Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
Subscribe'Don't Get Too Technical with Me': A Discourse Structure-Based Framework for Science Journalism
Science journalism refers to the task of reporting technical findings of a scientific paper as a less technical news article to the general public audience. We aim to design an automated system to support this real-world task (i.e., automatic science journalism) by 1) introducing a newly-constructed and real-world dataset (SciTechNews), with tuples of a publicly-available scientific paper, its corresponding news article, and an expert-written short summary snippet; 2) proposing a novel technical framework that integrates a paper's discourse structure with its metadata to guide generation; and, 3) demonstrating with extensive automatic and human experiments that our framework outperforms other baseline methods (e.g. Alpaca and ChatGPT) in elaborating a content plan meaningful for the target audience, simplifying the information selected, and producing a coherent final report in a layman's style.
SciNews: From Scholarly Complexities to Public Narratives -- A Dataset for Scientific News Report Generation
Scientific news reports serve as a bridge, adeptly translating complex research articles into reports that resonate with the broader public. The automated generation of such narratives enhances the accessibility of scholarly insights. In this paper, we present a new corpus to facilitate this paradigm development. Our corpus comprises a parallel compilation of academic publications and their corresponding scientific news reports across nine disciplines. To demonstrate the utility and reliability of our dataset, we conduct an extensive analysis, highlighting the divergences in readability and brevity between scientific news narratives and academic manuscripts. We benchmark our dataset employing state-of-the-art text generation models. The evaluation process involves both automatic and human evaluation, which lays the groundwork for future explorations into the automated generation of scientific news reports. The dataset and code related to this work are available at https://dongqi.me/projects/SciNews.
How can AI agents support journalists' work? An experiment with designing an LLM-driven intelligent reporting system
The integration of artificial intelligence into journalistic practices represents a transformative shift in how news is gathered, analyzed, and disseminated. Large language models (LLMs), particularly those with agentic capabilities, offer unprecedented opportunities for enhancing journalistic workflows while simultaneously presenting complex challenges for newsroom integration. This research explores how agentic LLMs can support journalists' workflows, based on insights from journalist interviews and from the development of an LLM-based automation tool performing information filtering, summarization, and reporting. The paper details automated aggregation and summarization systems for journalists, presents a technical overview and evaluation of a user-centric LLM-driven reporting system (TeleFlash), and discusses both addressed and unmet journalist needs, with an outlook on future directions for AI-driven tools in journalism.
Identifying Informational Sources in News Articles
News articles are driven by the informational sources journalists use in reporting. Modeling when, how and why sources get used together in stories can help us better understand the information we consume and even help journalists with the task of producing it. In this work, we take steps toward this goal by constructing the largest and widest-ranging annotated dataset, to date, of informational sources used in news writing. We show that our dataset can be used to train high-performing models for information detection and source attribution. We further introduce a novel task, source prediction, to study the compositionality of sources in news articles. We show good performance on this task, which we argue is an important proof for narrative science exploring the internal structure of news articles and aiding in planning-based language generation, and an important step towards a source-recommendation system to aid journalists.
Semi-Supervised Exaggeration Detection of Health Science Press Releases
Public trust in science depends on honest and factual communication of scientific papers. However, recent studies have demonstrated a tendency of news media to misrepresent scientific papers by exaggerating their findings. Given this, we present a formalization of and study into the problem of exaggeration detection in science communication. While there are an abundance of scientific papers and popular media articles written about them, very rarely do the articles include a direct link to the original paper, making data collection challenging. We address this by curating a set of labeled press release/abstract pairs from existing expert annotated studies on exaggeration in press releases of scientific papers suitable for benchmarking the performance of machine learning models on the task. Using limited data from this and previous studies on exaggeration detection in science, we introduce MT-PET, a multi-task version of Pattern Exploiting Training (PET), which leverages knowledge from complementary cloze-style QA tasks to improve few-shot learning. We demonstrate that MT-PET outperforms PET and supervised learning both when data is limited, as well as when there is an abundance of data for the main task.
Kosmos: An AI Scientist for Autonomous Discovery
Data-driven scientific discovery requires iterative cycles of literature search, hypothesis generation, and data analysis. Substantial progress has been made towards AI agents that can automate scientific research, but all such agents remain limited in the number of actions they can take before losing coherence, thus limiting the depth of their findings. Here we present Kosmos, an AI scientist that automates data-driven discovery. Given an open-ended objective and a dataset, Kosmos runs for up to 12 hours performing cycles of parallel data analysis, literature search, and hypothesis generation before synthesizing discoveries into scientific reports. Unlike prior systems, Kosmos uses a structured world model to share information between a data analysis agent and a literature search agent. The world model enables Kosmos to coherently pursue the specified objective over 200 agent rollouts, collectively executing an average of 42,000 lines of code and reading 1,500 papers per run. Kosmos cites all statements in its reports with code or primary literature, ensuring its reasoning is traceable. Independent scientists found 79.4% of statements in Kosmos reports to be accurate, and collaborators reported that a single 20-cycle Kosmos run performed the equivalent of 6 months of their own research time on average. Furthermore, collaborators reported that the number of valuable scientific findings generated scales linearly with Kosmos cycles (tested up to 20 cycles). We highlight seven discoveries made by Kosmos that span metabolomics, materials science, neuroscience, and statistical genetics. Three discoveries independently reproduce findings from preprinted or unpublished manuscripts that were not accessed by Kosmos at runtime, while four make novel contributions to the scientific literature.
The AI Scientist-v2: Workshop-Level Automated Scientific Discovery via Agentic Tree Search
AI is increasingly playing a pivotal role in transforming how scientific discoveries are made. We introduce The AI Scientist-v2, an end-to-end agentic system capable of producing the first entirely AI generated peer-review-accepted workshop paper. This system iteratively formulates scientific hypotheses, designs and executes experiments, analyzes and visualizes data, and autonomously authors scientific manuscripts. Compared to its predecessor (v1, Lu et al., 2024 arXiv:2408.06292), The AI Scientist-v2 eliminates the reliance on human-authored code templates, generalizes effectively across diverse machine learning domains, and leverages a novel progressive agentic tree-search methodology managed by a dedicated experiment manager agent. Additionally, we enhance the AI reviewer component by integrating a Vision-Language Model (VLM) feedback loop for iterative refinement of content and aesthetics of the figures. We evaluated The AI Scientist-v2 by submitting three fully autonomous manuscripts to a peer-reviewed ICLR workshop. Notably, one manuscript achieved high enough scores to exceed the average human acceptance threshold, marking the first instance of a fully AI-generated paper successfully navigating a peer review. This accomplishment highlights the growing capability of AI in conducting all aspects of scientific research. We anticipate that further advancements in autonomous scientific discovery technologies will profoundly impact human knowledge generation, enabling unprecedented scalability in research productivity and significantly accelerating scientific breakthroughs, greatly benefiting society at large. We have open-sourced the code at https://github.com/SakanaAI/AI-Scientist-v2 to foster the future development of this transformative technology. We also discuss the role of AI in science, including AI safety.
AutoCast++: Enhancing World Event Prediction with Zero-shot Ranking-based Context Retrieval
Machine-based prediction of real-world events is garnering attention due to its potential for informed decision-making. Whereas traditional forecasting predominantly hinges on structured data like time-series, recent breakthroughs in language models enable predictions using unstructured text. In particular, (Zou et al., 2022) unveils AutoCast, a new benchmark that employs news articles for answering forecasting queries. Nevertheless, existing methods still trail behind human performance. The cornerstone of accurate forecasting, we argue, lies in identifying a concise, yet rich subset of news snippets from a vast corpus. With this motivation, we introduce AutoCast++, a zero-shot ranking-based context retrieval system, tailored to sift through expansive news document collections for event forecasting. Our approach first re-ranks articles based on zero-shot question-passage relevance, honing in on semantically pertinent news. Following this, the chosen articles are subjected to zero-shot summarization to attain succinct context. Leveraging a pre-trained language model, we conduct both the relevance evaluation and article summarization without needing domain-specific training. Notably, recent articles can sometimes be at odds with preceding ones due to new facts or unanticipated incidents, leading to fluctuating temporal dynamics. To tackle this, our re-ranking mechanism gives preference to more recent articles, and we further regularize the multi-passage representation learning to align with human forecaster responses made on different dates. Empirical results underscore marked improvements across multiple metrics, improving the performance for multiple-choice questions (MCQ) by 48% and true/false (TF) questions by up to 8%.
Evaluating small vision-language models as AI assistants for radio astronomical source analysis tasks
The advent of next-generation radio telescopes is set to transform radio astronomy by producing massive data volumes that challenge traditional processing methods. Deep learning techniques have shown strong potential in automating radio analysis tasks, yet are often constrained by the limited availability of large annotated datasets. Recent progress in self-supervised learning has led to foundational radio vision models, but adapting them for new tasks typically requires coding expertise, limiting their accessibility to a broader astronomical community. Text-based AI interfaces offer a promising alternative by enabling task-specific queries and example-driven learning. In this context, Large Language Models (LLMs), with their remarkable zero-shot capabilities, are increasingly used in scientific domains. However, deploying large-scale models remains resource-intensive, and there is a growing demand for AI systems that can reason over both visual and textual data in astronomical analysis. This study explores small-scale Vision-Language Models (VLMs) as AI assistants for radio astronomy, combining LLM capabilities with vision transformers. We fine-tuned the LLaVA VLM on a dataset of 59k radio images from multiple surveys, enriched with 38k image-caption pairs from the literature. The fine-tuned models show clear improvements over base models in radio-specific tasks, achieving ~30% F1-score gains in extended source detection, but they underperform pure vision models and exhibit ~20% drop on general multimodal tasks. Inclusion of caption data and LoRA fine-tuning enhances instruction-following and helps recover ~10% accuracy on standard benchmarks. This work lays the foundation for future advancements in radio VLMs, highlighting their potential and limitations, such as the need for better multimodal alignment, higher-quality datasets, and mitigation of catastrophic forgetting.
