mahjong_soul_vision

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0535
  • Accuracy: 0.9955
  • F1: 0.9955
  • Recall: 0.9955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 250

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall
3.525 1.0 17 3.5241 0.0390 0.0191 0.0390
3.4705 2.0 34 3.4880 0.1059 0.0696 0.1059
3.3849 3.0 51 3.4336 0.1516 0.1033 0.1516
3.2368 4.0 68 3.3594 0.2129 0.1628 0.2129
3.1311 5.0 85 3.2684 0.2843 0.2199 0.2843
2.9889 6.0 102 3.1530 0.3701 0.3219 0.3701
2.7421 7.0 119 3.0133 0.4849 0.4358 0.4849
2.5617 8.0 136 2.8537 0.6120 0.5663 0.6120
2.318 9.0 153 2.6894 0.7458 0.7044 0.7458
2.0861 10.0 170 2.5204 0.8038 0.7655 0.8038
1.8374 11.0 187 2.3533 0.8261 0.7970 0.8261
1.6962 12.0 204 2.1952 0.8662 0.8492 0.8662
1.4737 13.0 221 2.0266 0.9108 0.9018 0.9108
1.3726 14.0 238 1.8545 0.9599 0.9592 0.9599
1.1261 15.0 255 1.7290 0.9732 0.9725 0.9732
1.0357 16.0 272 1.5866 0.9777 0.9776 0.9777
0.9068 17.0 289 1.4664 0.9810 0.9812 0.9810
0.8355 18.0 306 1.3424 0.9833 0.9828 0.9833
0.7568 19.0 323 1.2254 0.9866 0.9865 0.9866
0.6386 20.0 340 1.1300 0.9877 0.9876 0.9877
0.5827 21.0 357 1.0365 0.9911 0.9911 0.9911
0.5086 22.0 374 0.9475 0.9933 0.9933 0.9933
0.4486 23.0 391 0.8839 0.9911 0.9911 0.9911
0.4316 24.0 408 0.8186 0.9922 0.9922 0.9922
0.406 25.0 425 0.7656 0.9922 0.9922 0.9922
0.3478 26.0 442 0.7115 0.9933 0.9933 0.9933
0.3394 27.0 459 0.6696 0.9933 0.9933 0.9933
0.2961 28.0 476 0.6306 0.9933 0.9933 0.9933
0.2858 29.0 493 0.5913 0.9933 0.9933 0.9933
0.2614 30.0 510 0.5601 0.9933 0.9933 0.9933
0.2485 31.0 527 0.5323 0.9944 0.9944 0.9944
0.2205 32.0 544 0.5103 0.9933 0.9933 0.9933
0.2092 33.0 561 0.4861 0.9922 0.9921 0.9922
0.2047 34.0 578 0.4625 0.9944 0.9944 0.9944
0.1825 35.0 595 0.4436 0.9933 0.9933 0.9933
0.1743 36.0 612 0.4237 0.9944 0.9944 0.9944
0.1685 37.0 629 0.4026 0.9944 0.9944 0.9944
0.1589 38.0 646 0.3875 0.9944 0.9944 0.9944
0.1484 39.0 663 0.3739 0.9944 0.9944 0.9944
0.143 40.0 680 0.3613 0.9944 0.9944 0.9944
0.1423 41.0 697 0.3494 0.9944 0.9944 0.9944
0.1299 42.0 714 0.3372 0.9922 0.9921 0.9922
0.1196 43.0 731 0.3251 0.9944 0.9944 0.9944
0.1195 44.0 748 0.3165 0.9933 0.9933 0.9933
0.1163 45.0 765 0.3042 0.9944 0.9944 0.9944
0.1059 46.0 782 0.2940 0.9944 0.9944 0.9944
0.105 47.0 799 0.2857 0.9944 0.9944 0.9944
0.1011 48.0 816 0.2773 0.9944 0.9944 0.9944
0.0952 49.0 833 0.2685 0.9944 0.9944 0.9944
