The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationCastError
Exception: DatasetGenerationCastError
Message: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 3 new columns ({'ID', 'Disease', 'Chemical'}) and 3 missing columns ({'Text', 'Type', 'Mesh'}).
This happened while the csv dataset builder was generating data using
hf://datasets/zinzinmit/MedNLPCombined/bc5cdr/data/training/bc5cdr_relation.csv (at revision 1d74d4ff3ac8a48866e88023b55a95b3949e601c), [/tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv)]
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
writer.write_table(table)
File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 675, in write_table
pa_table = table_cast(pa_table, self._schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
return cast_table_to_schema(table, schema)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
raise CastError(
datasets.table.CastError: Couldn't cast
Unnamed: 0: int64
ID: int64
Chemical: string
Disease: string
-- schema metadata --
pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 710
to
{'Unnamed: 0': Value('int64'), 'Text': Value('string'), 'Type': Value('string'), 'Mesh': Value('string')}
because column names don't match
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1347, in compute_config_parquet_and_info_response
parquet_operations = convert_to_parquet(builder)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 980, in convert_to_parquet
builder.download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
self._download_and_prepare(
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
self._prepare_split(split_generator, **prepare_split_kwargs)
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
for job_id, done, content in self._prepare_split_single(
^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
raise DatasetGenerationCastError.from_cast_error(
datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
All the data files must have the same columns, but at some point there are 3 new columns ({'ID', 'Disease', 'Chemical'}) and 3 missing columns ({'Text', 'Type', 'Mesh'}).
This happened while the csv dataset builder was generating data using
hf://datasets/zinzinmit/MedNLPCombined/bc5cdr/data/training/bc5cdr_relation.csv (at revision 1d74d4ff3ac8a48866e88023b55a95b3949e601c), [/tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_lookup_table.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/bc5cdr_relation.csv), /tmp/hf-datasets-cache/medium/datasets/18679590191154-config-parquet-and-info-zinzinmit-MedNLPCombined-4b94d53b/hub/datasets--zinzinmit--MedNLPCombined/snapshots/1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv (origin=hf://datasets/zinzinmit/MedNLPCombined@1d74d4ff3ac8a48866e88023b55a95b3949e601c/bc5cdr/data/training/full_bc5cdr_data.csv)]
Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Unnamed: 0
int64 | Text
string | Type
string | Mesh
string |
|---|---|---|---|
0
|
Naloxone
|
Chemical
|
D009270
|
1
|
Clonidine
|
Chemical
|
D003000
|
2
|
Hypertensive
|
Disease
|
D006973
|
3
|
Nalozone
|
Chemical
|
Unknown
|
4
|
Hypotensive
|
Disease
|
D007022
|
5
|
Alpha-methyldopa
|
Chemical
|
D008750
|
6
|
[3h]-naloxone
|
Chemical
|
Unknown
|
7
|
[3h]-dihydroergocryptine
|
Chemical
|
Unknown
|
8
|
Lidocaine
|
Chemical
|
D008012
|
9
|
Cardiac asystole
|
Disease
|
D006323
|
10
|
Depression
|
Disease
|
D003866
|
11
|
Bradyarrhythmias
|
Disease
|
D001919
|
12
|
Suxamethonium
|
Chemical
|
D013390
|
13
|
Fasciculations
|
Disease
|
D005207
|
14
|
Suxamethonium chloride
|
Chemical
|
D013390
|
15
|
Sch
|
Chemical
|
D013390
|
16
|
Tetanic
|
Disease
|
D013746
|
17
|
Fasciculation
|
Disease
|
D005207
|
18
|
Twitch
|
Disease
|
D013746
|
19
|
Tetanus
|
Disease
|
D013746
|
