Representation Learning", "year": "2020" }, { "authors": [ "M Kirisame", "S Lyubomirsky", "A Haan", "J Brennan", "M He", "J Roesch", "T Chen", "Z Tatlock" ], "doi": "", "ref_id": "b12", "title": "Dynamic tensor rematerialization", "year": "2020" }, { "authors": [ "R Kumar", "M Purohit", "Z Svitkina", "E Vee", "J Wang" ], "doi": "", "ref_id": "b13", "title": "Efficient rematerialization for deep networks", "year": "2019" }, { "authors": [ "M Kusumoto", "T Inoue", "G Watanabe", "T Akiba", "M Koyama" ], "doi": "", "ref_id": "b14", "title": "A graph theoretic framework of recomputation algorithms for memory-efficient backpropagation", "year": "2019" }, { "authors": [ "Tung D Le", "Haruki Imai", "Yasushi Negishi", "Kiyokuni Kawachiya" ], "doi": "10.1145/3315573.3329984", "ref_id": "b15", "title": "Automatic GPU memory management for large neural models in TensorFlow", "year": "2018" }, { "authors": [ "Jianjin Liao", "Mingzhen Li", "Hailong Yang", "Qingxiao Sun", "Biao Sun", "Jiwei Hao", "Tianyu Feng", "Fengwei Yu", "Shengdong Chen", "Ye Tao", "Zicheng Zhang", "Zhongzhi Luan", "Depei Qian" ], "doi": "10.1109/ipdps54959.2023.00025", "ref_id": "b16", "title": "Exploiting Input Tensor Dynamics in Activation Checkpointing for Efficient Training on GPU", "year": "2022" }, { "authors": [ "Deepak Narayanan", "Aaron Harlap", "Amar Phanishayee", "Vivek Seshadri", "Nikhil R Devanur", "Gregory R Ganger", "Phillip B Gibbons", "Matei Zaharia" ], "doi": "10.1145/3341301.3359646", "ref_id": "b17", "title": "PipeDream", "year": "2019" }, { "authors": [ "Uwe Naumann" ], "doi": "10.1007/978-3-540-68942-3_2", "ref_id": "b18", "title": "Call Tree Reversal is NP-Complete", "year": "2008" }, { "authors": [ "S G Patil", "P Jain", "P Dutta", "I Stoica", "J Gonzalez", "Poet" ], "doi": "", "ref_id": "b19", "title": "Training neural networks on tiny devices with integrated rematerialization and paging", "year": "2022" }, { "authors": [ "Minsoo Rhu", "Natalia Gimelshein", "Jason Clemons", "Arslan Zulfiqar", "Stephen W Keckler" ], "doi": "10.1109/micro.2016.7783721", "ref_id": "b20", "title": "vDNN: Virtualized deep neural networks for scalable, memory-efficient neural network design", "year": "2016" }, { "authors": [ "B Steiner", "M Elhoushi", "J Kahn", "J Hegarty", "Olla" ], "doi": "", "ref_id": "b21", "title": "Optimizing the lifetime and location of arrays to reduce the memory usage of neural networks", "year": "2022" } ]
[ "5df67bbbe3903e48", "7311cd489fc2e7b1", "ac8f15e0157fa521", "708adf3eb66e4064", "a1fc3aa6d853ea2e", "7960370b0a6920cc", "2fd9d1d07b8aaa5e", "92ed90c52c5e1380", "9f6d20e9ab5ecba8", "96c5cec3949de62b", "dc96fcc999152b3f", "cff6be8771d0dc3a", "b330e66ce62e15dd", "e1973afebfc423b3", "7cc43709e41200d7", "476342b3add89ac9" ]
[ "96c5cec3949de62b", "a0feeb6dd6d6b8c3", "c61032fb8dc5b975", "c78a0392ee43e743", "34350457288df264", "6d8e7db3aa5b301e", "d3730a1df4eab6ac", "476342b3add89ac9", "9f6d20e9ab5ecba8", "708adf3eb66e4064", "92ed90c52c5e1380", "dc96fcc999152b3f", "ac8f15e0157fa521", "b330e66ce62e15dd", "7311cd489fc2e7b1", "a1fc3aa6d853ea2e", "e1973afebfc423b3", "7960370b0a6920cc", "7cc43709e41200d7", "2fd9d1d07b8aaa5e", "5df67bbbe3903e48", "cff6be8771d0dc3a" ]
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
4