The AI Scientist: Towards Fully Automated Open-Ended Scientific Discovery
One of the grand challenges of artificial general intelligence is developing agents capable of conducting scientific research and discovering new knowledge. While frontier models have already been used as aids to human scientists, e.g. for brainstorming ideas, writing code, or prediction tasks, they still conduct only a small part of the scientific process. This paper presents the first comprehensive framework for fully automatic scientific discovery, enabling frontier large language models to perform research independently and communicate their findings. We introduce The AI Scientist, which generates novel research ideas, writes code, executes experiments, visualizes results, describes its findings by writing a full scientific paper, and then runs a simulated review process for evaluation. In principle, this process can be repeated to iteratively develop ideas in an open-ended fashion, acting like the human scientific community. We demonstrate its versatility by applying it to three distinct subfields of machine learning: diffusion modeling, transformer-based language modeling, and learning dynamics. Each idea is implemented and developed into a full paper at a cost of less than $15 per paper. To evaluate the generated papers, we design and validate an automated reviewer, which we show achieves near-human performance in evaluating paper scores. The AI Scientist can produce papers that exceed the acceptance threshold at a top machine learning conference as judged by our automated reviewer. This approach signifies the beginning of a new era in scientific discovery in machine learning: bringing the transformative benefits of AI agents to the entire research process of AI itself, and taking us closer to a world where endless affordable creativity and innovation can be unleashed on the world's most challenging problems. Our code is open-sourced at https://github.com/SakanaAI/AI-Scientist
Modeling Information Change in Science Communication with Semantically Matched Paraphrases
Whether the media faithfully communicate scientific information has long been a core issue to the science community. Automatically identifying paraphrased scientific findings could enable large-scale tracking and analysis of information changes in the science communication process, but this requires systems to understand the similarity between scientific information across multiple domains. To this end, we present the SCIENTIFIC PARAPHRASE AND INFORMATION CHANGE DATASET (SPICED), the first paraphrase dataset of scientific findings annotated for degree of information change. SPICED contains 6,000 scientific finding pairs extracted from news stories, social media discussions, and full texts of original papers. We demonstrate that SPICED poses a challenging task and that models trained on SPICED improve downstream performance on evidence retrieval for fact checking of real-world scientific claims. Finally, we show that models trained on SPICED can reveal large-scale trends in the degrees to which people and organizations faithfully communicate new scientific findings. Data, code, and pre-trained models are available at http://www.copenlu.com/publication/2022_emnlp_wright/.
Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine
Pre-trained language models (PLM) based on transformer neural networks developed in the field of natural language processing (NLP) offer great opportunities to improve automatic content analysis in communication science, especially for the coding of complex semantic categories in large datasets via supervised machine learning. However, three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs. In this study, we address these challenges by using a multilingual transformer model in combination with the adapter extension to transformers, and few-shot learning methods. We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine. In three experiments, we evaluate (1) data preprocessing strategies and model variants for this task, (2) the performance of different few-shot learning methods, and (3) how well the best setup performs on varying training set sizes in terms of validity, reliability, replicability and reproducibility of the results. We find that our proposed combination of transformer adapters with pattern exploiting training provides a parameter-efficient and easily shareable alternative to fully fine-tuning PLMs. It performs on par in terms of validity, while overall, provides better properties for application in communication studies. The results also show that pre-fine-tuning for a task on a near-domain dataset leads to substantial improvement, in particular in the few-shot setting. Further, the results indicate that it is useful to bias the dataset away from the viewpoints of specific prominent individuals.
Multi-Modal Framing Analysis of News
Automated frame analysis of political communication is a popular task in computational social science that is used to study how authors select aspects of a topic to frame its reception. So far, such studies have been narrow, in that they use a fixed set of pre-defined frames and focus only on the text, ignoring the visual contexts in which those texts appear. Especially for framing in the news, this leaves out valuable information about editorial choices, which include not just the written article but also accompanying photographs. To overcome such limitations, we present a method for conducting multi-modal, multi-label framing analysis at scale using large (vision-)language models. Grounding our work in framing theory, we extract latent meaning embedded in images used to convey a certain point and contrast that to the text by comparing the respective frames used. We also identify highly partisan framing of topics with issue-specific frame analysis found in prior qualitative work. We demonstrate a method for doing scalable integrative framing analysis of both text and image in news, providing a more complete picture for understanding media bias.
AI vs. Human -- Differentiation Analysis of Scientific Content Generation
Recent neural language models have taken a significant step forward in producing remarkably controllable, fluent, and grammatical text. Although studies have found that AI-generated text is not distinguishable from human-written text for crowd-sourcing workers, there still exist errors in AI-generated text which are even subtler and harder to spot. We primarily focus on the scenario in which scientific AI writing assistant is deeply involved. First, we construct a feature description framework to distinguish between AI-generated text and human-written text from syntax, semantics, and pragmatics based on the human evaluation. Then we utilize the features, i.e., writing style, coherence, consistency, and argument logistics, from the proposed framework to analyze two types of content. Finally, we adopt several publicly available methods to investigate the gap of between AI-generated scientific text and human-written scientific text by AI-generated scientific text detection models. The results suggest that while AI has the potential to generate scientific content that is as accurate as human-written content, there is still a gap in terms of depth and overall quality. The AI-generated scientific content is more likely to contain errors in factual issues. We find that there exists a "writing style" gap between AI-generated scientific text and human-written scientific text. Based on the analysis result, we summarize a series of model-agnostic and distribution-agnostic features for detection tasks in other domains. Findings in this paper contribute to guiding the optimization of AI models to produce high-quality content and addressing related ethical and security concerns.
AIGS: Generating Science from AI-Powered Automated Falsification
Rapid development of artificial intelligence has drastically accelerated the development of scientific discovery. Trained with large-scale observation data, deep neural networks extract the underlying patterns in an end-to-end manner and assist human researchers with highly-precised predictions in unseen scenarios. The recent rise of Large Language Models (LLMs) and the empowered autonomous agents enable scientists to gain help through interaction in different stages of their research, including but not limited to literature review, research ideation, idea implementation, and academic writing. However, AI researchers instantiated by foundation model empowered agents with full-process autonomy are still in their infancy. In this paper, we study AI-Generated Science (AIGS), where agents independently and autonomously complete the entire research process and discover scientific laws. By revisiting the definition of scientific research, we argue that falsification is the essence of both human research process and the design of an AIGS system. Through the lens of falsification, prior systems attempting towards AI-Generated Science either lack the part in their design, or rely heavily on existing verification engines that narrow the use in specialized domains. In this work, we propose Baby-AIGS as a baby-step demonstration of a full-process AIGS system, which is a multi-agent system with agents in roles representing key research process. By introducing FalsificationAgent, which identify and then verify possible scientific discoveries, we empower the system with explicit falsification. Experiments on three tasks preliminarily show that Baby-AIGS could produce meaningful scientific discoveries, though not on par with experienced human researchers. Finally, we discuss on the limitations of current Baby-AIGS, actionable insights, and related ethical issues in detail.
Forecasting Future World Events with Neural Networks
Forecasting future world events is a challenging but valuable task. Forecasts of climate, geopolitical conflict, pandemics and economic indicators help shape policy and decision making. In these domains, the judgment of expert humans contributes to the best forecasts. Given advances in language modeling, can these forecasts be automated? To this end, we introduce Autocast, a dataset containing thousands of forecasting questions and an accompanying news corpus. Questions are taken from forecasting tournaments, ensuring high quality, real-world importance, and diversity. The news corpus is organized by date, allowing us to precisely simulate the conditions under which humans made past forecasts (avoiding leakage from the future). Motivated by the difficulty of forecasting numbers across orders of magnitude (e.g. global cases of COVID-19 in 2022), we also curate IntervalQA, a dataset of numerical questions and metrics for calibration. We test language models on our forecasting task and find that performance is far below a human expert baseline. However, performance improves with increased model size and incorporation of relevant information from the news corpus. In sum, Autocast poses a novel challenge for large language models and improved performance could bring large practical benefits.
Delving into the Utilisation of ChatGPT in Scientific Publications in Astronomy
Rapid progress in the capabilities of machine learning approaches in natural language processing has culminated in the rise of large language models over the last two years. Recent works have shown unprecedented adoption of these for academic writing, especially in some fields, but their pervasiveness in astronomy has not been studied sufficiently. To remedy this, we extract words that ChatGPT uses more often than humans when generating academic text and search a total of 1 million articles for them. This way, we assess the frequency of word occurrence in published works in astronomy tracked by the NASA Astrophysics Data System since 2000. We then perform a statistical analysis of the occurrences. We identify a list of words favoured by ChatGPT and find a statistically significant increase for these words against a control group in 2024, which matches the trend in other disciplines. These results suggest a widespread adoption of these models in the writing of astronomy papers. We encourage organisations, publishers, and researchers to work together to identify ethical and pragmatic guidelines to maximise the benefits of these systems while maintaining scientific rigour.
Jr. AI Scientist and Its Risk Report: Autonomous Scientific Exploration from a Baseline Paper
Understanding the current capabilities and risks of AI Scientist systems is essential for ensuring trustworthy and sustainable AI-driven scientific progress while preserving the integrity of the academic ecosystem. To this end, we develop Jr. AI Scientist, a state-of-the-art autonomous AI scientist system that mimics the core research workflow of a novice student researcher: Given the baseline paper from the human mentor, it analyzes its limitations, formulates novel hypotheses for improvement, validates them through rigorous experimentation, and writes a paper with the results. Unlike previous approaches that assume full automation or operate on small-scale code, Jr. AI Scientist follows a well-defined research workflow and leverages modern coding agents to handle complex, multi-file implementations, leading to scientifically valuable contributions. For evaluation, we conducted automated assessments using AI Reviewers, author-led evaluations, and submissions to Agents4Science, a venue dedicated to AI-driven scientific contributions. The findings demonstrate that Jr. AI Scientist generates papers receiving higher review scores than existing fully automated systems. Nevertheless, we identify important limitations from both the author evaluation and the Agents4Science reviews, indicating the potential risks of directly applying current AI Scientist systems and key challenges for future research. Finally, we comprehensively report various risks identified during development. We hope these insights will deepen understanding of current progress and risks in AI Scientist development.
A Massive Scale Semantic Similarity Dataset of Historical English
A diversity of tasks use language models trained on semantic similarity data. While there are a variety of datasets that capture semantic similarity, they are either constructed from modern web data or are relatively small datasets created in the past decade by human annotators. This study utilizes a novel source, newly digitized articles from off-copyright, local U.S. newspapers, to assemble a massive-scale semantic similarity dataset spanning 70 years from 1920 to 1989 and containing nearly 400M positive semantic similarity pairs. Historically, around half of articles in U.S. local newspapers came from newswires like the Associated Press. While local papers reproduced articles from the newswire, they wrote their own headlines, which form abstractive summaries of the associated articles. We associate articles and their headlines by exploiting document layouts and language understanding. We then use deep neural methods to detect which articles are from the same underlying source, in the presence of substantial noise and abridgement. The headlines of reproduced articles form positive semantic similarity pairs. The resulting publicly available HEADLINES dataset is significantly larger than most existing semantic similarity datasets and covers a much longer span of time. It will facilitate the application of contrastively trained semantic similarity models to a variety of tasks, including the study of semantic change across space and time.
