SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
Model Sources
Model Labels
| Label |
Examples |
| positive |
- 'tintas esmalte a oleo'
- 'jogo xicaras'
- 'cerveja'
|
| negative |
- 'receptor gbr'
- 'foco roubado'
- 'unitv v10'
|
Evaluation
Metrics
| Label |
Accuracy |
| all |
0.8644 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
model = SetFitModel.from_pretrained("lucasflins/first_model_setfit")
preds = model("sulgador d clitoris")
Training Details
Training Set Metrics
| Training set |
Min |
Median |
Max |
| Word count |
1 |
2.9880 |
20 |
| Label |
Training Sample Count |
| negative |
458 |
| positive |
545 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (5, 5)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
Training Results
| Epoch |
Step |
Training Loss |
Validation Loss |
| 0.0010 |
1 |
0.3235 |
- |
| 0.0504 |
50 |
0.2952 |
- |
| 0.1008 |
100 |
0.2548 |
- |
| 0.1512 |
150 |
0.2506 |
- |
| 0.2016 |
200 |
0.247 |
- |
| 0.2520 |
250 |
0.2168 |
- |
| 0.3024 |
300 |
0.081 |
- |
| 0.3528 |
350 |
0.0229 |
- |
| 0.4032 |
400 |
0.0114 |
- |
| 0.4536 |
450 |
0.0086 |
- |
| 0.5040 |
500 |
0.0091 |
- |
| 0.5544 |
550 |
0.0059 |
- |
| 0.6048 |
600 |
0.0041 |
- |
| 0.6552 |
650 |
0.0027 |
- |
| 0.7056 |
700 |
0.0016 |
- |
| 0.7560 |
750 |
0.0011 |
- |
| 0.8065 |
800 |
0.001 |
- |
| 0.8569 |
850 |
0.0011 |
- |
| 0.9073 |
900 |
0.0014 |
- |
| 0.9577 |
950 |
0.0009 |
- |
| 1.0 |
992 |
- |
0.2117 |
| 1.0081 |
1000 |
0.0007 |
- |
| 1.0585 |
1050 |
0.0008 |
- |
| 1.1089 |
1100 |
0.0005 |
- |
| 1.1593 |
1150 |
0.0006 |
- |
| 1.2097 |
1200 |
0.0007 |
- |
| 1.2601 |
1250 |
0.0005 |
- |
| 1.3105 |
1300 |
0.0004 |
- |
| 1.3609 |
1350 |
0.0007 |
- |
| 1.4113 |
1400 |
0.0007 |
- |
| 1.4617 |
1450 |
0.0004 |
- |
| 1.5121 |
1500 |
0.0005 |
- |
| 1.5625 |
1550 |
0.0005 |
- |
| 1.6129 |
1600 |
0.0005 |
- |
| 1.6633 |
1650 |
0.0004 |
- |
| 1.7137 |
1700 |
0.0003 |
- |
| 1.7641 |
1750 |
0.0005 |
- |
| 1.8145 |
1800 |
0.0006 |
- |
| 1.8649 |
1850 |
0.0002 |
- |
| 1.9153 |
1900 |
0.0003 |
- |
| 1.9657 |
1950 |
0.0003 |
- |
| 2.0 |
1984 |
- |
0.2333 |
| 2.0161 |
2000 |
0.0003 |
- |
| 2.0665 |
2050 |
0.0005 |
- |
| 2.1169 |
2100 |
0.0005 |
- |
| 2.1673 |
2150 |
0.0003 |
- |
| 2.2177 |
2200 |
0.0002 |
- |
| 2.2681 |
2250 |
0.0004 |
- |
| 2.3185 |
2300 |
0.0006 |
- |
| 2.3690 |
2350 |
0.0005 |
- |
| 2.4194 |
2400 |
0.0001 |
- |
| 2.4698 |
2450 |
0.0005 |
- |
| 2.5202 |
2500 |
0.0006 |
- |
| 2.5706 |
2550 |
0.0004 |
- |
| 2.6210 |
2600 |
0.0004 |
- |
| 2.6714 |
2650 |
0.0004 |
- |
| 2.7218 |
2700 |
0.0001 |
- |
| 2.7722 |
2750 |
0.0001 |
- |
| 2.8226 |
2800 |
0.0001 |
- |
| 2.8730 |
2850 |
0.0001 |
- |
| 2.9234 |
2900 |
0.0001 |
- |
| 2.9738 |
2950 |
0.0002 |
- |
| 3.0 |
2976 |
- |
0.2406 |
| 3.0242 |
3000 |
0.0001 |
- |
| 3.0746 |
3050 |
0.0001 |
- |
| 3.125 |
3100 |
0.0002 |
- |
| 3.1754 |
3150 |
0.0002 |
- |
| 3.2258 |
3200 |
0.0001 |
- |
| 3.2762 |
3250 |
0.0001 |
- |
| 3.3266 |
3300 |
0.0002 |
- |
| 3.3770 |
3350 |
0.0001 |
- |
| 3.4274 |
3400 |
0.0003 |
- |
| 3.4778 |
3450 |
0.0002 |
- |
| 3.5282 |
3500 |
0.0001 |
- |
| 3.5786 |
3550 |
0.0001 |
- |
| 3.6290 |
3600 |
0.0001 |
- |
| 3.6794 |
3650 |
0.0001 |
- |
| 3.7298 |
3700 |
0.0001 |
- |
| 3.7802 |
3750 |
0.0001 |
- |
| 3.8306 |
3800 |
0.0002 |
- |
| 3.8810 |
3850 |
0.0003 |
- |
| 3.9315 |
3900 |
0.0001 |
- |
| 3.9819 |
3950 |
0.0001 |
- |
| 4.0 |
3968 |
- |
0.2248 |
| 4.0323 |
4000 |
0.0002 |
- |
| 4.0827 |
4050 |
0.0001 |
- |
| 4.1331 |
4100 |
0.0001 |
- |
| 4.1835 |
4150 |
0.0002 |
- |
| 4.2339 |
4200 |
0.0001 |
- |
| 4.2843 |
4250 |
0.0001 |
- |
| 4.3347 |
4300 |
0.0001 |
- |
| 4.3851 |
4350 |
0.0001 |
- |
| 4.4355 |
4400 |
0.0001 |
- |
| 4.4859 |
4450 |
0.0001 |
- |
| 4.5363 |
4500 |
0.0001 |
- |
| 4.5867 |
4550 |
0.0001 |
- |
| 4.6371 |
4600 |
0.0001 |
- |
| 4.6875 |
4650 |
0.0001 |
- |
| 4.7379 |
4700 |
0.0001 |
- |
| 4.7883 |
4750 |
0.0001 |
- |
| 4.8387 |
4800 |
0.0001 |
- |
| 4.8891 |
4850 |
0.0001 |
- |
| 4.9395 |
4900 |
0.0001 |
- |
| 4.9899 |
4950 |
0.0001 |
- |
| 5.0 |
4960 |
- |
0.2303 |
Framework Versions
- Python: 3.12.11
- SetFit: 1.1.3
- Sentence Transformers: 5.1.2
- Transformers: 4.56.2
- PyTorch: 2.7.1+cu128
- Datasets: 4.1.1
- Tokenizers: 0.22.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}