- SatDINO: A Deep Dive into Self-Supervised Pretraining for Remote Sensing Self-supervised learning has emerged as a powerful tool for remote sensing, where large amounts of unlabeled data are available. In this work, we investigate the use of DINO, a contrastive self-supervised method, for pretraining on remote sensing imagery. We introduce SatDINO, a model tailored for representation learning in satellite imagery. Through extensive experiments on multiple datasets in multiple testing setups, we demonstrate that SatDINO outperforms other state-of-the-art methods based on much more common masked autoencoders (MAE) and achieves competitive results in multiple benchmarks. We also provide a rigorous ablation study evaluating SatDINO's individual components. Finally, we propose a few novel enhancements, such as a new way to incorporate ground sample distance (GSD) encoding and adaptive view sampling. These enhancements can be used independently on our SatDINO model. Our code and trained models are available at: https://github.com/strakaj/SatDINO. 2 authors · Aug 29
- SatDepth: A Novel Dataset for Satellite Image Matching Recent advances in deep-learning based methods for image matching have demonstrated their superiority over traditional algorithms, enabling correspondence estimation in challenging scenes with significant differences in viewing angles, illumination and weather conditions. However, the existing datasets, learning frameworks, and evaluation metrics for the deep-learning based methods are limited to ground-based images recorded with pinhole cameras and have not been explored for satellite images. In this paper, we present ``SatDepth'', a novel dataset that provides dense ground-truth correspondences for training image matching frameworks meant specifically for satellite images. Satellites capture images from various viewing angles and tracks through multiple revisits over a region. To manage this variability, we propose a dataset balancing strategy through a novel image rotation augmentation procedure. This procedure allows for the discovery of corresponding pixels even in the presence of large rotational differences between the images. We benchmark four existing image matching frameworks using our dataset and carry out an ablation study that confirms that the models trained with our dataset with rotation augmentation outperform (up to 40% increase in precision) the models trained with other datasets, especially when there exist large rotational differences between the images. 2 authors · Mar 16
2 Leveraging multi-task learning to improve the detection of SATD and vulnerability Multi-task learning is a paradigm that leverages information from related tasks to improve the performance of machine learning. Self-Admitted Technical Debt (SATD) are comments in the code that indicate not-quite-right code introduced for short-term needs, i.e., technical debt (TD). Previous research has provided evidence of a possible relationship between SATD and the existence of vulnerabilities in the code. In this work, we investigate if multi-task learning could leverage the information shared between SATD and vulnerabilities to improve the automatic detection of these issues. To this aim, we implemented VulSATD, a deep learner that detects vulnerable and SATD code based on CodeBERT, a pre-trained transformers model. We evaluated VulSATD on MADE-WIC, a fused dataset of functions annotated for TD (through SATD) and vulnerability. We compared the results using single and multi-task approaches, obtaining no significant differences even after employing a weighted loss. Our findings indicate the need for further investigation into the relationship between these two aspects of low-quality code. Specifically, it is possible that only a subset of technical debt is directly associated with security concerns. Therefore, the relationship between different types of technical debt and software vulnerabilities deserves future exploration and a deeper understanding. 3 authors · Jan 27