AutoRev: Automatic Peer Review System for Academic Research Papers
Generating a review for an academic research paper is a complex task that requires a deep understanding of the document's content and the interdependencies between its sections. It demands not only insight into technical details but also an appreciation of the paper's overall coherence and structure. Recent methods have predominantly focused on fine-tuning large language models (LLMs) to address this challenge. However, they often overlook the computational and performance limitations imposed by long input token lengths. To address this, we introduce AutoRev, an Automatic Peer Review System for Academic Research Papers. Our novel framework represents an academic document as a graph, enabling the extraction of the most critical passages that contribute significantly to the review. This graph-based approach demonstrates effectiveness for review generation and is potentially adaptable to various downstream tasks, such as question answering, summarization, and document representation. When applied to review generation, our method outperforms SOTA baselines by an average of 58.72% across all evaluation metrics. We hope that our work will stimulate further research in applying graph-based extraction techniques to other downstream tasks in NLP. We plan to make our code public upon acceptance.
pathfinder: A Semantic Framework for Literature Review and Knowledge Discovery in Astronomy
The exponential growth of astronomical literature poses significant challenges for researchers navigating and synthesizing general insights or even domain-specific knowledge. We present Pathfinder, a machine learning framework designed to enable literature review and knowledge discovery in astronomy, focusing on semantic searching with natural language instead of syntactic searches with keywords. Utilizing state-of-the-art large language models (LLMs) and a corpus of 350,000 peer-reviewed papers from the Astrophysics Data System (ADS), Pathfinder offers an innovative approach to scientific inquiry and literature exploration. Our framework couples advanced retrieval techniques with LLM-based synthesis to search astronomical literature by semantic context as a complement to currently existing methods that use keywords or citation graphs. It addresses complexities of jargon, named entities, and temporal aspects through time-based and citation-based weighting schemes. We demonstrate the tool's versatility through case studies, showcasing its application in various research scenarios. The system's performance is evaluated using custom benchmarks, including single-paper and multi-paper tasks. Beyond literature review, Pathfinder offers unique capabilities for reformatting answers in ways that are accessible to various audiences (e.g. in a different language or as simplified text), visualizing research landscapes, and tracking the impact of observatories and methodologies. This tool represents a significant advancement in applying AI to astronomical research, aiding researchers at all career stages in navigating modern astronomy literature.
CycleResearcher: Improving Automated Research via Automated Review
The automation of scientific discovery has been a long-standing goal within the research community, driven by the potential to accelerate knowledge creation. While significant progress has been made using commercial large language models (LLMs) as research assistants or idea generators, the possibility of automating the entire research process with open-source LLMs remains largely unexplored. This paper explores the feasibility of using open-source post-trained LLMs as autonomous agents capable of performing the full cycle of automated research and review, from literature review and manuscript preparation to peer review and paper revision. Our iterative preference training framework consists of CycleResearcher, which conducts research tasks, and CycleReviewer, which simulates the peer review process, providing iterative feedback via reinforcement learning. To train these models, we develop two new datasets, Review-5k and Research-14k, reflecting real-world machine learning research and peer review dynamics. Our results demonstrate that CycleReviewer achieves a 26.89\% improvement in mean absolute error (MAE) over individual human reviewers in predicting paper scores, indicating that LLMs can surpass expert-level performance in research evaluation. In research, the papers generated by the CycleResearcher model achieved a score of 5.36 in simulated peer reviews, surpassing the preprint level of 5.24 from human experts and approaching the accepted paper level of 5.69. This work represents a significant step toward fully automated scientific inquiry, providing ethical safeguards and advancing AI-driven research capabilities. The code, dataset and model weight are released at http://github/minjun-zhu/Researcher.
The AI Cosmologist I: An Agentic System for Automated Data Analysis
We present the AI Cosmologist, an agentic system designed to automate cosmological/astronomical data analysis and machine learning research workflows. This implements a complete pipeline from idea generation to experimental evaluation and research dissemination, mimicking the scientific process typically performed by human researchers. The system employs specialized agents for planning, coding, execution, analysis, and synthesis that work together to develop novel approaches. Unlike traditional auto machine-learning systems, the AI Cosmologist generates diverse implementation strategies, writes complete code, handles execution errors, analyzes results, and synthesizes new approaches based on experimental outcomes. We demonstrate the AI Cosmologist capabilities across several machine learning tasks, showing how it can successfully explore solution spaces, iterate based on experimental results, and combine successful elements from different approaches. Our results indicate that agentic systems can automate portions of the research process, potentially accelerating scientific discovery. The code and experimental data used in this paper are available on GitHub at https://github.com/adammoss/aicosmologist. Example papers included in the appendix demonstrate the system's capability to autonomously produce complete scientific publications, starting from only the dataset and task description
When AI Co-Scientists Fail: SPOT-a Benchmark for Automated Verification of Scientific Research
Recent advances in large language models (LLMs) have fueled the vision of automated scientific discovery, often called AI Co-Scientists. To date, prior work casts these systems as generative co-authors responsible for crafting hypotheses, synthesizing code, or drafting manuscripts. In this work, we explore a complementary application: using LLMs as verifiers to automate the academic verification of scientific manuscripts. To that end, we introduce SPOT, a dataset of 83 published papers paired with 91 errors significant enough to prompt errata or retraction, cross-validated with actual authors and human annotators. Evaluating state-of-the-art LLMs on SPOT, we find that none surpasses 21.1\% recall or 6.1\% precision (o3 achieves the best scores, with all others near zero). Furthermore, confidence estimates are uniformly low, and across eight independent runs, models rarely rediscover the same errors, undermining their reliability. Finally, qualitative analysis with domain experts reveals that even the strongest models make mistakes resembling student-level misconceptions derived from misunderstandings. These findings highlight the substantial gap between current LLM capabilities and the requirements for dependable AI-assisted academic verification.
A Comprehensive Dataset for Human vs. AI Generated Text Detection
The rapid advancement of large language models (LLMs) has led to increasingly human-like AI-generated text, raising concerns about content authenticity, misinformation, and trustworthiness. Addressing the challenge of reliably detecting AI-generated text and attributing it to specific models requires large-scale, diverse, and well-annotated datasets. In this work, we present a comprehensive dataset comprising over 58,000 text samples that combine authentic New York Times articles with synthetic versions generated by multiple state-of-the-art LLMs including Gemma-2-9b, Mistral-7B, Qwen-2-72B, LLaMA-8B, Yi-Large, and GPT-4-o. The dataset provides original article abstracts as prompts, full human-authored narratives. We establish baseline results for two key tasks: distinguishing human-written from AI-generated text, achieving an accuracy of 58.35\%, and attributing AI texts to their generating models with an accuracy of 8.92\%. By bridging real-world journalistic content with modern generative models, the dataset aims to catalyze the development of robust detection and attribution methods, fostering trust and transparency in the era of generative AI. Our dataset is available at: https://huggingface.co/datasets/gsingh1-py/train.
J-Guard: Journalism Guided Adversarially Robust Detection of AI-generated News
The rapid proliferation of AI-generated text online is profoundly reshaping the information landscape. Among various types of AI-generated text, AI-generated news presents a significant threat as it can be a prominent source of misinformation online. While several recent efforts have focused on detecting AI-generated text in general, these methods require enhanced reliability, given concerns about their vulnerability to simple adversarial attacks. Furthermore, due to the eccentricities of news writing, applying these detection methods for AI-generated news can produce false positives, potentially damaging the reputation of news organizations. To address these challenges, we leverage the expertise of an interdisciplinary team to develop a framework, J-Guard, capable of steering existing supervised AI text detectors for detecting AI-generated news while boosting adversarial robustness. By incorporating stylistic cues inspired by the unique journalistic attributes, J-Guard effectively distinguishes between real-world journalism and AI-generated news articles. Our experiments on news articles generated by a vast array of AI models, including ChatGPT (GPT3.5), demonstrate the effectiveness of J-Guard in enhancing detection capabilities while maintaining an average performance decrease of as low as 7% when faced with adversarial attacks.
Agentic AI for Scientific Discovery: A Survey of Progress, Challenges, and Future Directions
The integration of Agentic AI into scientific discovery marks a new frontier in research automation. These AI systems, capable of reasoning, planning, and autonomous decision-making, are transforming how scientists perform literature review, generate hypotheses, conduct experiments, and analyze results. This survey provides a comprehensive overview of Agentic AI for scientific discovery, categorizing existing systems and tools, and highlighting recent progress across fields such as chemistry, biology, and materials science. We discuss key evaluation metrics, implementation frameworks, and commonly used datasets to offer a detailed understanding of the current state of the field. Finally, we address critical challenges, such as literature review automation, system reliability, and ethical concerns, while outlining future research directions that emphasize human-AI collaboration and enhanced system calibration.
Science Checker: Extractive-Boolean Question Answering For Scientific Fact Checking
With the explosive growth of scientific publications, making the synthesis of scientific knowledge and fact checking becomes an increasingly complex task. In this paper, we propose a multi-task approach for verifying the scientific questions based on a joint reasoning from facts and evidence in research articles. We propose an intelligent combination of (1) an automatic information summarization and (2) a Boolean Question Answering which allows to generate an answer to a scientific question from only extracts obtained after summarization. Thus on a given topic, our proposed approach conducts structured content modeling based on paper abstracts to answer a scientific question while highlighting texts from paper that discuss the topic. We based our final system on an end-to-end Extractive Question Answering (EQA) combined with a three outputs classification model to perform in-depth semantic understanding of a question to illustrate the aggregation of multiple responses. With our light and fast proposed architecture, we achieved an average error rate of 4% and a F1-score of 95.6%. Our results are supported via experiments with two QA models (BERT, RoBERTa) over 3 Million Open Access (OA) articles in the medical and health domains on Europe PMC.
AstaBench: Rigorous Benchmarking of AI Agents with a Scientific Research Suite
AI agents hold the potential to revolutionize scientific productivity by automating literature reviews, replicating experiments, analyzing data, and even proposing new directions of inquiry; indeed, there are now many such agents, ranging from general-purpose "deep research" systems to specialized science-specific agents, such as AI Scientist and AIGS. Rigorous evaluation of these agents is critical for progress. Yet existing benchmarks fall short on several fronts: they (1) fail to provide holistic, product-informed measures of real-world use cases such as science research; (2) lack reproducible agent tools necessary for a controlled comparison of core agentic capabilities; (3) do not account for confounding variables such as model cost and tool access; (4) do not provide standardized interfaces for quick agent prototyping and evaluation; and (5) lack comprehensive baseline agents necessary to identify true advances. In response, we define principles and tooling for more rigorously benchmarking agents. Using these, we present AstaBench, a suite that provides the first holistic measure of agentic ability to perform scientific research, comprising 2400+ problems spanning the entire scientific discovery process and multiple scientific domains, and including many problems inspired by actual user requests to deployed Asta agents. Our suite comes with the first scientific research environment with production-grade search tools that enable controlled, reproducible evaluation, better accounting for confounders. Alongside, we provide a comprehensive suite of nine science-optimized classes of Asta agents and numerous baselines. Our extensive evaluation of 57 agents across 22 agent classes reveals several interesting findings, most importantly that despite meaningful progress on certain individual aspects, AI remains far from solving the challenge of science research assistance.
