Datasets:
fix: pyarrow float to int64 conversion error in dataset generator
#3
by
samuellimabraz
- opened
- DocLayNet-small.py +145 -81
DocLayNet-small.py
CHANGED
|
@@ -25,6 +25,7 @@ DocLayNet dataset:
|
|
| 25 |
|
| 26 |
import json
|
| 27 |
import os
|
|
|
|
| 28 |
# import base64
|
| 29 |
from PIL import Image
|
| 30 |
import datasets
|
|
@@ -56,12 +57,19 @@ _LICENSE = "https://github.com/DS4SD/DocLayNet/blob/main/LICENSE"
|
|
| 56 |
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 57 |
# }
|
| 58 |
|
|
|
|
| 59 |
# functions
|
| 60 |
def load_image(image_path):
|
| 61 |
image = Image.open(image_path).convert("RGB")
|
| 62 |
w, h = image.size
|
| 63 |
return image, (w, h)
|
| 64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
logger = datasets.logging.get_logger(__name__)
|
| 66 |
|
| 67 |
|
|
@@ -75,7 +83,7 @@ class DocLayNetBuilderConfig(datasets.BuilderConfig):
|
|
| 75 |
"""
|
| 76 |
super().__init__(name, **kwargs)
|
| 77 |
|
| 78 |
-
|
| 79 |
class DocLayNet(datasets.GeneratorBasedBuilder):
|
| 80 |
"""
|
| 81 |
DocLayNet small is a about 1% of the dataset DocLayNet (more information at https://huggingface.co/datasets/pierreguillou/DocLayNet-small)
|
|
@@ -100,40 +108,72 @@ class DocLayNet(datasets.GeneratorBasedBuilder):
|
|
| 100 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 101 |
|
| 102 |
DEFAULT_CONFIG_NAME = "DocLayNet_2022.08_processed_on_2023.01" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 103 |
-
|
| 104 |
BUILDER_CONFIGS = [
|
| 105 |
-
DocLayNetBuilderConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
]
|
| 107 |
|
| 108 |
BUILDER_CONFIG_CLASS = DocLayNetBuilderConfig
|
| 109 |
-
|
| 110 |
def _info(self):
|
| 111 |
-
|
| 112 |
features = datasets.Features(
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
| 138 |
return datasets.DatasetInfo(
|
| 139 |
# This is the description that will appear on the datasets page.
|
|
@@ -158,8 +198,10 @@ class DocLayNet(datasets.GeneratorBasedBuilder):
|
|
| 158 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 159 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 160 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 161 |
-
|
| 162 |
-
downloaded_file = dl_manager.download_and_extract(
|
|
|
|
|
|
|
| 163 |
|
| 164 |
return [
|
| 165 |
datasets.SplitGenerator(
|
|
@@ -183,58 +225,80 @@ class DocLayNet(datasets.GeneratorBasedBuilder):
|
|
| 183 |
# These kwargs will be passed to _generate_examples
|
| 184 |
gen_kwargs={
|
| 185 |
"filepath": os.path.join(downloaded_file, "small_dataset/test/"),
|
| 186 |
-
"split": "test"
|
| 187 |
},
|
| 188 |
),
|
| 189 |
]
|
| 190 |
|
| 191 |
-
|
| 192 |
def _generate_examples(self, filepath, split):
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
import json
|
| 27 |
import os
|
| 28 |
+
|
| 29 |
# import base64
|
| 30 |
from PIL import Image
|
| 31 |
import datasets
|
|
|
|
| 57 |
# "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
|
| 58 |
# }
|
| 59 |
|
| 60 |
+
|
| 61 |
# functions
|
| 62 |
def load_image(image_path):
|
| 63 |
image = Image.open(image_path).convert("RGB")
|
| 64 |
w, h = image.size
|
| 65 |
return image, (w, h)
|
| 66 |
|
| 67 |
+
|
| 68 |
+
def convert_bbox_to_int(bbox):
|
| 69 |
+
"""Convert bounding box coordinates to integers, handling float values."""
