new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 9

Spin pumping by a moving domain wall at the interface of an antiferromagnetic insulator and a two-dimensional metal

A domain wall (DW) which moves parallel to a magnetically compensated interface between an antiferromagnetic insulator (AFMI) and a two-dimensional (2D) metal can pump spin polarization into the metal. It is assumed that localized spins of a collinear AFMI interact with itinerant electrons through their exchange interaction on the interface. We employed the formalism of Keldysh Green's functions for electrons which experience potential and spin-orbit scattering on random impurities. This formalism allows a unified analysis of spin pumping, spin diffusion and spin relaxation effects on a 2D electron gas. It is shown that the pumping of a nonstaggered magnetization into the metal film takes place in the second order with respect to the interface exchange interaction. At sufficiently weak spin relaxation this pumping effect can be much stronger than the first-order effect of the Pauli magnetism which is produced by the small nonstaggered exchange field of the DW. It is shown that the pumped polarization is sensitive to the geometry of the electron's Fermi surface and increases when the wave vector of the staggered magnetization approaches the nesting vector of the Fermi surface. In a disordered diffusive electron gas the induced spin polarization follows the motion of the domain wall. It is distributed asymmetrically around the DW over a distance which can be much larger than the DW width.

  • 1 authors
·
Nov 2, 2022

Ergotropy and Capacity Optimization in Heisenberg Spin Chain Quantum Batteries

This study examines the performance of finite spin quantum batteries (QBs) using Heisenberg spin models with Dzyaloshinsky-Moriya (DM) and Kaplan--Shekhtman--Entin-Wohlman--Aharony (KSEA) interactions. The QBs are modeled as interacting quantum spins in local inhomogeneous magnetic fields, inducing variable Zeeman splitting. We derive analytical expressions for the maximal extractable work, ergotropy and the capacity of QBs, as recently examined by Yang et al. [Phys. Rev. Lett. 131, 030402 (2023)]. These quantities are analytically linked through certain quantum correlations, as posited in the aforementioned study. Different Heisenberg spin chain models exhibit distinct behaviors under varying conditions, emphasizing the importance of model selection for optimizing QB performance. In antiferromagnetic (AFM) systems, maximum ergotropy occurs with a Zeeman splitting field applied to either spin, while ferromagnetic (FM) systems benefit from a uniform Zeeman field. Temperature significantly impacts QB performance, with ergotropy in the AFM case being generally more robust against temperature increases compared to the FM case. Incorporating DM and KSEA couplings can significantly enhance the capacity and ergotropy extraction of QBs. However, there exists a threshold beyond which additional increases in these interactions cause a sharp decline in capacity and ergotropy. This behavior is influenced by temperature and quantum coherence, which signal the occurrence of a sudden phase transition. The resource theory of quantum coherence proposed by Baumgratz et al. [Phys. Rev. Lett. 113, 140401 (2014)] plays a crucial role in enhancing ergotropy and capacity. However, ergotropy is limited by both the system's capacity and the amount of coherence. These findings support the theoretical framework of spin-based QBs and may benefit future research on quantum energy storage devices.

  • 8 authors
·
Jul 31, 2024

Strong pairing and symmetric pseudogap metal in double Kondo lattice model: from nickelate superconductor to tetralayer optical lattice

In this work, we propose and study a double Kondo lattice model which hosts robust superconductivity. The system consists of two identical Kondo lattice model, each with Kondo coupling J_K within each layer, while the localized spin moments are coupled together via an inter-layer on-site antiferromagnetic spin coupling J_perp. We consider the strong J_perp limit, wherein the local moments tend to form rung singlets and are thus gapped. However, the Kondo coupling J_K transmits the inter-layer entanglement between the local moments to the itinerant electrons. Consequently, the itinerant electrons experience a strong inter-layer antiferromangetic spin coupling and form strong inter-layer pairing, which is confirmed through numerical simulation in one dimensional system. Experimentally, the J_K rightarrow -infty limits of the model describes the recently found bilayer nickelate La_3Ni_2O_7, while the J_K>0 side can be realized in tetralayer optical lattice of cold atoms. Two extreme limits, J_K rightarrow -infty and J_K rightarrow +infty limit are shown to be simplified to a bilayer type II t-J model and a bilayer one-orbital t-J model, respectively. Thus, our double Kondo lattice model offers a unified framework for nickelate superconductor and tetralayer optical lattice quantum simulator upon changing the sign of J_K. We highlight both the qualitative similarity and the quantitative difference in the two sides of J_K. Finally, we discuss the possibility of a symmetric Kondo breakdown transition in the model with a symmetric pseudogap metal corresponding to the usual heavy Fermi liquid.

  • 3 authors
·
Aug 2, 2024

On the Electron Pairing Mechanism of Copper-Oxide High Temperature Superconductivity

The elementary CuO2 plane sustaining cuprate high-temperature superconductivity occurs typically at the base of a periodic array of edge-sharing CuO5 pyramids. Virtual transitions of electrons between adjacent planar Cu and O atoms, occurring at a rate t/{hbar} and across the charge-transfer energy gap E, generate 'superexchange' spin-spin interactions of energy Japprox4t^4/E^3 in an antiferromagnetic correlated-insulator state. However, Hole doping the CuO2 plane converts this into a very high temperature superconducting state whose electron-pairing is exceptional. A leading proposal for the mechanism of this intense electron-pairing is that, while hole doping destroys magnetic order it preserves pair-forming superexchange interactions governed by the charge-transfer energy scale E. To explore this hypothesis directly at atomic-scale, we combine single-electron and electron-pair (Josephson) scanning tunneling microscopy to visualize the interplay of E and the electron-pair density nP in {Bi_2Sr_2CaCu_2O_{8+x}}. The responses of both E and nP to alterations in the distance {\delta} between planar Cu and apical O atoms are then determined. These data reveal the empirical crux of strongly correlated superconductivity in CuO2, the response of the electron-pair condensate to varying the charge transfer energy. Concurrence of predictions from strong-correlation theory for hole-doped charge-transfer insulators with these observations, indicates that charge-transfer superexchange is the electron-pairing mechanism of superconductive {Bi_2Sr_2CaCu_2O_{8+x}}.

  • 9 authors
·
Aug 8, 2021