TeClass: A Human-Annotated Relevance-based Headline Classification and Generation Dataset for Telugu
News headline generation is a crucial task in increasing productivity for both the readers and producers of news. This task can easily be aided by automated News headline-generation models. However, the presence of irrelevant headlines in scraped news articles results in sub-optimal performance of generation models. We propose that relevance-based headline classification can greatly aid the task of generating relevant headlines. Relevance-based headline classification involves categorizing news headlines based on their relevance to the corresponding news articles. While this task is well-established in English, it remains under-explored in low-resource languages like Telugu due to a lack of annotated data. To address this gap, we present TeClass, the first-ever human-annotated Telugu news headline classification dataset, containing 78,534 annotations across 26,178 article-headline pairs. We experiment with various baseline models and provide a comprehensive analysis of their results. We further demonstrate the impact of this work by fine-tuning various headline generation models using TeClass dataset. The headlines generated by the models fine-tuned on highly relevant article-headline pairs, showed about a 5 point increment in the ROUGE-L scores. To encourage future research, the annotated dataset as well as the annotation guidelines will be made publicly available.
Spacer: Towards Engineered Scientific Inspiration
Recent advances in LLMs have made automated scientific research the next frontline in the path to artificial superintelligence. However, these systems are bound either to tasks of narrow scope or the limited creative capabilities of LLMs. We propose Spacer, a scientific discovery system that develops creative and factually grounded concepts without external intervention. Spacer attempts to achieve this via 'deliberate decontextualization,' an approach that disassembles information into atomic units - keywords - and draws creativity from unexplored connections between them. Spacer consists of (i) Nuri, an inspiration engine that builds keyword sets, and (ii) the Manifesting Pipeline that refines these sets into elaborate scientific statements. Nuri extracts novel, high-potential keyword sets from a keyword graph built with 180,000 academic publications in biological fields. The Manifesting Pipeline finds links between keywords, analyzes their logical structure, validates their plausibility, and ultimately drafts original scientific concepts. According to our experiments, the evaluation metric of Nuri accurately classifies high-impact publications with an AUROC score of 0.737. Our Manifesting Pipeline also successfully reconstructs core concepts from the latest top-journal articles solely from their keyword sets. An LLM-based scoring system estimates that this reconstruction was sound for over 85% of the cases. Finally, our embedding space analysis shows that outputs from Spacer are significantly more similar to leading publications compared with those from SOTA LLMs.
Fact or Fiction: Verifying Scientific Claims
We introduce scientific claim verification, a new task to select abstracts from the research literature containing evidence that SUPPORTS or REFUTES a given scientific claim, and to identify rationales justifying each decision. To study this task, we construct SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts annotated with labels and rationales. We develop baseline models for SciFact, and demonstrate that simple domain adaptation techniques substantially improve performance compared to models trained on Wikipedia or political news. We show that our system is able to verify claims related to COVID-19 by identifying evidence from the CORD-19 corpus. Our experiments indicate that SciFact will provide a challenging testbed for the development of new systems designed to retrieve and reason over corpora containing specialized domain knowledge. Data and code for this new task are publicly available at https://github.com/allenai/scifact. A leaderboard and COVID-19 fact-checking demo are available at https://scifact.apps.allenai.org.
Understanding News Creation Intents: Frame, Dataset, and Method
As the disruptive changes in the media economy and the proliferation of alternative news media outlets, news intent has progressively deviated from ethical standards that serve the public interest. News intent refers to the purpose or intention behind the creation of a news article. While the significance of research on news intent has been widely acknowledged, the absence of a systematic news intent understanding framework hinders further exploration of news intent and its downstream applications. To bridge this gap, we propose News INTent (NINT) frame, the first component-aware formalism for understanding the news creation intent based on research in philosophy, psychology, and cognitive science. Within this frame, we define the news intent identification task and provide a benchmark dataset with fine-grained labels along with an efficient benchmark method. Experiments demonstrate that NINT is beneficial in both the intent identification task and downstream tasks that demand a profound understanding of news. This work marks a foundational step towards a more systematic exploration of news creation intents.
AutoPR: Let's Automate Your Academic Promotion!
As the volume of peer-reviewed research surges, scholars increasingly rely on social platforms for discovery, while authors invest considerable effort in promoting their work to ensure visibility and citations. To streamline this process and reduce the reliance on human effort, we introduce Automatic Promotion (AutoPR), a novel task that transforms research papers into accurate, engaging, and timely public content. To enable rigorous evaluation, we release PRBench, a multimodal benchmark that links 512 peer-reviewed articles to high-quality promotional posts, assessing systems along three axes: Fidelity (accuracy and tone), Engagement (audience targeting and appeal), and Alignment (timing and channel optimization). We also introduce PRAgent, a multi-agent framework that automates AutoPR in three stages: content extraction with multimodal preparation, collaborative synthesis for polished outputs, and platform-specific adaptation to optimize norms, tone, and tagging for maximum reach. When compared to direct LLM pipelines on PRBench, PRAgent demonstrates substantial improvements, including a 604% increase in total watch time, a 438% rise in likes, and at least a 2.9x boost in overall engagement. Ablation studies show that platform modeling and targeted promotion contribute the most to these gains. Our results position AutoPR as a tractable, measurable research problem and provide a roadmap for scalable, impactful automated scholarly communication.
VideoAgent: Personalized Synthesis of Scientific Videos
Automating the generation of scientific videos is a crucial yet challenging task for effective knowledge dissemination. However, existing works on document automation primarily focus on static media such as posters and slides, lacking mechanisms for personalized dynamic orchestration and multimodal content synchronization. To address these challenges, we introduce VideoAgent, a novel multi-agent framework that synthesizes personalized scientific videos through a conversational interface. VideoAgent parses a source paper into a fine-grained asset library and, guided by user requirements, orchestrates a narrative flow that synthesizes both static slides and dynamic animations to explain complex concepts. To enable rigorous evaluation, we also propose SciVidEval, the first comprehensive suite for this task, which combines automated metrics for multimodal content quality and synchronization with a Video-Quiz-based human evaluation to measure knowledge transfer. Extensive experiments demonstrate that our method significantly outperforms existing commercial scientific video generation services and approaches human-level quality in scientific communication.
SciClaimHunt: A Large Dataset for Evidence-based Scientific Claim Verification
Verifying scientific claims presents a significantly greater challenge than verifying political or news-related claims. Unlike the relatively broad audience for political claims, the users of scientific claim verification systems can vary widely, ranging from researchers testing specific hypotheses to everyday users seeking information on a medication. Additionally, the evidence for scientific claims is often highly complex, involving technical terminology and intricate domain-specific concepts that require specialized models for accurate verification. Despite considerable interest from the research community, there is a noticeable lack of large-scale scientific claim verification datasets to benchmark and train effective models. To bridge this gap, we introduce two large-scale datasets, SciClaimHunt and SciClaimHunt_Num, derived from scientific research papers. We propose several baseline models tailored for scientific claim verification to assess the effectiveness of these datasets. Additionally, we evaluate models trained on SciClaimHunt and SciClaimHunt_Num against existing scientific claim verification datasets to gauge their quality and reliability. Furthermore, we conduct human evaluations of the claims in proposed datasets and perform error analysis to assess the effectiveness of the proposed baseline models. Our findings indicate that SciClaimHunt and SciClaimHunt_Num serve as highly reliable resources for training models in scientific claim verification.
Breaking News: Case Studies of Generative AI's Use in Journalism
Journalists are among the many users of large language models (LLMs). To better understand the journalist-AI interactions, we conduct a study of LLM usage by two news agencies through browsing the WildChat dataset, identifying candidate interactions, and verifying them by matching to online published articles. Our analysis uncovers instances where journalists provide sensitive material such as confidential correspondence with sources or articles from other agencies to the LLM as stimuli and prompt it to generate articles, and publish these machine-generated articles with limited intervention (median output-publication ROUGE-L of 0.62). Based on our findings, we call for further research into what constitutes responsible use of AI, and the establishment of clear guidelines and best practices on using LLMs in a journalistic context.
Measuring Large Language Models Capacity to Annotate Journalistic Sourcing
Since the launch of ChatGPT in late 2022, the capacities of Large Language Models and their evaluation have been in constant discussion and evaluation both in academic research and in the industry. Scenarios and benchmarks have been developed in several areas such as law, medicine and math (Bommasani et al., 2023) and there is continuous evaluation of model variants. One area that has not received sufficient scenario development attention is journalism, and in particular journalistic sourcing and ethics. Journalism is a crucial truth-determination function in democracy (Vincent, 2023), and sourcing is a crucial pillar to all original journalistic output. Evaluating the capacities of LLMs to annotate stories for the different signals of sourcing and how reporters justify them is a crucial scenario that warrants a benchmark approach. It offers potential to build automated systems to contrast more transparent and ethically rigorous forms of journalism with everyday fare. In this paper we lay out a scenario to evaluate LLM performance on identifying and annotating sourcing in news stories on a five-category schema inspired from journalism studies (Gans, 2004). We offer the use case, our dataset and metrics and as the first step towards systematic benchmarking. Our accuracy findings indicate LLM-based approaches have more catching to do in identifying all the sourced statements in a story, and equally, in matching the type of sources. An even harder task is spotting source justifications.
WikiHow: A Large Scale Text Summarization Dataset
Sequence-to-sequence models have recently gained the state of the art performance in summarization. However, not too many large-scale high-quality datasets are available and almost all the available ones are mainly news articles with specific writing style. Moreover, abstractive human-style systems involving description of the content at a deeper level require data with higher levels of abstraction. In this paper, we present WikiHow, a dataset of more than 230,000 article and summary pairs extracted and constructed from an online knowledge base written by different human authors. The articles span a wide range of topics and therefore represent high diversity styles. We evaluate the performance of the existing methods on WikiHow to present its challenges and set some baselines to further improve it.
MultiFC: A Real-World Multi-Domain Dataset for Evidence-Based Fact Checking of Claims
We contribute the largest publicly available dataset of naturally occurring factual claims for the purpose of automatic claim verification. It is collected from 26 fact checking websites in English, paired with textual sources and rich metadata, and labelled for veracity by human expert journalists. We present an in-depth analysis of the dataset, highlighting characteristics and challenges. Further, we present results for automatic veracity prediction, both with established baselines and with a novel method for joint ranking of evidence pages and predicting veracity that outperforms all baselines. Significant performance increases are achieved by encoding evidence, and by modelling metadata. Our best-performing model achieves a Macro F1 of 49.2%, showing that this is a challenging testbed for claim veracity prediction.