20
|
Galanthamine hydrobromide
|
Chemical
|
D005702
|
21
|
Scopolamine
|
Chemical
|
D012601
|
22
|
Hyoscine
|
Chemical
|
D012601
|
23
|
Overdosage
|
Disease
|
D062787
|
24
|
Physostigmine
|
Chemical
|
D010830
|
25
|
Lithium
|
Chemical
|
D008094
|
26
|
Chronic renal failure
|
Disease
|
D007676
|
27
|
Nephropathy
|
Disease
|
D007674
|
28
|
Renal failure
|
Disease
|
D051437
|
29
|
Li
|
Chemical
|
D008094
|
30
|
Proteinuria
|
Disease
|
D011507
|
31
|
Hypertension
|
Disease
|
D006973
|
32
|
Glomerulosclerosis
|
Disease
|
D005921
|
33
|
Creatinine
|
Chemical
|
D003404
|
34
|
Crohn's disease
|
Disease
|
D003424
|
35
|
Fusidic acid
|
Chemical
|
D005672
|
36
|
Cyclosporin
|
Chemical
|
D016572
|
37
|
Nausea
|
Disease
|
D009325
|
38
|
Inflammatory bowel disease
|
Disease
|
D015212
|
39
|
Myocardial injury
|
Disease
|
D009202
|
40
|
Cocaine
|
Chemical
|
D003042
|
41
|
Schizophrenic
|
Disease
|
D012559
|
42
|
Myocardial infarction
|
Disease
|
D009203
|
43
|
Ischemia
|
Disease
|
D007511
|
44
|
Bundle branch block
|
Disease
|
D002037
|
45
|
Sulpiride
|
Chemical
|
D013469
|
46
|
Tardive dystonia
|
Disease
|
D004421
|
47
|
Antidepressant
|
Chemical
|
D000928
|
48
|
Tardive dyskinesia
|
Disease
|
D004409
|
49
|
Parkinsonism
|
Disease
|
D010302
|
50
|
Dystonia
|
Disease
|
D004421
|
51
|
Desferrioxamine
|
Chemical
|
D003676
|
52
|
Visual toxicity
|
Disease
|
D014786
|
53
|
Dyschromatopsy
|
Disease
|
Unknown
|
54
|
A loss of visual acuity
|
Disease
|
D014786
|
55
|
Pigmentary retinal deposits
|
Disease
|
D012164
|
56
|
Auditory toxicity
|
Disease
|
D006311
|
57
|
Neurosensorial hearing loss
|
Disease
|
D006319
|
58
|
Hearing loss
|
Disease
|
D034381
|
59
|
Toxicity
|
Disease
|
D064420
|
60
|
Aluminium
|
Chemical
|
Unknown
|
61
|
Myasthenia gravis
|
Disease
|
D009157
|
62
|
Magnesium
|
Chemical
|
D008274
|
63
|
Neuromuscular disease
|
Disease
|
D009468
|
64
|
Quadriplegic
|
Disease
|
D011782
|
65
|
Preeclampsia
|
Disease
|
D011225
|
66
|
Postsynaptic neuromuscular blockade
|
Disease
|
D009468
|
67
|
Acetylcholine
|
Chemical
|
D000109
|
68
|
Paralysis
|
Disease
|
D010243
|
69
|
Disorder of neuromuscular transmission
|
Disease
|
D020511
|
70
|
Chloroacetaldehyde
|
Chemical
|
C004656
|
71
|
Cyclophosphamide
|
Chemical
|
D003520
|
72
|
Ifosfamide
|
Chemical
|
D007069
|
73
|
Caa
|
Chemical
|
C004656
|
74
|
Bladder damage
|
Disease
|
D001745
|
75
|
Mesna
|
Chemical
|
D015080
|
76
|
Pain
|
Disease
|
D010146
|
77
|
Migraine
|
Disease
|
D008881
|
78
|
Nitroglycerin
|
Chemical
|
D005996
|
79
|
Clotiazepam
|
Chemical
|
C084599
|
80
|
Hepatitis
|
Disease
|
D056486
|
81
|
Extensive hepatocellular necrosis
|
Disease
|
D047508
|
82
|
Thienodiazepine
|
Chemical
|
C013295
|
83
|
Benzodiazepines
|
Chemical
|
D001569
|
84
|
Hepatotoxicity
|
Disease
|
D056486
|
85
|
Ketoconazole
|
Chemical
|
D007654
|
86
|
Cushing's syndrome
|
Disease
|
D003480
|
87
|
Cortisol
|
Chemical
|
D006854
|
88
|
Deoxycorticosterone
|
Chemical
|
D003900
|
89
|
11-deoxycortisol
|
Chemical
|
D003350
|
90
|
Aldosterone
|
Chemical
|
D000450
|
91
|
Angiotensin
|
Chemical
|
D000809
|
92
|
Captopril
|
Chemical
|
D002216
|
93
|
Intravascular coagulation
|
Disease
|
D004211
|
94
|
Tranexamic acid
|
Chemical
|
D014148
|
95
|
Amca
|
Chemical
|
D014148
|
96
|
Trauma
|
Disease
|
D014947
|
97
|
Sepsis
|
Disease
|
D018805
|
98
|
Renal damage
|
Disease
|
D007674
|
99
|
Urea
|
Chemical
|
D014508
|
MedNLPCombined
Dataset Description
MedNLPCombined is a collected repository of medical Natural Language Processing (NLP) datasets, primarily focused on Chemical-Disease Relations (CDR), Toxicogenomics, and Gene Interactions. This repository is designed to facilitate research in Named Entity Recognition (NER) and Relation Extraction (RE) within the biomedical domain.
