Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
(ProtocolError('Connection aborted.', RemoteDisconnected('Remote end closed connection without response')), '(Request ID: f5c8aa0a-5534-458f-a0dd-87e828432cf2)')
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

image
image
label
string
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
null
End of preview.

Flir Camera Objects

This dataset is part of the Roboflow 100 benchmark, a diverse collection of 100 object detection datasets spanning 7 imagery domains.

Dataset Statistics

Split Images
Train 9,306
Validation 2,854
Test 1,452
Total 13,612

Classes (4)

  • bicycle
  • car
  • dog
  • person

Usage

With LibreYOLO

from libreyolo import LIBREYOLO

# Load a model
model = LIBREYOLO(model_path="libreyoloXnano.pt")

# Train on this dataset
model.train(data='path/to/data.yaml', epochs=100)

Download from HuggingFace

from huggingface_hub import snapshot_download

# Download the dataset
snapshot_download(
    repo_id="Libre-YOLO/flir-camera-objects",
    repo_type="dataset",
    local_dir="./flir-camera-objects"
)

Directory Structure

flir-camera-objects/
β”œβ”€β”€ data.yaml           # Dataset configuration
β”œβ”€β”€ README.md           # This file
β”œβ”€β”€ train/
β”‚   β”œβ”€β”€ images/         # Training images
β”‚   └── labels/         # Training labels (YOLO format)
β”œβ”€β”€ valid/
β”‚   β”œβ”€β”€ images/         # Validation images
β”‚   └── labels/         # Validation labels
└── test/
    β”œβ”€β”€ images/         # Test images (if available)
    └── labels/         # Test labels

Label Format

Labels are in YOLO format (one .txt file per image):

<class_id> <x_center> <y_center> <width> <height>

All coordinates are normalized to [0, 1].

Citation

If you use this dataset, please cite the Roboflow 100 benchmark:

@misc{rf100_2022,
    Author = {Floriana Ciaglia and Francesco Saverio Zuppichini and Paul Guerrie and Mark McQuade and Jacob Solawetz},
    Title = {Roboflow 100: A Rich, Multi-Domain Object Detection Benchmark},
    Year = {2022},
    Eprint = {arXiv:2211.13523},
}

License

This dataset is released under the CC-BY-4.0 license. Please check the original source for any additional terms.

Acknowledgments

Downloads last month
11

Paper for Libre-YOLO/flir-camera-objects