Language Models Surface the Unwritten Code of Science and Society
This paper calls on the research community not only to investigate how human biases are inherited by large language models (LLMs) but also to explore how these biases in LLMs can be leveraged to make society's "unwritten code" - such as implicit stereotypes and heuristics - visible and accessible for critique. We introduce a conceptual framework through a case study in science: uncovering hidden rules in peer review - the factors that reviewers care about but rarely state explicitly due to normative scientific expectations. The idea of the framework is to push LLMs to speak out their heuristics through generating self-consistent hypotheses - why one paper appeared stronger in reviewer scoring - among paired papers submitted to 45 computer science conferences, while iteratively searching deeper hypotheses from remaining pairs where existing hypotheses cannot explain. We observed that LLMs' normative priors about the internal characteristics of good science extracted from their self-talk, e.g. theoretical rigor, were systematically updated toward posteriors that emphasize storytelling about external connections, such as how the work is positioned and connected within and across literatures. This shift reveals the primacy of scientific myths about intrinsic properties driving scientific excellence rather than extrinsic contextualization and storytelling that influence conceptions of relevance and significance. Human reviewers tend to explicitly reward aspects that moderately align with LLMs' normative priors (correlation = 0.49) but avoid articulating contextualization and storytelling posteriors in their review comments (correlation = -0.14), despite giving implicit reward to them with positive scores. We discuss the broad applicability of the framework, leveraging LLMs as diagnostic tools to surface the tacit codes underlying human society, enabling more precisely targeted responsible AI.
Tortured phrases: A dubious writing style emerging in science. Evidence of critical issues affecting established journals
Probabilistic text generators have been used to produce fake scientific papers for more than a decade. Such nonsensical papers are easily detected by both human and machine. Now more complex AI-powered generation techniques produce texts indistinguishable from that of humans and the generation of scientific texts from a few keywords has been documented. Our study introduces the concept of tortured phrases: unexpected weird phrases in lieu of established ones, such as 'counterfeit consciousness' instead of 'artificial intelligence.' We combed the literature for tortured phrases and study one reputable journal where these concentrated en masse. Hypothesising the use of advanced language models we ran a detector on the abstracts of recent articles of this journal and on several control sets. The pairwise comparisons reveal a concentration of abstracts flagged as 'synthetic' in the journal. We also highlight irregularities in its operation, such as abrupt changes in editorial timelines. We substantiate our call for investigation by analysing several individual dubious articles, stressing questionable features: tortured writing style, citation of non-existent literature, and unacknowledged image reuse. Surprisingly, some websites offer to rewrite texts for free, generating gobbledegook full of tortured phrases. We believe some authors used rewritten texts to pad their manuscripts. We wish to raise the awareness on publications containing such questionable AI-generated or rewritten texts that passed (poor) peer review. Deception with synthetic texts threatens the integrity of the scientific literature.
AutoSDT: Scaling Data-Driven Discovery Tasks Toward Open Co-Scientists
Despite long-standing efforts in accelerating scientific discovery with AI, building AI co-scientists remains challenging due to limited high-quality data for training and evaluation. To tackle this data scarcity issue, we present AutoSDT, an automatic pipeline that collects high-quality coding tasks in real-world data-driven discovery workflows. AutoSDT leverages the coding capabilities and parametric knowledge of LLMs to search for diverse sources, select ecologically valid tasks, and synthesize accurate task instructions and code solutions. Using our pipeline, we construct AutoSDT-5K, a dataset of 5,404 coding tasks for data-driven discovery that covers four scientific disciplines and 756 unique Python packages. To the best of our knowledge, AutoSDT-5K is the only automatically collected and the largest open dataset for data-driven scientific discovery. Expert feedback on a subset of 256 tasks shows the effectiveness of AutoSDT: 93% of the collected tasks are ecologically valid, and 92.2% of the synthesized programs are functionally correct. Trained on AutoSDT-5K, the Qwen2.5-Coder-Instruct LLM series, dubbed AutoSDT-Coder, show substantial improvement on two challenging data-driven discovery benchmarks, ScienceAgentBench and DiscoveryBench. Most notably, AutoSDT-Coder-32B reaches the same level of performance as GPT-4o on ScienceAgentBench with a success rate of 7.8%, doubling the performance of its base model. On DiscoveryBench, it lifts the hypothesis matching score to 8.1, bringing a 17.4% relative improvement and closing the gap between open-weight models and GPT-4o.
ScienceAgentBench: Toward Rigorous Assessment of Language Agents for Data-Driven Scientific Discovery
The advancements of language language models (LLMs) have piqued growing interest in developing LLM-based language agents to automate scientific discovery end-to-end, which has sparked both excitement and skepticism about the true capabilities of such agents. In this work, we argue that for an agent to fully automate scientific discovery, it must be able to complete all essential tasks in the workflow. Thus, we call for rigorous assessment of agents on individual tasks in a scientific workflow before making bold claims on end-to-end automation. To this end, we present ScienceAgentBench, a new benchmark for evaluating language agents for data-driven scientific discovery. To ensure the scientific authenticity and real-world relevance of our benchmark, we extract 102 tasks from 44 peer-reviewed publications in four disciplines and engage nine subject matter experts to validate them. We unify the target output for every task to a self-contained Python program file and employ an array of evaluation metrics to examine the generated programs, execution results, and costs. Each task goes through multiple rounds of manual validation by annotators and subject matter experts to ensure its annotation quality and scientific plausibility. We also propose two effective strategies to mitigate data contamination concerns. Using our benchmark, we evaluate five open-weight and proprietary LLMs, each with three frameworks: direct prompting, OpenHands, and self-debug. Given three attempts for each task, the best-performing agent can only solve 32.4% of the tasks independently and 34.3% with expert-provided knowledge. These results underscore the limited capacities of current language agents in generating code for data-driven discovery, let alone end-to-end automation for scientific research.
PaperQA: Retrieval-Augmented Generative Agent for Scientific Research
Large Language Models (LLMs) generalize well across language tasks, but suffer from hallucinations and uninterpretability, making it difficult to assess their accuracy without ground-truth. Retrieval-Augmented Generation (RAG) models have been proposed to reduce hallucinations and provide provenance for how an answer was generated. Applying such models to the scientific literature may enable large-scale, systematic processing of scientific knowledge. We present PaperQA, a RAG agent for answering questions over the scientific literature. PaperQA is an agent that performs information retrieval across full-text scientific articles, assesses the relevance of sources and passages, and uses RAG to provide answers. Viewing this agent as a question answering model, we find it exceeds performance of existing LLMs and LLM agents on current science QA benchmarks. To push the field closer to how humans perform research on scientific literature, we also introduce LitQA, a more complex benchmark that requires retrieval and synthesis of information from full-text scientific papers across the literature. Finally, we demonstrate PaperQA's matches expert human researchers on LitQA.
News Category Dataset
People rely on news to know what is happening around the world and inform their daily lives. In today's world, when the proliferation of fake news is rampant, having a large-scale and high-quality source of authentic news articles with the published category information is valuable to learning authentic news' Natural Language syntax and semantics. As part of this work, we present a News Category Dataset that contains around 210k news headlines from the year 2012 to 2022 obtained from HuffPost, along with useful metadata to enable various NLP tasks. In this paper, we also produce some novel insights from the dataset and describe various existing and potential applications of our dataset.
AI-Researcher: Autonomous Scientific Innovation
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.
Language agents achieve superhuman synthesis of scientific knowledge
Language models are known to hallucinate incorrect information, and it is unclear if they are sufficiently accurate and reliable for use in scientific research. We developed a rigorous human-AI comparison methodology to evaluate language model agents on real-world literature search tasks covering information retrieval, summarization, and contradiction detection tasks. We show that PaperQA2, a frontier language model agent optimized for improved factuality, matches or exceeds subject matter expert performance on three realistic literature research tasks without any restrictions on humans (i.e., full access to internet, search tools, and time). PaperQA2 writes cited, Wikipedia-style summaries of scientific topics that are significantly more accurate than existing, human-written Wikipedia articles. We also introduce a hard benchmark for scientific literature research called LitQA2 that guided design of PaperQA2, leading to it exceeding human performance. Finally, we apply PaperQA2 to identify contradictions within the scientific literature, an important scientific task that is challenging for humans. PaperQA2 identifies 2.34 +/- 1.99 contradictions per paper in a random subset of biology papers, of which 70% are validated by human experts. These results demonstrate that language model agents are now capable of exceeding domain experts across meaningful tasks on scientific literature.
Fine-grained Czech News Article Dataset: An Interdisciplinary Approach to Trustworthiness Analysis
We present the Verifee Dataset: a novel dataset of news articles with fine-grained trustworthiness annotations. We develop a detailed methodology that assesses the texts based on their parameters encompassing editorial transparency, journalist conventions, and objective reporting while penalizing manipulative techniques. We bring aboard a diverse set of researchers from social, media, and computer sciences to overcome barriers and limited framing of this interdisciplinary problem. We collect over 10,000 unique articles from almost 60 Czech online news sources. These are categorized into one of the 4 classes across the credibility spectrum we propose, raging from entirely trustworthy articles all the way to the manipulative ones. We produce detailed statistics and study trends emerging throughout the set. Lastly, we fine-tune multiple popular sequence-to-sequence language models using our dataset on the trustworthiness classification task and report the best testing F-1 score of 0.52. We open-source the dataset, annotation methodology, and annotators' instructions in full length at https://verifee.ai/research to enable easy build-up work. We believe similar methods can help prevent disinformation and educate in the realm of media literacy.
TWEETQA: A Social Media Focused Question Answering Dataset
With social media becoming increasingly pop-ular on which lots of news and real-time eventsare reported, developing automated questionanswering systems is critical to the effective-ness of many applications that rely on real-time knowledge. While previous datasets haveconcentrated on question answering (QA) forformal text like news and Wikipedia, wepresent the first large-scale dataset for QA oversocial media data. To ensure that the tweetswe collected are useful, we only gather tweetsused by journalists to write news articles. Wethen ask human annotators to write questionsand answers upon these tweets. Unlike otherQA datasets like SQuAD in which the answersare extractive, we allow the answers to be ab-stractive. We show that two recently proposedneural models that perform well on formaltexts are limited in their performance when ap-plied to our dataset. In addition, even the fine-tuned BERT model is still lagging behind hu-man performance with a large margin. Our re-sults thus point to the need of improved QAsystems targeting social media text.
Towards Scientific Discovery with Generative AI: Progress, Opportunities, and Challenges
Scientific discovery is a complex cognitive process that has driven human knowledge and technological progress for centuries. While artificial intelligence (AI) has made significant advances in automating aspects of scientific reasoning, simulation, and experimentation, we still lack integrated AI systems capable of performing autonomous long-term scientific research and discovery. This paper examines the current state of AI for scientific discovery, highlighting recent progress in large language models and other AI techniques applied to scientific tasks. We then outline key challenges and promising research directions toward developing more comprehensive AI systems for scientific discovery, including the need for science-focused AI agents, improved benchmarks and evaluation metrics, multimodal scientific representations, and unified frameworks combining reasoning, theorem proving, and data-driven modeling. Addressing these challenges could lead to transformative AI tools to accelerate progress across disciplines towards scientific discovery.