0.0894 50.0 850 0.2626 0.9944 0.9944 0.9944
0.0889 51.0 867 0.2539 0.9944 0.9944 0.9944
0.0875 52.0 884 0.2469 0.9955 0.9955 0.9955
0.0856 53.0 901 0.2417 0.9944 0.9944 0.9944
0.0838 54.0 918 0.2344 0.9944 0.9944 0.9944
0.0783 55.0 935 0.2290 0.9955 0.9955 0.9955
0.0751 56.0 952 0.2225 0.9955 0.9955 0.9955
0.0697 57.0 969 0.2165 0.9955 0.9955 0.9955
0.073 58.0 986 0.2132 0.9955 0.9955 0.9955
0.0693 59.0 1003 0.2069 0.9955 0.9955 0.9955
0.0626 60.0 1020 0.2042 0.9944 0.9944 0.9944
0.0622 61.0 1037 0.1986 0.9955 0.9955 0.9955
0.0607 62.0 1054 0.1959 0.9955 0.9955 0.9955
0.0593 63.0 1071 0.1898 0.9955 0.9955 0.9955
0.0588 64.0 1088 0.1868 0.9955 0.9955 0.9955
0.0559 65.0 1105 0.1828 0.9955 0.9955 0.9955
0.0562 66.0 1122 0.1792 0.9955 0.9955 0.9955
0.0528 67.0 1139 0.1756 0.9955 0.9955 0.9955
0.0535 68.0 1156 0.1717 0.9955 0.9955 0.9955
0.0508 69.0 1173 0.1690 0.9955 0.9955 0.9955
0.0474 70.0 1190 0.1659 0.9955 0.9955 0.9955
0.0475 71.0 1207 0.1622 0.9955 0.9955 0.9955
0.0469 72.0 1224 0.1594 0.9955 0.9955 0.9955
0.0464 73.0 1241 0.1569 0.9955 0.9955 0.9955
0.0449 74.0 1258 0.1548 0.9955 0.9955 0.9955
0.042 75.0 1275 0.1517 0.9955 0.9955 0.9955
0.0429 76.0 1292 0.1498 0.9955 0.9955 0.9955
0.0384 77.0 1309 0.1461 0.9955 0.9955 0.9955
0.038 78.0 1326 0.1447 0.9955 0.9955 0.9955
0.0388 79.0 1343 0.1421 0.9955 0.9955 0.9955
0.0419 80.0 1360 0.1404 0.9955 0.9955 0.9955
0.0396 81.0 1377 0.1381 0.9955 0.9955 0.9955
0.0358 82.0 1394 0.1360 0.9955 0.9955 0.9955
0.0379 83.0 1411 0.1340 0.9955 0.9955 0.9955
0.0359 84.0 1428 0.1316 0.9955 0.9955 0.9955
0.0341 85.0 1445 0.1301 0.9955 0.9955 0.9955
0.0336 86.0 1462 0.1281 0.9955 0.9955 0.9955
0.0318 87.0 1479 0.1264 0.9955 0.9955 0.9955
0.0332 88.0 1496 0.1243 0.9955 0.9955 0.9955
0.0337 89.0 1513 0.1230 0.9955 0.9955 0.9955
0.0315 90.0 1530 0.1213 0.9955 0.9955 0.9955
0.0307 91.0 1547 0.1197 0.9955 0.9955 0.9955
0.0308 92.0 1564 0.1181 0.9955 0.9955 0.9955
0.0291 93.0 1581 0.1168 0.9955 0.9955 0.9955
0.0284 94.0 1598 0.1154 0.9955 0.9955 0.9955
0.0268 95.0 1615 0.1138 0.9955 0.9955 0.9955
0.029 96.0 1632 0.1128 0.9955 0.9955 0.9955
0.0272 97.0 1649 0.1110 0.9955 0.9955 0.9955
0.0254 98.0 1666 0.1095 0.9955 0.9955 0.9955
0.0263 99.0 1683 0.1085 0.9955 0.9955 0.9955
0.0256 100.0 1700 0.1070 0.9955 0.9955 0.9955
0.0247 101.0 1717 0.1060 0.9955 0.9955 0.9955
