Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 3 new columns ({'ID', 'Disease', 'Chemical'}) and 3 missing columns ({'Text', 'Type', 'Mesh'}).

This happened while the csv dataset builder was generating data using

hf://datasets/zinzinmit/MedNLPCombined/bc5cdr/data/training/bc5cdr_relation.csv (at revision 1d74d4ff3ac8a48866e88023b55a95b3949e601c), [/tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv)]

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 675, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              Unnamed: 0: int64
              ID: int64
              Chemical: string
              Disease: string
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 710
              to
              {'Unnamed: 0': Value('int64'), 'Text': Value('string'), 'Type': Value('string'), 'Mesh': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1347, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 3 new columns ({'ID', 'Disease', 'Chemical'}) and 3 missing columns ({'Text', 'Type', 'Mesh'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/zinzinmit/MedNLPCombined/bc5cdr/data/training/bc5cdr_relation.csv (at revision 1d74d4ff3ac8a48866e88023b55a95b3949e601c), [/tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv)]
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Unnamed: 0
int64
Text
string
Type
string
Mesh
string
0
Naloxone
Chemical
D009270
1
Clonidine
Chemical
D003000
2
Hypertensive
Disease
D006973
3
Nalozone
Chemical
Unknown
4
Hypotensive
Disease
D007022
5
Alpha-methyldopa
Chemical
D008750
6
[3h]-naloxone
Chemical
Unknown
7
[3h]-dihydroergocryptine
Chemical
Unknown
8
Lidocaine
Chemical
D008012
9
Cardiac asystole
Disease
D006323
10
Depression
Disease
D003866
11
Bradyarrhythmias
Disease
D001919
12
Suxamethonium
Chemical
D013390
13
Fasciculations
Disease
D005207
14
Suxamethonium chloride
Chemical
D013390
15
Sch
Chemical
D013390
16
Tetanic
Disease
D013746
17
Fasciculation
Disease
D005207
18
Twitch
Disease
D013746
19
Tetanus
Disease
D013746
20
Galanthamine hydrobromide
Chemical
D005702
21
Scopolamine
Chemical
D012601
22
Hyoscine
Chemical
D012601
23
Overdosage
Disease
D062787
24
Physostigmine
Chemical
D010830
25
Lithium
Chemical
D008094
26
Chronic renal failure
Disease
D007676
27
Nephropathy
Disease
D007674
28
Renal failure
Disease
D051437
29
Li
Chemical
D008094
30
Proteinuria
Disease
D011507
31
Hypertension
Disease
D006973
32
Glomerulosclerosis
Disease
D005921
33
Creatinine
Chemical
D003404
34
Crohn's disease
Disease
D003424
35
Fusidic acid
Chemical
D005672
36
Cyclosporin
Chemical
D016572
37
Nausea
Disease
D009325
38
Inflammatory bowel disease
Disease
D015212
39
Myocardial injury
Disease
D009202
40
Cocaine
Chemical
D003042
41
Schizophrenic
Disease
D012559
42
Myocardial infarction
Disease
D009203
43
Ischemia
Disease
D007511
44
Bundle branch block
Disease
D002037
45
Sulpiride
Chemical
D013469
46
Tardive dystonia
Disease
D004421
47
Antidepressant
Chemical
D000928
48
Tardive dyskinesia
Disease
D004409
49
Parkinsonism
Disease
D010302
50
Dystonia
Disease
D004421
51
Desferrioxamine
Chemical
D003676
52
Visual toxicity
Disease
D014786
53
Dyschromatopsy
Disease
Unknown
54
A loss of visual acuity
Disease
D014786
55
Pigmentary retinal deposits
Disease
D012164
56
Auditory toxicity
Disease
D006311
57
Neurosensorial hearing loss
Disease
D006319
58
Hearing loss
Disease
D034381
59
Toxicity
Disease
D064420
60
Aluminium
Chemical
Unknown
61
Myasthenia gravis
Disease
D009157
62
Magnesium
Chemical
D008274
63
Neuromuscular disease
Disease
D009468
64
Quadriplegic
Disease
D011782
65
Preeclampsia
Disease
D011225
66
Postsynaptic neuromuscular blockade
Disease
D009468
67
Acetylcholine
Chemical
D000109
68
Paralysis
Disease
D010243
69
Disorder of neuromuscular transmission
Disease
D020511
70
Chloroacetaldehyde
Chemical
C004656
71
Cyclophosphamide
Chemical
D003520
72
Ifosfamide
Chemical
D007069
73
Caa
Chemical
C004656
74
Bladder damage
Disease
D001745
75
Mesna
Chemical
D015080
76
Pain
Disease
D010146
77
Migraine
Disease
D008881
78
Nitroglycerin
Chemical
D005996
79
Clotiazepam
Chemical
C084599
80
Hepatitis
Disease
D056486
81
Extensive hepatocellular necrosis
Disease
D047508
82
Thienodiazepine
Chemical
C013295
83
Benzodiazepines
Chemical
D001569
84
Hepatotoxicity
Disease
D056486
85
Ketoconazole
Chemical
D007654
86
Cushing's syndrome
Disease
D003480
87
Cortisol
Chemical
D006854
88
Deoxycorticosterone
Chemical
D003900
89
11-deoxycortisol
Chemical
D003350
90
Aldosterone
Chemical
D000450
91
Angiotensin
Chemical
D000809
92
Captopril
Chemical
D002216
93
Intravascular coagulation
Disease
D004211
94
Tranexamic acid
Chemical
D014148
95
Amca
Chemical
D014148
96
Trauma
Disease
D014947
97
Sepsis
Disease
D018805
98
Renal damage
Disease
D007674
99
Urea
Chemical
D014508
End of preview.