The More You Automate, the Less You See: Hidden Pitfalls of AI Scientist Systems
AI scientist systems, capable of autonomously executing the full research workflow from hypothesis generation and experimentation to paper writing, hold significant potential for accelerating scientific discovery. However, the internal workflow of these systems have not been closely examined. This lack of scrutiny poses a risk of introducing flaws that could undermine the integrity, reliability, and trustworthiness of their research outputs. In this paper, we identify four potential failure modes in contemporary AI scientist systems: inappropriate benchmark selection, data leakage, metric misuse, and post-hoc selection bias. To examine these risks, we design controlled experiments that isolate each failure mode while addressing challenges unique to evaluating AI scientist systems. Our assessment of two prominent open-source AI scientist systems reveals the presence of several failures, across a spectrum of severity, which can be easily overlooked in practice. Finally, we demonstrate that access to trace logs and code from the full automated workflow enables far more effective detection of such failures than examining the final paper alone. We thus recommend journals and conferences evaluating AI-generated research to mandate submission of these artifacts alongside the paper to ensure transparency, accountability, and reproducibility.
Workflow is All You Need: Escaping the "Statistical Smoothing Trap" via High-Entropy Information Foraging and Adversarial Pacing
Central to long-form text generation in vertical domains is the "impossible trinity" confronting current large language models (LLMs): the simultaneous achievement of low hallucination, deep logical coherence, and personalized expression. This study establishes that this bottleneck arises from existing generative paradigms succumbing to the Statistical Smoothing Trap, a phenomenon that overlooks the high-entropy information acquisition and structured cognitive processes integral to expert-level writing. To address this limitation, we propose the DeepNews Framework, an agentic workflow that explicitly models the implicit cognitive processes of seasoned financial journalists. The framework integrates three core modules: first, a dual-granularity retrieval mechanism grounded in information foraging theory, which enforces a 10:1 saturated information input ratio to mitigate hallucinatory outputs; second, schema-guided strategic planning, a process leveraging domain expert knowledge bases (narrative schemas) and Atomic Blocks to forge a robust logical skeleton; third, adversarial constraint prompting, a technique deploying tactics including Rhythm Break and Logic Fog to disrupt the probabilistic smoothness inherent in model-generated text. Experiments delineate a salient Knowledge Cliff in deep financial reporting: content truthfulness collapses when retrieved context falls below 15,000 characters, while a high-redundancy input exceeding 30,000 characters stabilizes the Hallucination-Free Rate (HFR) above 85%. In an ecological validity blind test conducted with a top-tier Chinese technology media outlet, the DeepNews system--built on a previous-generation model (DeepSeek-V3-0324)-achieved a 25% submission acceptance rate, significantly outperforming the 0% acceptance rate of zero-shot generation by a state-of-the-art (SOTA) model (GPT-5).
Learning to Determine the Quality of News Headlines
Today, most newsreaders read the online version of news articles rather than traditional paper-based newspapers. Also, news media publishers rely heavily on the income generated from subscriptions and website visits made by newsreaders. Thus, online user engagement is a very important issue for online newspapers. Much effort has been spent on writing interesting headlines to catch the attention of online users. On the other hand, headlines should not be misleading (e.g., clickbaits); otherwise, readers would be disappointed when reading the content. In this paper, we propose four indicators to determine the quality of published news headlines based on their click count and dwell time, which are obtained by website log analysis. Then, we use soft target distribution of the calculated quality indicators to train our proposed deep learning model which can predict the quality of unpublished news headlines. The proposed model not only processes the latent features of both headline and body of the article to predict its headline quality but also considers the semantic relation between headline and body as well. To evaluate our model, we use a real dataset from a major Canadian newspaper. Results show our proposed model outperforms other state-of-the-art NLP models.
An AI system to help scientists write expert-level empirical software
The cycle of scientific discovery is frequently bottlenecked by the slow, manual creation of software to support computational experiments. To address this, we present an AI system that creates expert-level scientific software whose goal is to maximize a quality metric. The system uses a Large Language Model (LLM) and Tree Search (TS) to systematically improve the quality metric and intelligently navigate the large space of possible solutions. The system achieves expert-level results when it explores and integrates complex research ideas from external sources. The effectiveness of tree search is demonstrated across a wide range of benchmarks. In bioinformatics, it discovered 40 novel methods for single-cell data analysis that outperformed the top human-developed methods on a public leaderboard. In epidemiology, it generated 14 models that outperformed the CDC ensemble and all other individual models for forecasting COVID-19 hospitalizations. Our method also produced state-of-the-art software for geospatial analysis, neural activity prediction in zebrafish, time series forecasting and numerical solution of integrals. By devising and implementing novel solutions to diverse tasks, the system represents a significant step towards accelerating scientific progress.
PaperRobot: Incremental Draft Generation of Scientific Ideas
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
A Multi-Strategy Approach for AI-Generated Text Detection
This paper presents presents three distinct systems developed for the M-DAIGT shared task on detecting AI generated content in news articles and academic abstracts. The systems includes: (1) A fine-tuned RoBERTa-base classifier, (2) A classical TF-IDF + Support Vector Machine (SVM) classifier , and (3) An Innovative ensemble model named Candace, leveraging probabilistic features extracted from multiple Llama-3.2 models processed by a customTransformer encoder.The RoBERTa-based system emerged as the most performant, achieving near-perfect results on both development and test sets.
A Comprehensive Survey of Deep Research: Systems, Methodologies, and Applications
This survey examines the rapidly evolving field of Deep Research systems -- AI-powered applications that automate complex research workflows through the integration of large language models, advanced information retrieval, and autonomous reasoning capabilities. We analyze more than 80 commercial and non-commercial implementations that have emerged since 2023, including OpenAI/Deep Research, Gemini/Deep Research, Perplexity/Deep Research, and numerous open-source alternatives. Through comprehensive examination, we propose a novel hierarchical taxonomy that categorizes systems according to four fundamental technical dimensions: foundation models and reasoning engines, tool utilization and environmental interaction, task planning and execution control, and knowledge synthesis and output generation. We explore the architectural patterns, implementation approaches, and domain-specific adaptations that characterize these systems across academic, scientific, business, and educational applications. Our analysis reveals both the significant capabilities of current implementations and the technical and ethical challenges they present regarding information accuracy, privacy, intellectual property, and accessibility. The survey concludes by identifying promising research directions in advanced reasoning architectures, multimodal integration, domain specialization, human-AI collaboration, and ecosystem standardization that will likely shape the future evolution of this transformative technology. By providing a comprehensive framework for understanding Deep Research systems, this survey contributes to both the theoretical understanding of AI-augmented knowledge work and the practical development of more capable, responsible, and accessible research technologies. The paper resources can be viewed at https://github.com/scienceaix/deepresearch.
Paper2Agent: Reimagining Research Papers As Interactive and Reliable AI Agents
We introduce Paper2Agent, an automated framework that converts research papers into AI agents. Paper2Agent transforms research output from passive artifacts into active systems that can accelerate downstream use, adoption, and discovery. Conventional research papers require readers to invest substantial effort to understand and adapt a paper's code, data, and methods to their own work, creating barriers to dissemination and reuse. Paper2Agent addresses this challenge by automatically converting a paper into an AI agent that acts as a knowledgeable research assistant. It systematically analyzes the paper and the associated codebase using multiple agents to construct a Model Context Protocol (MCP) server, then iteratively generates and runs tests to refine and robustify the resulting MCP. These paper MCPs can then be flexibly connected to a chat agent (e.g. Claude Code) to carry out complex scientific queries through natural language while invoking tools and workflows from the original paper. We demonstrate Paper2Agent's effectiveness in creating reliable and capable paper agents through in-depth case studies. Paper2Agent created an agent that leverages AlphaGenome to interpret genomic variants and agents based on ScanPy and TISSUE to carry out single-cell and spatial transcriptomics analyses. We validate that these paper agents can reproduce the original paper's results and can correctly carry out novel user queries. By turning static papers into dynamic, interactive AI agents, Paper2Agent introduces a new paradigm for knowledge dissemination and a foundation for the collaborative ecosystem of AI co-scientists.
Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation
With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
CiteSum: Citation Text-guided Scientific Extreme Summarization and Domain Adaptation with Limited Supervision
Scientific extreme summarization (TLDR) aims to form ultra-short summaries of scientific papers. Previous efforts on curating scientific TLDR datasets failed to scale up due to the heavy human annotation and domain expertise required. In this paper, we propose a simple yet effective approach to automatically extracting TLDR summaries for scientific papers from their citation texts. Based on the proposed approach, we create a new benchmark CiteSum without human annotation, which is around 30 times larger than the previous human-curated dataset SciTLDR. We conduct a comprehensive analysis of CiteSum, examining its data characteristics and establishing strong baselines. We further demonstrate the usefulness of CiteSum by adapting models pre-trained on CiteSum (named CITES) to new tasks and domains with limited supervision. For scientific extreme summarization, CITES outperforms most fully-supervised methods on SciTLDR without any fine-tuning and obtains state-of-the-art results with only 128 examples. For news extreme summarization, CITES achieves significant gains on XSum over its base model (not pre-trained on CiteSum), e.g., +7.2 ROUGE-1 zero-shot performance and state-of-the-art few-shot performance. For news headline generation, CITES performs the best among unsupervised and zero-shot methods on Gigaword. Our dataset and code can be found at https://github.com/morningmoni/CiteSum.
Check_square at CheckThat! 2020: Claim Detection in Social Media via Fusion of Transformer and Syntactic Features
In this digital age of news consumption, a news reader has the ability to react, express and share opinions with others in a highly interactive and fast manner. As a consequence, fake news has made its way into our daily life because of very limited capacity to verify news on the Internet by large companies as well as individuals. In this paper, we focus on solving two problems which are part of the fact-checking ecosystem that can help to automate fact-checking of claims in an ever increasing stream of content on social media. For the first problem, claim check-worthiness prediction, we explore the fusion of syntactic features and deep transformer Bidirectional Encoder Representations from Transformers (BERT) embeddings, to classify check-worthiness of a tweet, i.e. whether it includes a claim or not. We conduct a detailed feature analysis and present our best performing models for English and Arabic tweets. For the second problem, claim retrieval, we explore the pre-trained embeddings from a Siamese network transformer model (sentence-transformers) specifically trained for semantic textual similarity, and perform KD-search to retrieve verified claims with respect to a query tweet.
ClimaText: A Dataset for Climate Change Topic Detection
Climate change communication in the mass media and other textual sources may affect and shape public perception. Extracting climate change information from these sources is an important task, e.g., for filtering content and e-discovery, sentiment analysis, automatic summarization, question-answering, and fact-checking. However, automating this process is a challenge, as climate change is a complex, fast-moving, and often ambiguous topic with scarce resources for popular text-based AI tasks. In this paper, we introduce ClimaText, a dataset for sentence-based climate change topic detection, which we make publicly available. We explore different approaches to identify the climate change topic in various text sources. We find that popular keyword-based models are not adequate for such a complex and evolving task. Context-based algorithms like BERT devlin2018bert can detect, in addition to many trivial cases, a variety of complex and implicit topic patterns. Nevertheless, our analysis reveals a great potential for improvement in several directions, such as, e.g., capturing the discussion on indirect effects of climate change. Hence, we hope this work can serve as a good starting point for further research on this topic.
