Datasets:
ArXiv:
License:
| license: apache-2.0 | |
| <h1 align="center"> | |
| WenetSpeech-Chuan: A Large-Scale Sichuanese Corpus With Rich Annotation For Dialectal Speech Processing | |
| </h1> | |
| <p align="center"> | |
| Yuhang Dai<sup>1</sup><sup>,*</sup>, Ziyu Zhang<sup>1</sup><sup>,*</sup>, Shuai Wang<sup>4</sup><sup>,5</sup>, | |
| Longhao Li<sup>1</sup>, Zhao Guo<sup>1</sup>, Tianlun Zuo<sup>1</sup>, | |
| Shuiyuan Wang<sup>1</sup>, Hongfei Xue<sup>1</sup>, Chengyou Wang<sup>1</sup>, | |
| Qing Wang<sup>3</sup>, Xin Xu<sup>2</sup>, Hui Bu<sup>2</sup>, Jie Li<sup>3</sup>, | |
| Jian Kang<sup>3</sup>, Binbin Zhang<sup>5</sup>, Lei Xie<sup>1</sup><sup>,╀</sup> | |
| </p> | |
| <p align="center"> | |
| <sup>1</sup> Audio, Speech and Language Processing Group (ASLP@NPU), Northwestern Polytechnical University <br> | |
| <sup>2</sup> Beijing AISHELL Technology Co., Ltd. <br> | |
| <sup>3</sup> Institute of Artificial Intelligence (TeleAI), China Telecom <br> | |
| <sup>4</sup> School of Intelligence Science and Technology, Nanjing University <br> | |
| <sup>5</sup> WeNet Open Source Community <br> | |
| </p> | |
| <p align="center"> | |
| 📑 <a href="https://arxiv.org/abs/2509.18004">Paper</a>    |    | |
| 🐙 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan">GitHub</a>    |    | |
| 🤗 <a href="https://huggingface.co/collections/ASLP-lab/wenetspeech-chuan-68bade9d02bcb1faece65bda">HuggingFace</a> | |
| <br> | |
| 🎤 <a href="https://aslp-lab.github.io/WenetSpeech-Chuan/">Demo Page</a>    |    | |
| 💬 <a href="https://github.com/ASLP-lab/WenetSpeech-Chuan?tab=readme-ov-file#contact">Contact Us</a> | |
| </p> | |
| <div align="center"> | |
| <img width="800px" src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/logo/WenetSpeech-Chuan-Logo.png?raw=true" /> | |
| </div> | |
| ## Dataset | |
| ### WenetSpeech-Chuan Overview | |
| * Contains 10,000 hours of large-scale Chuan-Yu dialect speech corpus with rich annotations, the largest open-source resource for Chuan-Yu dialect speech research.</li> | |
| * Stores metadata in a single JSON file, including audio path, duration, text confidence, speaker identity, SNR, DNSMOS, age, gender, and character-level timestamps. Additional metadata tags may be added in the future.</li> | |
| * Covers ten domains: Short videos, Entertainment, Live streams, Documentary, Audiobook, Drama, Interview, News and others.</li> | |
| <div align="center"> | |
| <img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/domain.png?raw=true" width="300" style="display:inline-block; margin-right:10px;" /> | |
| <img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/blob/main/src/figs/quality_distribution.jpg?raw=true" width="300" style="display:inline-block;" /> | |
| </div> | |
| ### Metadata Format | |
| We store all audio metadata in a standardized JSON format, where the core fields include `utt_id` (unique identifier for each audio segment), `rover_result` (ROVER result of three ASR transcriptions), `confidence` (confidence score of text transcription), `jyutping_confidence` (confidence score of Cantonese pinyin transcriptions), and `duration` (audio duration); speaker attributes include `speaker_id`, `gender`, and `age`; audio quality assessment metrics include `sample_rate`, `DNSMOS`, and `SNR`; timestamp information includes `timestamp` (precisely recording segment boundaries with `start` and `end`); and extended metadata under the `meta_info` field includes `program` (program name), `region` (geographical information), `link` (original content link), and `domain` (domain classification). | |
| #### 📂 Content Tree | |
| ``` | |
| WenetSpeech-Chuan | |
| ├── metadata.jsonl | |
| ├── .gitattributes | |
| └── README.md | |
| ``` | |
| <!-- WenetSpeech-Chuan | |
| ├── metadata.jsonl | |
| │ | |
| ├── audio_labels/ | |
| │ ├── wav_utt_id.jsonl | |
| │ ├── wav_utt_id.jsonl | |
| │ ├── ... | |
| │ └── wav_utt_id.jsonl | |
| │ | |
| ├── .gitattributes | |
| └── README.md --> | |
| #### Data sample: | |
| ###### metadata.jsonl | |
| {<br> | |
| "utt": 音频id, <br> | |