The repository currently includes three major components:
- BioCreative V CDR (BC5CDR) Task Corpus
- Comparative Toxicogenomics Database (CTD) Derived Data
- ChemDisGene Dataset
Repository Structure
The dataset is organized into the following directories:
1. bc5cdr/
Contains the BioCreative V CDR corpus resources.
data/: The core dataset files.benchmark/: Evaluation/test sets.training/: Training and development sets.
related_documents/: Documentation and guidelines for the BC5CDR task.BC5CDR.corpus.pdfBC5CDR.overview.pdfbc5_CDR_data_guidelines.pdf
2. CTD/
Contains data derived from the Comparative Toxicogenomics Database.
CTD.zip: A compressed archive likely containing processed abstracts, relationships, and entity annotations derived from CTD.- Note: You may need to unzip this file to access the raw
.tsvor.txtfiles.
- Note: You may need to unzip this file to access the raw
3. ChemDisGene/
Contains the ChemDisGene dataset for distant supervision of biomedical relationships.
data/: The core dataset files.related_documents/: Documentation and guidelines.AnnotationGuidelines.pdf
Dataset Details
BioCreative V CDR (BC5CDR)
The BC5CDR corpus consists of 1,500 PubMed articles with annotated chemical and disease entities, as well as their chemical-induced disease (CID) relations. It was created for the BioCreative V challenge.
- Entities: Chemicals, Diseases
- Relations: Chemical-Induced Disease (CID)
Comparative Toxicogenomics Database (CTD)
The CTD data provides manually curated information about chemical-gene/protein interactions, chemical-disease and gene-disease relationships. This component of the repository is likely a snapshot or a derived subset focusing on specific interaction types (e.g., chemical-disease-gene networks).
ChemDisGene
ChemDisGene is a large-scale, distant-supervision dataset for extracting biomedical relationships between chemicals, diseases, and genes. It provides a valuable resource for training models on a broader range of biomedical interactions.
Usage
To use this dataset in your Python project:
from datasets import load_dataset
# Example loading (if configured with a loading script, otherwise access files directly)
# dataset = load_dataset("username/MedNLPCombined")
For local usage, clone the repository:
git clone https://huggingface.co/username/MedNLPCombined
Citation
If you use these datasets, please cite the original authors:
BC5CDR:
@article{li2016biocreative,
title={BioCreative V CDR task corpus: a resource for chemical disease relation extraction},
author={Li, Jiao and Sun, Yueping and Johnson, Robin J and Sciaky, Daniela and Wei, Chih-Hsuan and Leaman, Robert and Davis, Allan Peter and Mattingly, Carolyn J and Lu, Zhiyong},
journal={Database},
volume={2016},
year={2016},
publisher={Oxford Academic}
}
CTD: Please refer to the CTD citation policy.
ChemDisGene:
@inproceedings{zhang-etal-2022-distant,
title = "A Distant Supervision Corpus for Extracting Biomedical Relationships Between Chemicals, Diseases and Genes",
author = "Zhang, Dongxu and
Mohan, Sunil and
Torkar, Michaela and
McCallum, Andrew",
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference",
month = jun,
year = "2022",
address = "Marseille, France",
publisher = "European Language Resources Association",
url = "https://aclanthology.org/2022.lrec-1.666",
pages = "6205--6214",
}
License
This repository is licensed under Apache 2.0. Please also adhere to the specific license agreements of the original datasets (BC5CDR, CTD, and ChemDisGene) if applicable.
- Downloads last month
- 5