MuSciClaims: Multimodal Scientific Claim Verification
Assessing scientific claims requires identifying, extracting, and reasoning with multimodal data expressed in information-rich figures in scientific literature. Despite the large body of work in scientific QA, figure captioning, and other multimodal reasoning tasks over chart-based data, there are no readily usable multimodal benchmarks that directly test claim verification abilities. To remedy this gap, we introduce a new benchmark MuSciClaims accompanied by diagnostics tasks. We automatically extract supported claims from scientific articles, which we manually perturb to produce contradicted claims. The perturbations are designed to test for a specific set of claim verification capabilities. We also introduce a suite of diagnostic tasks that help understand model failures. Our results show most vision-language models are poor (~0.3-0.5 F1), with even the best model only achieving 0.72 F1. They are also biased towards judging claims as supported, likely misunderstanding nuanced perturbations within the claims. Our diagnostics show models are bad at localizing correct evidence within figures, struggle with aggregating information across modalities, and often fail to understand basic components of the figure.
AstroPT: Scaling Large Observation Models for Astronomy
This work presents AstroPT, an autoregressive pretrained transformer developed with astronomical use-cases in mind. The AstroPT models presented here have been pretrained on 8.6 million 512 times 512 pixel grz-band galaxy postage stamp observations from the DESI Legacy Survey DR8. We train a selection of foundation models of increasing size from 1 million to 2.1 billion parameters, and find that AstroPT follows a similar saturating log-log scaling law to textual models. We also find that the models' performances on downstream tasks as measured by linear probing improves with model size up to the model parameter saturation point. We believe that collaborative community development paves the best route towards realising an open source `Large Observation Model' -- a model trained on data taken from the observational sciences at the scale seen in natural language processing. To this end, we release the source code, weights, and dataset for AstroPT under the MIT license, and invite potential collaborators to join us in collectively building and researching these models.
MiRAGeNews: Multimodal Realistic AI-Generated News Detection
The proliferation of inflammatory or misleading "fake" news content has become increasingly common in recent years. Simultaneously, it has become easier than ever to use AI tools to generate photorealistic images depicting any scene imaginable. Combining these two -- AI-generated fake news content -- is particularly potent and dangerous. To combat the spread of AI-generated fake news, we propose the MiRAGeNews Dataset, a dataset of 12,500 high-quality real and AI-generated image-caption pairs from state-of-the-art generators. We find that our dataset poses a significant challenge to humans (60% F-1) and state-of-the-art multi-modal LLMs (< 24% F-1). Using our dataset we train a multi-modal detector (MiRAGe) that improves by +5.1% F-1 over state-of-the-art baselines on image-caption pairs from out-of-domain image generators and news publishers. We release our code and data to aid future work on detecting AI-generated content.
Learn over Past, Evolve for Future: Forecasting Temporal Trends for Fake News Detection
Fake news detection has been a critical task for maintaining the health of the online news ecosystem. However, very few existing works consider the temporal shift issue caused by the rapidly-evolving nature of news data in practice, resulting in significant performance degradation when training on past data and testing on future data. In this paper, we observe that the appearances of news events on the same topic may display discernible patterns over time, and posit that such patterns can assist in selecting training instances that could make the model adapt better to future data. Specifically, we design an effective framework FTT (Forecasting Temporal Trends), which could forecast the temporal distribution patterns of news data and then guide the detector to fast adapt to future distribution. Experiments on the real-world temporally split dataset demonstrate the superiority of our proposed framework. The code is available at https://github.com/ICTMCG/FTT-ACL23.
Generating Quizzes to Support Training on Quality Management and Assurance in Space Science and Engineering
Quality management and assurance is key for space agencies to guarantee the success of space missions, which are high-risk and extremely costly. In this paper, we present a system to generate quizzes, a common resource to evaluate the effectiveness of training sessions, from documents about quality assurance procedures in the Space domain. Our system leverages state of the art auto-regressive models like T5 and BART to generate questions, and a RoBERTa model to extract answers for such questions, thus verifying their suitability.
Large Language Model Agent for Fake News Detection
In the current digital era, the rapid spread of misinformation on online platforms presents significant challenges to societal well-being, public trust, and democratic processes, influencing critical decision making and public opinion. To address these challenges, there is a growing need for automated fake news detection mechanisms. Pre-trained large language models (LLMs) have demonstrated exceptional capabilities across various natural language processing (NLP) tasks, prompting exploration into their potential for verifying news claims. Instead of employing LLMs in a non-agentic way, where LLMs generate responses based on direct prompts in a single shot, our work introduces FactAgent, an agentic approach of utilizing LLMs for fake news detection. FactAgent enables LLMs to emulate human expert behavior in verifying news claims without any model training, following a structured workflow. This workflow breaks down the complex task of news veracity checking into multiple sub-steps, where LLMs complete simple tasks using their internal knowledge or external tools. At the final step of the workflow, LLMs integrate all findings throughout the workflow to determine the news claim's veracity. Compared to manual human verification, FactAgent offers enhanced efficiency. Experimental studies demonstrate the effectiveness of FactAgent in verifying claims without the need for any training process. Moreover, FactAgent provides transparent explanations at each step of the workflow and during final decision-making, offering insights into the reasoning process of fake news detection for end users. FactAgent is highly adaptable, allowing for straightforward updates to its tools that LLMs can leverage within the workflow, as well as updates to the workflow itself using domain knowledge. This adaptability enables FactAgent's application to news verification across various domains.
Framing the News:From Human Perception to Large Language Model Inferences
Identifying the frames of news is important to understand the articles' vision, intention, message to be conveyed, and which aspects of the news are emphasized. Framing is a widely studied concept in journalism, and has emerged as a new topic in computing, with the potential to automate processes and facilitate the work of journalism professionals. In this paper, we study this issue with articles related to the Covid-19 anti-vaccine movement. First, to understand the perspectives used to treat this theme, we developed a protocol for human labeling of frames for 1786 headlines of No-Vax movement articles of European newspapers from 5 countries. Headlines are key units in the written press, and worth of analysis as many people only read headlines (or use them to guide their decision for further reading.) Second, considering advances in Natural Language Processing (NLP) with large language models, we investigated two approaches for frame inference of news headlines: first with a GPT-3.5 fine-tuning approach, and second with GPT-3.5 prompt-engineering. Our work contributes to the study and analysis of the performance that these models have to facilitate journalistic tasks like classification of frames, while understanding whether the models are able to replicate human perception in the identification of these frames.
Stealing Creator's Workflow: A Creator-Inspired Agentic Framework with Iterative Feedback Loop for Improved Scientific Short-form Generation
Generating engaging, accurate short-form videos from scientific papers is challenging due to content complexity and the gap between expert authors and readers. Existing end-to-end methods often suffer from factual inaccuracies and visual artifacts, limiting their utility for scientific dissemination. To address these issues, we propose SciTalk, a novel multi-LLM agentic framework, grounding videos in various sources, such as text, figures, visual styles, and avatars. Inspired by content creators' workflows, SciTalk uses specialized agents for content summarization, visual scene planning, and text and layout editing, and incorporates an iterative feedback mechanism where video agents simulate user roles to give feedback on generated videos from previous iterations and refine generation prompts. Experimental evaluations show that SciTalk outperforms simple prompting methods in generating scientifically accurate and engaging content over the refined loop of video generation. Although preliminary results are still not yet matching human creators' quality, our framework provides valuable insights into the challenges and benefits of feedback-driven video generation. Our code, data, and generated videos will be publicly available.
AMMeBa: A Large-Scale Survey and Dataset of Media-Based Misinformation In-The-Wild
The prevalence and harms of online misinformation is a perennial concern for internet platforms, institutions and society at large. Over time, information shared online has become more media-heavy and misinformation has readily adapted to these new modalities. The rise of generative AI-based tools, which provide widely-accessible methods for synthesizing realistic audio, images, video and human-like text, have amplified these concerns. Despite intense interest on the part of the public and significant press coverage, quantitative information on the prevalence and modality of media-based misinformation remains scarce. Here, we present the results of a two-year study using human raters to annotate online media-based misinformation, mostly focusing on images, based on claims assessed in a large sample of publicly-accessible fact checks with the ClaimReview markup. We present an image typology, designed to capture aspects of the image and manipulation relevant to the image's role in the misinformation claim. We visualize the distribution of these types over time. We show the the rise of generative AI-based content in misinformation claims, and that it's commonality is a relatively recent phenomenon, occurring significantly after heavy press coverage. We also show "simple" methods dominated historically, particularly context manipulations, and continued to hold a majority as of the end of data collection in November 2023. The dataset, Annotated Misinformation, Media-Based (AMMeBa), is publicly-available, and we hope that these data will serve as both a means of evaluating mitigation methods in a realistic setting and as a first-of-its-kind census of the types and modalities of online misinformation.
Galactica: A Large Language Model for Science
Information overload is a major obstacle to scientific progress. The explosive growth in scientific literature and data has made it ever harder to discover useful insights in a large mass of information. Today scientific knowledge is accessed through search engines, but they are unable to organize scientific knowledge alone. In this paper we introduce Galactica: a large language model that can store, combine and reason about scientific knowledge. We train on a large scientific corpus of papers, reference material, knowledge bases and many other sources. We outperform existing models on a range of scientific tasks. On technical knowledge probes such as LaTeX equations, Galactica outperforms the latest GPT-3 by 68.2% versus 49.0%. Galactica also performs well on reasoning, outperforming Chinchilla on mathematical MMLU by 41.3% to 35.7%, and PaLM 540B on MATH with a score of 20.4% versus 8.8%. It also sets a new state-of-the-art on downstream tasks such as PubMedQA and MedMCQA dev of 77.6% and 52.9%. And despite not being trained on a general corpus, Galactica outperforms BLOOM and OPT-175B on BIG-bench. We believe these results demonstrate the potential for language models as a new interface for science. We open source the model for the benefit of the scientific community.
Raidar: geneRative AI Detection viA Rewriting
We find that large language models (LLMs) are more likely to modify human-written text than AI-generated text when tasked with rewriting. This tendency arises because LLMs often perceive AI-generated text as high-quality, leading to fewer modifications. We introduce a method to detect AI-generated content by prompting LLMs to rewrite text and calculating the editing distance of the output. We dubbed our geneRative AI Detection viA Rewriting method Raidar. Raidar significantly improves the F1 detection scores of existing AI content detection models -- both academic and commercial -- across various domains, including News, creative writing, student essays, code, Yelp reviews, and arXiv papers, with gains of up to 29 points. Operating solely on word symbols without high-dimensional features, our method is compatible with black box LLMs, and is inherently robust on new content. Our results illustrate the unique imprint of machine-generated text through the lens of the machines themselves.
