SAT-v2 / README.md
array's picture
Add comprehensive README with paper info, loading code, and circular eval instructions
77d83da
metadata
dataset_info:
  features:
    - name: images
      sequence: image
    - name: question
      dtype: string
    - name: answers
      sequence: string
    - name: correct_answer
      dtype: string
    - name: question_type
      dtype: string
  splits:
    - name: train
      num_bytes: 5167070090.512
      num_examples: 172384
    - name: static
      num_bytes: 3140831722.665
      num_examples: 127405
    - name: val
      num_bytes: 305661617.158
      num_examples: 4001
    - name: test
      num_bytes: 125653489
      num_examples: 150
  download_size: 2182325666
  dataset_size: 8739216919.335
configs:
  - config_name: default
    data_files:
      - split: train
        path: data/train-*
      - split: static
        path: data/static-*
      - split: val
        path: data/val-*
      - split: test
        path: data/test-*

SAT-v2 Dataset

Paper

SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models

This dataset is part of the SAT (Spatial Aptitude Training) project, which introduces a dynamic benchmark for evaluating and improving spatial reasoning capabilities in multimodal language models.

Dataset Description

SAT-v2 is a comprehensive spatial reasoning benchmark containing over 300,000 questions across multiple splits. The dataset tests various aspects of spatial understanding including perspective-taking, object relationships, and dynamic scene understanding.

Loading the Dataset

from datasets import load_dataset

# Load the training split
dataset = load_dataset("array/SAT-v2", split="train")

# Or load a specific split
val_dataset = load_dataset("array/SAT-v2", split="val")
static_dataset = load_dataset("array/SAT-v2", split="static")
test_dataset = load_dataset("array/SAT-v2", split="test")

# Access a sample
sample = dataset[0]
print(sample["question"])
print(sample["answers"])
print(sample["correct_answer"])

Dataset Splits

  • train: 172,384 examples - Dynamic training questions
  • static: 127,405 examples - Static spatial reasoning questions
  • val: 4,001 examples - Validation set
  • test: 150 examples - Test set

Important Note on Test Set Evaluation: When evaluating on the test set, please use circular evaluation by switching the position of the correct answer to avoid position bias. If you're using lmms-eval, refer to the implementation here: https://github.com/arijitray1993/lmms-eval/tree/main/lmms_eval/tasks/sat_real

Citation

If you use this dataset, please cite:

@misc{ray2025satdynamicspatialaptitude,
      title={SAT: Dynamic Spatial Aptitude Training for Multimodal Language Models},
      author={Arijit Ray and Jiafei Duan and Ellis Brown and Reuben Tan and Dina Bashkirova and Rose Hendrix and Kiana Ehsani and Aniruddha Kembhavi and Bryan A. Plummer and Ranjay Krishna and Kuo-Hao Zeng and Kate Saenko},
      year={2025},
      eprint={2412.07755},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2412.07755},
}