0.0245 102.0 1734 0.1053 0.9955 0.9955 0.9955
0.0244 103.0 1751 0.1038 0.9955 0.9955 0.9955
0.0245 104.0 1768 0.1022 0.9955 0.9955 0.9955
0.024 105.0 1785 0.1016 0.9955 0.9955 0.9955
0.0231 106.0 1802 0.1009 0.9955 0.9955 0.9955
0.0227 107.0 1819 0.0994 0.9955 0.9955 0.9955
0.0227 108.0 1836 0.0987 0.9955 0.9955 0.9955
0.0219 109.0 1853 0.0976 0.9955 0.9955 0.9955
0.0216 110.0 1870 0.0969 0.9955 0.9955 0.9955
0.0211 111.0 1887 0.0957 0.9955 0.9955 0.9955
0.0211 112.0 1904 0.0946 0.9955 0.9955 0.9955
0.0203 113.0 1921 0.0937 0.9955 0.9955 0.9955
0.021 114.0 1938 0.0928 0.9955 0.9955 0.9955
0.0206 115.0 1955 0.0920 0.9955 0.9955 0.9955
0.0212 116.0 1972 0.0916 0.9955 0.9955 0.9955
0.0201 117.0 1989 0.0906 0.9955 0.9955 0.9955
0.0195 118.0 2006 0.0896 0.9955 0.9955 0.9955
0.0185 119.0 2023 0.0887 0.9955 0.9955 0.9955
0.0188 120.0 2040 0.0880 0.9955 0.9955 0.9955
0.0196 121.0 2057 0.0875 0.9955 0.9955 0.9955
0.0179 122.0 2074 0.0866 0.9955 0.9955 0.9955
0.0175 123.0 2091 0.0860 0.9955 0.9955 0.9955
0.0175 124.0 2108 0.0852 0.9955 0.9955 0.9955
0.0184 125.0 2125 0.0844 0.9955 0.9955 0.9955
0.0179 126.0 2142 0.0836 0.9955 0.9955 0.9955
0.0171 127.0 2159 0.0832 0.9955 0.9955 0.9955
0.0173 128.0 2176 0.0826 0.9955 0.9955 0.9955
0.0169 129.0 2193 0.0818 0.9955 0.9955 0.9955
0.0163 130.0 2210 0.0813 0.9955 0.9955 0.9955
0.0164 131.0 2227 0.0803 0.9955 0.9955 0.9955
0.0167 132.0 2244 0.0801 0.9955 0.9955 0.9955
0.0162 133.0 2261 0.0796 0.9955 0.9955 0.9955
0.015 134.0 2278 0.0790 0.9955 0.9955 0.9955
0.0153 135.0 2295 0.0785 0.9955 0.9955 0.9955
0.0147 136.0 2312 0.0780 0.9955 0.9955 0.9955
0.0147 137.0 2329 0.0772 0.9955 0.9955 0.9955
0.0151 138.0 2346 0.0770 0.9955 0.9955 0.9955
0.0143 139.0 2363 0.0762 0.9955 0.9955 0.9955
0.0149 140.0 2380 0.0754 0.9955 0.9955 0.9955
0.0143 141.0 2397 0.0752 0.9955 0.9955 0.9955
0.0145 142.0 2414 0.0747 0.9955 0.9955 0.9955
0.014 143.0 2431 0.0740 0.9955 0.9955 0.9955
0.0138 144.0 2448 0.0738 0.9955 0.9955 0.9955
0.0138 145.0 2465 0.0733 0.9955 0.9955 0.9955
0.0127 146.0 2482 0.0729 0.9955 0.9955 0.9955
0.013 147.0 2499 0.0726 0.9955 0.9955 0.9955
0.0135 148.0 2516 0.0722 0.9955 0.9955 0.9955
0.0135 149.0 2533 0.0716 0.9955 0.9955 0.9955
0.0137 150.0 2550 0.0711 0.9955 0.9955 0.9955
0.0138 151.0 2567 0.0707 0.9955 0.9955 0.9955
0.013 152.0 2584 0.0703 0.9955 0.9955 0.9955
0.0128 153.0 2601 0.0698 0.9955 0.9955 0.9955
