BugFlow Severity Classifier

Fine-tuned CodeBERT model for classifying bug report severity levels.

Labels

  • Low: Minor issues, cosmetic changes
  • Medium: Standard bugs affecting some functionality
  • High: Important bugs affecting major functionality
  • Critical: System crashes, data loss, security issues

Usage

from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch

model = RobertaForSequenceClassification.from_pretrained("YOUR_USERNAME/bugflow-severity-classifier")
tokenizer = RobertaTokenizer.from_pretrained("YOUR_USERNAME/bugflow-severity-classifier")

text = "Application crashes when clicking login button"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
labels = ['low', 'medium', 'high', 'critical']
predicted = labels[torch.argmax(probs).item()]
print(f"Severity: {predicted}")

Training

  • Base model: microsoft/codebert-base
  • Dataset: Custom GitHub issues dataset + domain-specific bugs
  • Fine-tuned using Hugging Face Transformers
Downloads last month
43
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support