| "filename":音频文件名(type: str), <br> | |
| "text": 转录抄本(type: str), <br> | |
| "domain": 参考领域信息(type: list[str]), <br> | |
| "gender": 说话人性别(type: str), <br> | |
| "age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br> | |
| "wvmos": 音频质量分数(type: float), <br> | |
| "confidence": 转录文本置信度(0-1)(type: str), <br> | |
| "emotion": 说话人情感标签 (type: str,eg: 愤怒), <br> | |
| } <br> | |
| **example:** | |
| { <br> | |
| "utt": "013165495633_09mNC_9_5820", <br> | |
| "filename": "013165495633_09mNC_9_5820.wav", <br> | |
| "text": "还是选二手装好了的别墅诚心入如意的直接入住的好好", <br> | |
| "domain": [ <br> | |
| "短视频" <br> | |
| ], <br> | |
| "gender": "Male", <br> | |
| "age": "YOUTH", <br> | |
| "wvmos": 2.124380588531494, <br> | |
| "confidence": 0.8333, <br> | |
| "emotion": angry, <br> | |
| } <br> | |
| <!-- ###### audio_labels/wav_utt_id.jsonl: | |
| { <br> | |
| "wav_utt_id_timestamp": 以 转化为wav后的长音频id_时间戳信息 作为切分后的短音频id (type: str), <br> | |
| "wav_utt_id_timestamp_path": 短音频数据路径 (type: str), <br> | |
| "audio_clip_id": 该段短音频在长音频中的切分顺序编号, <br> | |
| "timestamp": 时间戳信息, <br> | |
| "wvmos_score": wvmos分数,衡量音频片段质量 (type: float), <br> | |
| "text": 对应时间戳的音频片段的抄本 (type: str), <br> | |
| "text_punc": 带标点的抄本 (type: str), <br> | |
| "spk_num": 音频片段说话人个数,single/multi (type: str) <br> | |
| "confidence": 抄本置信度 (type: float), <br> | |
| "emotion": 说话人情感标签 (type: str,eg: 愤怒), <br> | |
| "age": 说话人年龄标签 (type: int范围, eg: 中年(36~59)), <br> | |
| "gender": 说话人性别标签 (type: str,eg: 男/女), <br> | |
| } <br> | |
| --> | |
| <!-- #### Data sample(EN): | |
| ###### metadata.jsonl | |
| { <br> | |
| "utt_id": Original long audio ID, <br> | |
| "wav_utt_id": Converted long audio ID after transforming to WAV format, <br> | |
| "source_audio_path": Path to the original long audio file, <br> | |
| "audio_labels": Path to the label file of short audio segments cut from the converted long audio, <br> | |
| "url": Download link for the original long audio <br> | |
| } <br> | |
| ###### audio_labels/wav_utt_id.jsonl: | |
| { <br> | |
| "wav_utt_id_timestamp": Short audio segment ID, composed of the converted long audio ID + timestamp information (type: str), <br> | |
| "wav_utt_id_timestamp_path": Path to the short audio data (type: str), <br> | |
| "audio_clip_id": Sequence number of this short segment within the long audio, <br> | |
| "timestamp": Timestamp information, <br> | |
| "wvmos_score": WVMOS score, measuring the quality of the audio segment (type: float), <br> | |
| "text": Transcript of the audio segment corresponding to the timestamp (type: str), <br> | |
| "text_punc": Transcript with punctuation (type: str), <br> | |
| "spk_num": Number of speakers in the audio segment, single/multi (type: str), <br> | |
| "confidence": Confidence score of the transcript (type: float), <br> | |
| "emotion": Speaker’s emotion label (type: str, e.g., anger), <br> | |
| "age": Speaker’s age label (type: int range, e.g., middle-aged (36–59)), <br> | |
| "gender": Speaker’s gender label (type: str, e.g., male/female) <br> | |
| } <br> | |
| --> | |
| ### WenetSpeech Usage | |
| You can obtain the original video source through the `link` field in the metadata file (`metadata.json`). Segment the audio according to the `timestamps` field to extract the corresponding record. For pre-processed audio data, please contact us using the information provided below. | |
| ## Contact | |
| If you have any questions or would like to collaborate, feel free to reach out to our research team via email: yhdai@mail.nwpu.edu.cn or ziyu_zhang@mail.nwpu.edu.cn. | |
| You’re also welcome to join our WeChat group for technical discussions, updates, and — as mentioned above — access to pre-processed audio data. | |
| <p align="center"> | |
| <img src="https://github.com/ASLP-lab/WenetSpeech-Chuan/raw/main/src/figs/wechat.jpg" width="300" alt="WeChat Group QR Code"/> | |
| <em>Scan to join our WeChat discussion group</em> | |
| </p> | |
| <p align="center"> | |
| <img src="https://github.com/ASLP-lab/WenetSpeech-Yue/raw/main/figs/npu@aslp.jpeg" width="300" alt="Official Account QR Code"/> | |
| </p> | |