|
| 70 |
+
return [int(round(coord)) for coord in bbox]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
logger = datasets.logging.get_logger(__name__)
|
| 74 |
|
| 75 |
|
|
|
|
| 83 |
"""
|
| 84 |
super().__init__(name, **kwargs)
|
| 85 |
|
| 86 |
+
|
| 87 |
class DocLayNet(datasets.GeneratorBasedBuilder):
|
| 88 |
"""
|
| 89 |
DocLayNet small is a about 1% of the dataset DocLayNet (more information at https://huggingface.co/datasets/pierreguillou/DocLayNet-small)
|
|
|
|
| 108 |
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 109 |
|
| 110 |
DEFAULT_CONFIG_NAME = "DocLayNet_2022.08_processed_on_2023.01" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 111 |
+
|
| 112 |
BUILDER_CONFIGS = [
|
| 113 |
+
DocLayNetBuilderConfig(
|
| 114 |
+
name=DEFAULT_CONFIG_NAME,
|
| 115 |
+
version=VERSION,
|
| 116 |
+
description="DocLayNeT small dataset",
|
| 117 |
+
),
|
| 118 |
]
|
| 119 |
|
| 120 |
BUILDER_CONFIG_CLASS = DocLayNetBuilderConfig
|
| 121 |
+
|
| 122 |
def _info(self):
|
| 123 |
+
|
| 124 |
features = datasets.Features(
|
| 125 |
+
{
|
| 126 |
+
"id": datasets.Value("string"),
|
| 127 |
+
"texts": datasets.Sequence(datasets.Value("string")),
|
| 128 |
+
"bboxes_block": datasets.Sequence(
|
| 129 |
+
datasets.Sequence(datasets.Value("int64"))
|
| 130 |
+
),
|
| 131 |
+
"bboxes_line": datasets.Sequence(
|
| 132 |
+
datasets.Sequence(datasets.Value("int64"))
|
| 133 |
+
),
|
| 134 |
+
"categories": datasets.Sequence(
|
| 135 |
+
datasets.features.ClassLabel(
|
| 136 |
+
names=[
|
| 137 |
+
"Caption",
|
| 138 |
+
"Footnote",
|
| 139 |
+
"Formula",
|
| 140 |
+
"List-item",
|
| 141 |
+
"Page-footer",
|
| 142 |
+
"Page-header",
|
| 143 |
+
"Picture",
|
| 144 |
+
"Section-header",
|
| 145 |
+
"Table",
|
| 146 |
+
"Text",
|
| 147 |
+
"Title",
|
| 148 |
+
]
|
| 149 |
+
)
|
| 150 |
+
),
|
| 151 |
+
"image": datasets.features.Image(),
|
| 152 |
+
# "pdf": datasets.Value("string"),
|
| 153 |
+
"page_hash": datasets.Value(
|
| 154 |
+
"string"
|
| 155 |
+
), # unique identifier, equal to filename
|
| 156 |
+
"original_filename": datasets.Value(
|
| 157 |
+
"string"
|
| 158 |
+
), # original document filename
|
| 159 |
+
"page_no": datasets.Value("int32"), # page number in original document
|
| 160 |
+
"num_pages": datasets.Value(
|
| 161 |
+
"int32"
|
| 162 |
+
), # total pages in original document
|
| 163 |
+
"original_width": datasets.Value("int32"), # width in pixels @72 ppi
|
| 164 |
+
"original_height": datasets.Value("int32"), # height in pixels @72 ppi
|
| 165 |
+
"coco_width": datasets.Value(
|
| 166 |
+
"int32"
|
| 167 |
+
), # with in pixels in PNG and COCO format
|
| 168 |
+
"coco_height": datasets.Value(
|
| 169 |
+
"int32"
|
| 170 |
+
), # with in pixels in PNG and COCO format
|
| 171 |
+
"collection": datasets.Value("string"), # sub-collection name
|
| 172 |
+
"doc_category": datasets.Value(
|
| 173 |
+
"string"
|
| 174 |
+
), # category type of the document
|
| 175 |
+
}
|
| 176 |
+
)