0.0129 154.0 2618 0.0696 0.9955 0.9955 0.9955
0.0121 155.0 2635 0.0690 0.9955 0.9955 0.9955
0.0127 156.0 2652 0.0687 0.9955 0.9955 0.9955
0.0126 157.0 2669 0.0685 0.9955 0.9955 0.9955
0.0124 158.0 2686 0.0681 0.9955 0.9955 0.9955
0.0118 159.0 2703 0.0675 0.9955 0.9955 0.9955
0.0119 160.0 2720 0.0673 0.9955 0.9955 0.9955
0.0119 161.0 2737 0.0672 0.9955 0.9955 0.9955
0.0116 162.0 2754 0.0667 0.9955 0.9955 0.9955
0.0119 163.0 2771 0.0664 0.9955 0.9955 0.9955
0.0112 164.0 2788 0.0662 0.9955 0.9955 0.9955
0.0112 165.0 2805 0.0656 0.9955 0.9955 0.9955
0.0115 166.0 2822 0.0653 0.9955 0.9955 0.9955
0.0111 167.0 2839 0.0651 0.9955 0.9955 0.9955
0.0107 168.0 2856 0.0649 0.9955 0.9955 0.9955
0.0115 169.0 2873 0.0645 0.9955 0.9955 0.9955
0.0111 170.0 2890 0.0643 0.9955 0.9955 0.9955
0.0109 171.0 2907 0.0639 0.9955 0.9955 0.9955
0.0107 172.0 2924 0.0637 0.9955 0.9955 0.9955
0.0108 173.0 2941 0.0635 0.9955 0.9955 0.9955
0.0103 174.0 2958 0.0631 0.9955 0.9955 0.9955
0.0104 175.0 2975 0.0627 0.9955 0.9955 0.9955
0.0104 176.0 2992 0.0626 0.9955 0.9955 0.9955
0.0104 177.0 3009 0.0622 0.9955 0.9955 0.9955
0.0102 178.0 3026 0.0621 0.9955 0.9955 0.9955
0.0103 179.0 3043 0.0618 0.9955 0.9955 0.9955
0.0096 180.0 3060 0.0617 0.9955 0.9955 0.9955
0.0097 181.0 3077 0.0613 0.9955 0.9955 0.9955
0.0099 182.0 3094 0.0611 0.9955 0.9955 0.9955
0.0097 183.0 3111 0.0610 0.9955 0.9955 0.9955
0.0099 184.0 3128 0.0606 0.9955 0.9955 0.9955
0.0098 185.0 3145 0.0605 0.9955 0.9955 0.9955
0.0095 186.0 3162 0.0603 0.9955 0.9955 0.9955
0.0096 187.0 3179 0.0600 0.9955 0.9955 0.9955
0.0096 188.0 3196 0.0598 0.9955 0.9955 0.9955
0.0094 189.0 3213 0.0595 0.9955 0.9955 0.9955
0.0095 190.0 3230 0.0596 0.9955 0.9955 0.9955
0.0092 191.0 3247 0.0592 0.9955 0.9955 0.9955
0.01 192.0 3264 0.0590 0.9955 0.9955 0.9955
0.0086 193.0 3281 0.0588 0.9955 0.9955 0.9955
0.0091 194.0 3298 0.0586 0.9955 0.9955 0.9955
0.0085 195.0 3315 0.0585 0.9955 0.9955 0.9955
0.0086 196.0 3332 0.0583 0.9955 0.9955 0.9955
0.009 197.0 3349 0.0582 0.9955 0.9955 0.9955
0.0083 198.0 3366 0.0579 0.9955 0.9955 0.9955
0.0087 199.0 3383 0.0578 0.9955 0.9955 0.9955
0.0087 200.0 3400 0.0576 0.9955 0.9955 0.9955
0.0084 201.0 3417 0.0574 0.9955 0.9955 0.9955
0.0089 202.0 3434 0.0573 0.9955 0.9955 0.9955
0.0092 203.0 3451 0.0571 0.9955 0.9955 0.9955
0.0083 204.0 3468 0.0569 0.9955 0.9955 0.9955
0.009 205.0 3485 0.0569 0.9955 0.9955 0.9955
