new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 13

StealthRL: Reinforcement Learning Paraphrase Attacks for Multi-Detector Evasion of AI-Text Detectors

AI-text detectors face a critical robustness challenge: adversarial paraphrasing attacks that preserve semantics while evading detection. We introduce StealthRL, a reinforcement learning framework that stress-tests detector robustness under realistic adversarial conditions. StealthRL trains a paraphrase policy against a multi-detector ensemble using Group Relative Policy Optimization (GRPO) with LoRA adapters on Qwen3-4B, optimizing a composite reward that balances detector evasion with semantic preservation. We evaluate six attack settings (M0-M5) against three detector families (RoBERTa, FastDetectGPT, and Binoculars) at the security-relevant 1% false positive rate operating point. StealthRL achieves near-zero detection (0.001 mean TPR@1%FPR), reduces mean AUROC from 0.74 to 0.27, and attains a 99.9% attack success rate. Critically, attacks transfer to a held-out detector family not seen during training, revealing shared architectural vulnerabilities rather than detector-specific brittleness. We additionally conduct LLM-based quality evaluation via Likert scoring, analyze detector score distributions to explain why evasion succeeds, and provide per-detector AUROC with bootstrap confidence intervals. Our results expose significant robustness gaps in current AI-text detection and establish StealthRL as a principled adversarial evaluation protocol. Code and evaluation pipeline are publicly available at https://github.com/suraj-ranganath/StealthRL.

Reliable Weak-to-Strong Monitoring of LLM Agents

We stress test monitoring systems for detecting covert misbehavior in autonomous LLM agents (e.g., secretly sharing private information). To this end, we systematize a monitor red teaming (MRT) workflow that incorporates: (1) varying levels of agent and monitor situational awareness; (2) distinct adversarial strategies to evade the monitor, such as prompt injection; and (3) two datasets and environments -- SHADE-Arena for tool-calling agents and our new CUA-SHADE-Arena, which extends TheAgentCompany, for computer-use agents. We run MRT on existing LLM monitor scaffoldings, which orchestrate LLMs and parse agent trajectories, alongside a new hybrid hierarchical-sequential scaffolding proposed in this work. Our empirical results yield three key findings. First, agent awareness dominates monitor awareness: an agent's knowledge that it is being monitored substantially degrades the monitor's reliability. On the contrary, providing the monitor with more information about the agent is less helpful than expected. Second, monitor scaffolding matters more than monitor awareness: the hybrid scaffolding consistently outperforms baseline monitor scaffolding, and can enable weaker models to reliably monitor stronger agents -- a weak-to-strong scaling effect. Third, in a human-in-the-loop setting where humans discuss with the LLM monitor to get an updated judgment for the agent's behavior, targeted human oversight is most effective; escalating only pre-flagged cases to human reviewers improved the TPR by approximately 15% at FPR = 0.01. Our work establishes a standard workflow for MRT, highlighting the lack of adversarial robustness for LLMs and humans when monitoring and detecting agent misbehavior. We release code, data, and logs to spur further research.

  • 8 authors
·
Aug 26, 2025