BugFlow Team Classifier

Fine-tuned CodeBERT model for assigning bugs to the appropriate development team.

Labels

  • Frontend: UI, CSS, layout, display issues
  • Backend: API, server, database, logic issues
  • Mobile: iOS, Android, mobile app issues
  • DevOps: Deployment, CI/CD, infrastructure issues

Usage

from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch

model = RobertaForSequenceClassification.from_pretrained("YOUR_USERNAME/bugflow-team-classifier")
tokenizer = RobertaTokenizer.from_pretrained("YOUR_USERNAME/bugflow-team-classifier")

text = "Button not responding on click"
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
probs = torch.softmax(outputs.logits, dim=1)
labels = ['Backend', 'Frontend', 'Mobile', 'DevOps']
predicted = labels[torch.argmax(probs).item()]
print(f"Team: {predicted}")

Training

  • Base model: microsoft/codebert-base
  • Dataset: Custom GitHub issues dataset + domain-specific bugs
  • Fine-tuned using Hugging Face Transformers
Downloads last month
38
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support