Spectro-polarimetric Dataset
We provide a spectro-polarimetric dataset. This dataset consists of full-Stokes images for both hyperspectral and trichromatic scenes. Hyperspectral dataset has 311 scenes and trichromatic dataset has 2022 scenes.
For more details, see our paper on Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset.
| ⚠️ Notice: Known Issues in Hyperspectral Dataset |
|---|
|
1. Measurement Errors Specific wavelengths and polarization components were not measured correctly. IDs: 089, 112
2. Polarization Misalignment Misalignment exists between x-polarization and y-polarization channels. IDs: 001, 029, 032, 047, 052, 059, 060, 061, 062, 201, 205, 269, 294, 307, 308
3. Misalignment due to Scene Motion Slight misalignment occurred due to object movement within the scene during capture. IDs: 223, 229, 285, 292, 293, 295, 306, 309, 310
|
📦 Contents
- File Hierarchy
- Trichromatic Data Overview
- Hyperspectral Data Overview
- Labeling Information
- Citation
- Contact
💾 File Hierarchy
📂 trichromatic/: Trichromatic polarimetric dataset
- 📂 original/: Data processed from captured raw files
- 📄 0000.npy ~
- 📂 denoised/: Data processed from denoised raw files
- 📄 0000.npy ~
- 📂 mask/: Masks for the scenes
- 📄 0000.png ~
- 📄 labeling_trichromatic.csv: Labeling each scene
- 📂 original/: Data processed from captured raw files
📂 hyperspectral/: Hyperspectral polarimetric dataset
- 📂 original/: Data processed from captured raw files
- 📄 0000.npy ~
- 📂 denoised/: Data processed from denoised raw files
- 📄 0000.npy ~
- 📂 mask/: Mask fors the scenes
- 📄 0000.png ~
- 📄 labeling_hyperspectral.csv: Labeling each scene
- 📂 original/: Data processed from captured raw files
📄 README.md
📷 Trichromatic Data Overview
original & denoised:
- Format: Stokes numpy files
(1900, 2100, 4, 3) - Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- s: Stokes axis (s0, s1, s2, s3)
- c: Spectral axis (R G B)
- Format: Stokes numpy files
mask:
- Binary mask images
(1900, 2100) - Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- Binary mask images
📷 Hyperspectral Data Overview
original & denoised:
- Format: Stokes numpy files
(512, 612, 4, 21) - Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- s: Stokes axis (s0, s1, s2, s3)
- c: Spectral axis (
450nm ~ 650nmat10nmintervals)
- Format: Stokes numpy files
mask:
- Binary mask images
(512, 612) - Dimensions:
- R: Spatial dimension
- C: Spatial dimension
- Binary mask images
🗂️ Labeling Information
- SceneNum: Indices of scenes (
0 ~ 310for hyperspectral,0 ~ 2021for trichromatic) - Content: Type of content (scene, object)
- Timezone: Scene environment (indoor, day, night)
- Illumination: Illumination condition (white, yellow, sunny, cloudy)
📜 Citation
@InProceedings{Jeon_2024_CVPR,
author = {Jeon, Yujin and Choi, Eunsue and Kim, Youngchan and Moon, Yunseong and Omer, Khalid and Heide, Felix and Baek, Seung-Hwan},
title = {Spectral and Polarization Vision: Spectro-polarimetric Real-world Dataset},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2024},
pages = {22098-22108}
}
📫 Contact
If you have any questions, please contact
- Yujin Jeon: jyj7913@postech.ac.kr
- Eunsue Choi: ches7283@postech.ac.kr
- Seung-hwan Baek: shwbaek@postech.ac.kr
- Downloads last month
- 5,588