MedNLPCombined

Dataset Description

MedNLPCombined is a collected repository of medical Natural Language Processing (NLP) datasets, primarily focused on Chemical-Disease Relations (CDR), Toxicogenomics, and Gene Interactions. This repository is designed to facilitate research in Named Entity Recognition (NER) and Relation Extraction (RE) within the biomedical domain.

The repository currently includes three major components:

  1. BioCreative V CDR (BC5CDR) Task Corpus
  2. Comparative Toxicogenomics Database (CTD) Derived Data
  3. ChemDisGene Dataset

Repository Structure

The dataset is organized into the following directories:

1. bc5cdr/

Contains the BioCreative V CDR corpus resources.

  • data/: The core dataset files.
    • benchmark/: Evaluation/test sets.
    • training/: Training and development sets.
  • related_documents/: Documentation and guidelines for the BC5CDR task.
    • BC5CDR.corpus.pdf
    • BC5CDR.overview.pdf
    • bc5_CDR_data_guidelines.pdf

2. CTD/

Contains data derived from the Comparative Toxicogenomics Database.

  • CTD.zip: A compressed archive likely containing processed abstracts, relationships, and entity annotations derived from CTD.
    • Note: You may need to unzip this file to access the raw .tsv or .txt files.

3. ChemDisGene/

Contains the ChemDisGene dataset for distant supervision of biomedical relationships.

  • data/: The core dataset files.
  • related_documents/: Documentation and guidelines.
    • AnnotationGuidelines.pdf

Dataset Details

BioCreative V CDR (BC5CDR)

The BC5CDR corpus consists of 1,500 PubMed articles with annotated chemical and disease entities, as well as their chemical-induced disease (CID) relations. It was created for the BioCreative V challenge.

  • Entities: Chemicals, Diseases
  • Relations: Chemical-Induced Disease (CID)

Comparative Toxicogenomics Database (CTD)

The CTD data provides manually curated information about chemical-gene/protein interactions, chemical-disease and gene-disease relationships. This component of the repository is likely a snapshot or a derived subset focusing on specific interaction types (e.g., chemical-disease-gene networks).

ChemDisGene

ChemDisGene is a large-scale, distant-supervision dataset for extracting biomedical relationships between chemicals, diseases, and genes. It provides a valuable resource for training models on a broader range of biomedical interactions.

Usage

To use this dataset in your Python project:

from datasets import load_dataset

# Example loading (if configured with a loading script, otherwise access files directly)
# dataset = load_dataset("username/MedNLPCombined")

For local usage, clone the repository:

git clone https://huggingface.co/username/MedNLPCombined

Citation

If you use these datasets, please cite the original authors:

BC5CDR:

@article{li2016biocreative,
  title={BioCreative V CDR task corpus: a resource for chemical disease relation extraction},
  author={Li, Jiao and Sun, Yueping and Johnson, Robin J and Sciaky, Daniela and Wei, Chih-Hsuan and Leaman, Robert and Davis, Allan Peter and Mattingly, Carolyn J and Lu, Zhiyong},
  journal={Database},
  volume={2016},
  year={2016},
  publisher={Oxford Academic}
}

CTD: Please refer to the CTD citation policy.

ChemDisGene:

@inproceedings{zhang-etal-2022-distant,
    title = "A Distant Supervision Corpus for Extracting Biomedical Relationships Between Chemicals, Diseases and Genes",
    author = "Zhang, Dongxu  and
      Mohan, Sunil  and
      Torkar, Michaela  and
      McCallum, Andrew",
    booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
    month = jun,
    year = "2022",
    address = "Marseille, France",
    publisher = "European Language Resources Association",
    url = "https://aclanthology.org/2022.lrec-1.666",
    pages = "6205--6214",
}

License

This repository is licensed under Apache 2.0. Please also adhere to the specific license agreements of the original datasets (BC5CDR, CTD, and ChemDisGene) if applicable.

Downloads last month
5