|
| 177 |
|
| 178 |
return datasets.DatasetInfo(
|
| 179 |
# This is the description that will appear on the datasets page.
|
|
|
|
| 198 |
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 199 |
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 200 |
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 201 |
+
|
| 202 |
+
downloaded_file = dl_manager.download_and_extract(
|
| 203 |
+
"https://huggingface.co/datasets/pierreguillou/DocLayNet-small/resolve/main/data/dataset_small.zip"
|
| 204 |
+
)
|
| 205 |
|
| 206 |
return [
|
| 207 |
datasets.SplitGenerator(
|
|
|
|
| 225 |
# These kwargs will be passed to _generate_examples
|
| 226 |
gen_kwargs={
|
| 227 |
"filepath": os.path.join(downloaded_file, "small_dataset/test/"),
|
| 228 |
+
"split": "test",
|
| 229 |
},
|
| 230 |
),
|
| 231 |
]
|
| 232 |
|
|
|
|
| 233 |
def _generate_examples(self, filepath, split):
|
| 234 |
+
logger.info("⏳ Generating examples from = %s", filepath)
|
| 235 |
+
ann_dir = os.path.join(filepath, "annotations")
|
| 236 |
+
img_dir = os.path.join(filepath, "images")
|
| 237 |
+
# pdf_dir = os.path.join(filepath, "pdfs")
|
| 238 |
+
|
| 239 |
+
for guid, file in enumerate(sorted(os.listdir(ann_dir))):
|
| 240 |
+
texts = []
|
| 241 |
+
bboxes_block = []
|
| 242 |
+
bboxes_line = []
|
| 243 |
+
categories = []
|
| 244 |
+
|
| 245 |
+
# get json
|
| 246 |
+
file_path = os.path.join(ann_dir, file)
|
| 247 |
+
with open(file_path, "r", encoding="utf8") as f:
|
| 248 |
+
data = json.load(f)
|
| 249 |
+
|
| 250 |
+
# get image
|
| 251 |
+
image_path = os.path.join(img_dir, file)
|
| 252 |
+
image_path = image_path.replace("json", "png")
|
| 253 |
+
image, size = load_image(image_path)
|
| 254 |
+
|
| 255 |
+
# # get pdf
|
| 256 |
+
# pdf_path = os.path.join(pdf_dir, file)
|
| 257 |
+
# pdf_path = pdf_path.replace("json", "pdf")
|
| 258 |
+
# with open(pdf_path, "rb") as pdf_file:
|
| 259 |
+
# pdf_bytes = pdf_file.read()
|
| 260 |
+
# pdf_encoded_string = base64.b64encode(pdf_bytes)
|
| 261 |
+
|
| 262 |
+
for item in data["form"]:
|
| 263 |
+
(
|
| 264 |
+
text_example,
|
| 265 |
+
category_example,
|
| 266 |
+
bbox_block_example,
|
| 267 |
+
bbox_line_example,
|
| 268 |
+
) = (item["text"], item["category"], item["box"], item["box_line"])
|
| 269 |
+
texts.append(text_example)
|
| 270 |
+
categories.append(category_example)
|
| 271 |
+
# Convert bounding boxes to integers to avoid float->int64 conversion errors
|
| 272 |
+
bboxes_block.append(convert_bbox_to_int(bbox_block_example))
|
| 273 |
+
bboxes_line.append(convert_bbox_to_int(bbox_line_example))
|
| 274 |
+
|
| 275 |
+
# get all metadadata
|
| 276 |
+
page_hash = data["metadata"]["page_hash"]
|
| 277 |
+
original_filename = data["metadata"]["original_filename"]
|
| 278 |
+
page_no = data["metadata"]["page_no"]
|
| 279 |
+
num_pages = data["metadata"]["num_pages"]
|
| 280 |
+
original_width = data["metadata"]["original_width"]
|
| 281 |
+
original_height = data["metadata"]["original_height"]
|
| 282 |
+
coco_width = data["metadata"]["coco_width"]
|
| 283 |
+
coco_height = data["metadata"]["coco_height"]
|
| 284 |
+
collection = data["metadata"]["collection"]
|
| 285 |
+
doc_category = data["metadata"]["doc_category"]
|
| 286 |
+
|
| 287 |
+
yield guid, {
|
| 288 |
+
"id": str(guid),
|
| 289 |
+
"texts": texts,
|
| 290 |
+
"bboxes_block": bboxes_block,
|
| 291 |
+
"bboxes_line": bboxes_line,
|
| 292 |
+
"categories": categories,
|
| 293 |
+
"image": image,
|
| 294 |
+
"page_hash": page_hash,
|
| 295 |
+
"original_filename": original_filename,
|
| 296 |
+
"page_no": page_no,
|
| 297 |
+
"num_pages": num_pages,
|
| 298 |
+
"original_width": original_width,
|
| 299 |
+
"original_height": original_height,
|
| 300 |
+
"coco_width": coco_width,
|
| 301 |
+
"coco_height": coco_height,
|
| 302 |
+
"collection": collection,
|
| 303 |
+
"doc_category": doc_category,
|
| 304 |
+
}
|