SetFit with sentence-transformers/paraphrase-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
positive
  • 'tintas esmalte a oleo'
  • 'jogo xicaras'
  • 'cerveja'
negative
  • 'receptor gbr'
  • 'foco roubado'
  • 'unitv v10'

Evaluation

Metrics

Label Accuracy
all 0.8644

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the ๐Ÿค— Hub
model = SetFitModel.from_pretrained("lucasflins/first_model_setfit")
# Run inference
preds = model("sulgador d clitoris")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 2.9880 20
Label Training Sample Count
negative 458
positive 545

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (5, 5)
  • max_steps: -1
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: True

Training Results

Epoch Step Training Loss Validation Loss
0.0010 1 0.3235 -
0.0504 50 0.2952 -
0.1008 100 0.2548 -
0.1512 150 0.2506 -
0.2016 200 0.247 -
0.2520 250 0.2168 -
0.3024 300 0.081 -
0.3528 350 0.0229 -
0.4032 400 0.0114 -
0.4536 450 0.0086 -
0.5040 500 0.0091 -
0.5544 550 0.0059 -
0.6048 600 0.0041 -
0.6552 650 0.0027 -
0.7056 700 0.0016 -
0.7560 750 0.0011 -
0.8065 800 0.001 -
0.8569 850 0.0011 -
0.9073 900 0.0014 -
0.9577 950 0.0009 -
1.0 992 - 0.2117
1.0081 1000 0.0007 -
1.0585 1050 0.0008 -
1.1089 1100 0.0005 -
1.1593 1150 0.0006 -
1.2097 1200 0.0007 -
1.2601 1250 0.0005 -
1.3105 1300 0.0004 -
1.3609 1350 0.0007 -
1.4113 1400 0.0007 -
1.4617 1450 0.0004 -
1.5121 1500 0.0005 -
1.5625 1550 0.0005 -
1.6129 1600 0.0005 -
1.6633 1650 0.0004 -
1.7137 1700 0.0003 -
1.7641 1750 0.0005 -
1.8145 1800 0.0006 -
1.8649 1850 0.0002 -
1.9153 1900 0.0003 -
1.9657 1950 0.0003 -
2.0 1984 - 0.2333
2.0161 2000 0.0003 -
2.0665 2050 0.0005 -
2.1169 2100 0.0005 -
2.1673 2150 0.0003 -
2.2177 2200 0.0002 -
2.2681 2250 0.0004 -
2.3185 2300 0.0006 -
2.3690 2350 0.0005 -
2.4194 2400 0.0001 -
2.4698 2450 0.0005 -
2.5202 2500 0.0006 -
2.5706 2550 0.0004 -
2.6210 2600 0.0004 -
2.6714 2650 0.0004 -
2.7218 2700 0.0001 -
2.7722 2750 0.0001 -
2.8226 2800 0.0001 -
2.8730 2850 0.0001 -
2.9234 2900 0.0001 -
2.9738 2950 0.0002 -
3.0 2976 - 0.2406
3.0242 3000 0.0001 -
3.0746 3050 0.0001 -
3.125 3100 0.0002 -
3.1754 3150 0.0002 -
3.2258 3200 0.0001 -
3.2762 3250 0.0001 -
3.3266 3300 0.0002 -
3.3770 3350 0.0001 -
3.4274 3400 0.0003 -
3.4778 3450 0.0002 -
3.5282 3500 0.0001 -
3.5786 3550 0.0001 -
3.6290 3600 0.0001 -
3.6794 3650 0.0001 -
3.7298 3700 0.0001 -
3.7802 3750 0.0001 -
3.8306 3800 0.0002 -
3.8810 3850 0.0003 -
3.9315 3900 0.0001 -
3.9819 3950 0.0001 -
4.0 3968 - 0.2248
4.0323 4000 0.0002 -
4.0827 4050 0.0001 -
4.1331 4100 0.0001 -
4.1835 4150 0.0002 -
4.2339 4200 0.0001 -
4.2843 4250 0.0001 -
4.3347 4300 0.0001 -
4.3851 4350 0.0001 -
4.4355 4400 0.0001 -
4.4859 4450 0.0001 -
4.5363 4500 0.0001 -
4.5867 4550 0.0001 -
4.6371 4600 0.0001 -
4.6875 4650 0.0001 -
4.7379 4700 0.0001 -
4.7883 4750 0.0001 -
4.8387 4800 0.0001 -
4.8891 4850 0.0001 -
4.9395 4900 0.0001 -
4.9899 4950 0.0001 -
5.0 4960 - 0.2303

Framework Versions

  • Python: 3.12.11
  • SetFit: 1.1.3
  • Sentence Transformers: 5.1.2
  • Transformers: 4.56.2
  • PyTorch: 2.7.1+cu128
  • Datasets: 4.1.1
  • Tokenizers: 0.22.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
15
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lucasflins/first_model_setfit

Finetuned
(318)
this model

Evaluation results