0.0085 206.0 3502 0.0566 0.9955 0.9955 0.9955
0.0085 207.0 3519 0.0566 0.9955 0.9955 0.9955
0.0086 208.0 3536 0.0564 0.9955 0.9955 0.9955
0.0083 209.0 3553 0.0563 0.9955 0.9955 0.9955
0.0079 210.0 3570 0.0561 0.9955 0.9955 0.9955
0.008 211.0 3587 0.0560 0.9955 0.9955 0.9955
0.0087 212.0 3604 0.0559 0.9955 0.9955 0.9955
0.0083 213.0 3621 0.0557 0.9955 0.9955 0.9955
0.0083 214.0 3638 0.0557 0.9955 0.9955 0.9955
0.0081 215.0 3655 0.0556 0.9955 0.9955 0.9955
0.0081 216.0 3672 0.0555 0.9955 0.9955 0.9955
0.0081 217.0 3689 0.0553 0.9955 0.9955 0.9955
0.008 218.0 3706 0.0552 0.9955 0.9955 0.9955
0.008 219.0 3723 0.0551 0.9955 0.9955 0.9955
0.0082 220.0 3740 0.0550 0.9955 0.9955 0.9955
0.0079 221.0 3757 0.0549 0.9955 0.9955 0.9955
0.0076 222.0 3774 0.0548 0.9955 0.9955 0.9955
0.0074 223.0 3791 0.0547 0.9955 0.9955 0.9955
0.0073 224.0 3808 0.0547 0.9955 0.9955 0.9955
0.0083 225.0 3825 0.0546 0.9955 0.9955 0.9955
0.0079 226.0 3842 0.0545 0.9955 0.9955 0.9955
0.0075 227.0 3859 0.0544 0.9955 0.9955 0.9955
0.0077 228.0 3876 0.0543 0.9955 0.9955 0.9955
0.0076 229.0 3893 0.0543 0.9955 0.9955 0.9955
0.0075 230.0 3910 0.0541 0.9955 0.9955 0.9955
0.0078 231.0 3927 0.0541 0.9955 0.9955 0.9955
0.0077 232.0 3944 0.0540 0.9955 0.9955 0.9955
0.0078 233.0 3961 0.0540 0.9955 0.9955 0.9955
0.0075 234.0 3978 0.0539 0.9955 0.9955 0.9955
0.0073 235.0 3995 0.0539 0.9955 0.9955 0.9955
0.0078 236.0 4012 0.0538 0.9955 0.9955 0.9955
0.0077 237.0 4029 0.0538 0.9955 0.9955 0.9955
0.0074 238.0 4046 0.0538 0.9955 0.9955 0.9955
0.0073 239.0 4063 0.0537 0.9955 0.9955 0.9955
0.0077 240.0 4080 0.0537 0.9955 0.9955 0.9955
0.0075 241.0 4097 0.0537 0.9955 0.9955 0.9955
0.0075 242.0 4114 0.0536 0.9955 0.9955 0.9955
0.007 243.0 4131 0.0536 0.9955 0.9955 0.9955
0.0075 244.0 4148 0.0536 0.9955 0.9955 0.9955
0.0074 245.0 4165 0.0535 0.9955 0.9955 0.9955
0.0078 246.0 4182 0.0535 0.9955 0.9955 0.9955
0.0078 247.0 4199 0.0535 0.9955 0.9955 0.9955
0.0075 248.0 4216 0.0535 0.9955 0.9955 0.9955
0.0074 249.0 4233 0.0535 0.9955 0.9955 0.9955
0.0075 250.0 4250 0.0535 0.9955 0.9955 0.9955

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.5.1+cu121
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
45
Safetensors
Model size
85.8M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for krmin/mahjong_soul_vision

Finetuned
(2446)
this model

Evaluation results