YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Single-sample prediction example
Below is a minimal example to run a single datapoint using this model from the Hub. It uses the base processor and the finetuned model:
import re
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForCausalLM
# Inputs
caption = "A honeycomb-like grid pattern made of connected hexagons."
question = (
"As shown in the figure, which of the following shapes is the basic unit of a honeycomb? "
"A. Parallelogram; B. Regular hexagon; C. Square; D. Regular pentagon"
)
image_path = "/data-mount-large/scripts/test.jpeg" # replace with your local image path
# Load base processor + finetuned model
processor = AutoProcessor.from_pretrained("microsoft/Phi-4-multimodal-instruct", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"kalkiai3000/we-math-phi4",
trust_remote_code=True,
torch_dtype=torch.float16,
device_map="auto",
attn_implementation="eager",
)
try:
model.config.use_cache = False
except Exception:
pass
try:
model.gradient_checkpointing_disable()
except Exception:
pass
# Build prompt (MCQ-aware instruction)
if any(x in question for x in ["A:", "B:", "C:", "A.", "B.", "C.", ";"]):
instruction = "Answer with the option's letter from the given choices directly."
max_new = 4
else:
instruction = "Answer succinctly with the final value/word only."
max_new = 64
prompt = (
f"<|user|><|image_1|>Please solve this math problem: {question}\n"
f"Image description: {caption}\n{instruction}<|end|><|assistant|>"
)
# Prepare image and inputs
image = Image.open(image_path).convert("RGB")
if max(image.size) > 1024:
try:
image = image.resize((1024, 1024), Image.Resampling.LANCZOS)
except Exception:
image = image.resize((1024, 1024))
proc = processor(prompt, images=[image], return_tensors="pt")
device = next(model.parameters()).device
inputs = {
"input_ids": proc.input_ids.to(device),
"attention_mask": (proc.input_ids != processor.tokenizer.pad_token_id).long().to(device),
"input_image_embeds": proc.input_image_embeds.to(device),
"image_attention_mask": proc.image_attention_mask.to(device),
"image_sizes": proc.image_sizes.to(device),
"input_mode": torch.tensor([1], dtype=torch.long, device=device),
}
with torch.no_grad():
gen = model.generate(
**inputs,
max_new_tokens=max_new,
do_sample=False,
temperature=0.0,
eos_token_id=processor.tokenizer.eos_token_id,
num_logits_to_keep=1,
use_cache=False,
)
# Decode continuation only
in_len = inputs["input_ids"].shape[1]
out_text = processor.batch_decode(gen[:, in_len:], skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# Optional: extract final answer (letter for MCQ; final token for word problems)
if "Answer with the option's letter" in instruction:
m = re.search(r"\b([ABCD])\b", out_text, flags=re.IGNORECASE)
print((m.group(1).upper() if m else out_text[:1]).strip())
else:
tokens = re.findall(r"[A-Za-z0-9\.]+", out_text.strip())
print((tokens[-1] if tokens else out_text).strip())
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support