DeepScientist: Advancing Frontier-Pushing Scientific Findings Progressively
While previous AI Scientist systems can generate novel findings, they often lack the focus to produce scientifically valuable contributions that address pressing human-defined challenges. We introduce DeepScientist, a system designed to overcome this by conducting goal-oriented, fully autonomous scientific discovery over month-long timelines. It formalizes discovery as a Bayesian Optimization problem, operationalized through a hierarchical evaluation process consisting of "hypothesize, verify, and analyze". Leveraging a cumulative Findings Memory, this loop intelligently balances the exploration of novel hypotheses with exploitation, selectively promoting the most promising findings to higher-fidelity levels of validation. Consuming over 20,000 GPU hours, the system generated about 5,000 unique scientific ideas and experimentally validated approximately 1100 of them, ultimately surpassing human-designed state-of-the-art (SOTA) methods on three frontier AI tasks by 183.7\%, 1.9\%, and 7.9\%. This work provides the first large-scale evidence of an AI achieving discoveries that progressively surpass human SOTA on scientific tasks, producing valuable findings that genuinely push the frontier of scientific discovery. To facilitate further research into this process, we will open-source all experimental logs and system code at https://github.com/ResearAI/DeepScientist/.
SciCode: A Research Coding Benchmark Curated by Scientists
Since language models (LMs) now outperform average humans on many challenging tasks, it has become increasingly difficult to develop challenging, high-quality, and realistic evaluations. We address this issue by examining LMs' capabilities to generate code for solving real scientific research problems. Incorporating input from scientists and AI researchers in 16 diverse natural science sub-fields, including mathematics, physics, chemistry, biology, and materials science, we created a scientist-curated coding benchmark, SciCode. The problems in SciCode naturally factorize into multiple subproblems, each involving knowledge recall, reasoning, and code synthesis. In total, SciCode contains 338 subproblems decomposed from 80 challenging main problems. It offers optional descriptions specifying useful scientific background information and scientist-annotated gold-standard solutions and test cases for evaluation. Claude3.5-Sonnet, the best-performing model among those tested, can solve only 4.6% of the problems in the most realistic setting. We believe that SciCode demonstrates both contemporary LMs' progress towards becoming helpful scientific assistants and sheds light on the development and evaluation of scientific AI in the future.
ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
Mapping the Media Landscape: Predicting Factual Reporting and Political Bias Through Web Interactions
Bias assessment of news sources is paramount for professionals, organizations, and researchers who rely on truthful evidence for information gathering and reporting. While certain bias indicators are discernible from content analysis, descriptors like political bias and fake news pose greater challenges. In this paper, we propose an extension to a recently presented news media reliability estimation method that focuses on modeling outlets and their longitudinal web interactions. Concretely, we assess the classification performance of four reinforcement learning strategies on a large news media hyperlink graph. Our experiments, targeting two challenging bias descriptors, factual reporting and political bias, showed a significant performance improvement at the source media level. Additionally, we validate our methods on the CLEF 2023 CheckThat! Lab challenge, outperforming the reported results in both, F1-score and the official MAE metric. Furthermore, we contribute by releasing the largest annotated dataset of news source media, categorized with factual reporting and political bias labels. Our findings suggest that profiling news media sources based on their hyperlink interactions over time is feasible, offering a bird's-eye view of evolving media landscapes.
News Deja Vu: Connecting Past and Present with Semantic Search
Social scientists and the general public often analyze contemporary events by drawing parallels with the past, a process complicated by the vast, noisy, and unstructured nature of historical texts. For example, hundreds of millions of page scans from historical newspapers have been noisily transcribed. Traditional sparse methods for searching for relevant material in these vast corpora, e.g., with keywords, can be brittle given complex vocabularies and OCR noise. This study introduces News Deja Vu, a novel semantic search tool that leverages transformer large language models and a bi-encoder approach to identify historical news articles that are most similar to modern news queries. News Deja Vu first recognizes and masks entities, in order to focus on broader parallels rather than the specific named entities being discussed. Then, a contrastively trained, lightweight bi-encoder retrieves historical articles that are most similar semantically to a modern query, illustrating how phenomena that might seem unique to the present have varied historical precedents. Aimed at social scientists, the user-friendly News Deja Vu package is designed to be accessible for those who lack extensive familiarity with deep learning. It works with large text datasets, and we show how it can be deployed to a massive scale corpus of historical, open-source news articles. While human expertise remains important for drawing deeper insights, News Deja Vu provides a powerful tool for exploring parallels in how people have perceived past and present.
CS-PaperSum: A Large-Scale Dataset of AI-Generated Summaries for Scientific Papers
The rapid expansion of scientific literature in computer science presents challenges in tracking research trends and extracting key insights. Existing datasets provide metadata but lack structured summaries that capture core contributions and methodologies. We introduce CS-PaperSum, a large-scale dataset of 91,919 papers from 31 top-tier computer science conferences, enriched with AI-generated structured summaries using ChatGPT. To assess summary quality, we conduct embedding alignment analysis and keyword overlap analysis, demonstrating strong preservation of key concepts. We further present a case study on AI research trends, highlighting shifts in methodologies and interdisciplinary crossovers, including the rise of self-supervised learning, retrieval-augmented generation, and multimodal AI. Our dataset enables automated literature analysis, research trend forecasting, and AI-driven scientific discovery, providing a valuable resource for researchers, policymakers, and scientific information retrieval systems.
TI-CNN: Convolutional Neural Networks for Fake News Detection
With the development of social networks, fake news for various commercial and political purposes has been appearing in large numbers and gotten widespread in the online world. With deceptive words, people can get infected by the fake news very easily and will share them without any fact-checking. For instance, during the 2016 US president election, various kinds of fake news about the candidates widely spread through both official news media and the online social networks. These fake news is usually released to either smear the opponents or support the candidate on their side. The erroneous information in the fake news is usually written to motivate the voters' irrational emotion and enthusiasm. Such kinds of fake news sometimes can bring about devastating effects, and an important goal in improving the credibility of online social networks is to identify the fake news timely. In this paper, we propose to study the fake news detection problem. Automatic fake news identification is extremely hard, since pure model based fact-checking for news is still an open problem, and few existing models can be applied to solve the problem. With a thorough investigation of a fake news data, lots of useful explicit features are identified from both the text words and images used in the fake news. Besides the explicit features, there also exist some hidden patterns in the words and images used in fake news, which can be captured with a set of latent features extracted via the multiple convolutional layers in our model. A model named as TI-CNN (Text and Image information based Convolutinal Neural Network) is proposed in this paper. By projecting the explicit and latent features into a unified feature space, TI-CNN is trained with both the text and image information simultaneously. Extensive experiments carried on the real-world fake news datasets have demonstrate the effectiveness of TI-CNN.
Generating (Factual?) Narrative Summaries of RCTs: Experiments with Neural Multi-Document Summarization
We consider the problem of automatically generating a narrative biomedical evidence summary from multiple trial reports. We evaluate modern neural models for abstractive summarization of relevant article abstracts from systematic reviews previously conducted by members of the Cochrane collaboration, using the authors conclusions section of the review abstract as our target. We enlist medical professionals to evaluate generated summaries, and we find that modern summarization systems yield consistently fluent and relevant synopses, but that they are not always factual. We propose new approaches that capitalize on domain-specific models to inform summarization, e.g., by explicitly demarcating snippets of inputs that convey key findings, and emphasizing the reports of large and high-quality trials. We find that these strategies modestly improve the factual accuracy of generated summaries. Finally, we propose a new method for automatically evaluating the factuality of generated narrative evidence syntheses using models that infer the directionality of reported findings.
AIssistant: An Agentic Approach for Human--AI Collaborative Scientific Work on Reviews and Perspectives in Machine Learning
Advances in AI-assisted research have introduced powerful tools for literature retrieval, hypothesis generation, experimentation, and manuscript preparation. However, systems remain fragmented and lack human-centred workflows. To address these gaps, we introduce AIssistant, an agentic, open-source Human-AI collaborative framework designed to simplify the end-to-end creation of scientific workflows. Since our development is still in an early stage, we present here the first experiments with AIssistant for perspective and review research papers in machine learning. Our system integrates modular tools and agents for literature synthesis, section-wise experimentation, citation management, and automatic LaTeX paper text generation, while maintaining human oversight at every stage to ensure accuracy, coherence, and scholarly rigour. We conducted a comprehensive evaluation across three layers: (1) Independent Human Review, following NeurIPS double-blind standards; (2) Automated LLM Review, using GPT-5 as a scalable human review proxy; and (3) Program Chair Oversight, where the chair monitors the entire review process and makes final validation and acceptance decisions. The results demonstrate that AIssistant improves drafting efficiency and thematic consistency. Nonetheless, Human-AI collaboration remains essential for maintaining factual correctness, methodological soundness, and ethical compliance. Despite its effectiveness, we identify key limitations, including hallucinated citations, difficulty adapting to dynamic paper structures, and incomplete integration of multimodal content.
Artificial Intuition: Efficient Classification of Scientific Abstracts
It is desirable to coarsely classify short scientific texts, such as grant or publication abstracts, for strategic insight or research portfolio management. These texts efficiently transmit dense information to experts possessing a rich body of knowledge to aid interpretation. Yet this task is remarkably difficult to automate because of brevity and the absence of context. To address this gap, we have developed a novel approach to generate and appropriately assign coarse domain-specific labels. We show that a Large Language Model (LLM) can provide metadata essential to the task, in a process akin to the augmentation of supplemental knowledge representing human intuition, and propose a workflow. As a pilot study, we use a corpus of award abstracts from the National Aeronautics and Space Administration (NASA). We develop new assessment tools in concert with established performance metrics.
Don't Give Me the Details, Just the Summary! Topic-Aware Convolutional Neural Networks for Extreme Summarization
We introduce extreme summarization, a new single-document summarization task which does not favor extractive strategies and calls for an abstractive modeling approach. The idea is to create a short, one-sentence news summary answering the question "What is the article about?". We collect a real-world, large-scale dataset for this task by harvesting online articles from the British Broadcasting Corporation (BBC). We propose a novel abstractive model which is conditioned on the article's topics and based entirely on convolutional neural networks. We demonstrate experimentally that this architecture captures long-range dependencies in a document and recognizes pertinent content, outperforming an oracle extractive system and state-of-the-art abstractive approaches when evaluated automatically and by humans.
OmniScientist: Toward a Co-evolving Ecosystem of Human and AI Scientists
With the rapid development of Large Language Models (LLMs), AI agents have demonstrated increasing proficiency in scientific tasks, ranging from hypothesis generation and experimental design to manuscript writing. Such agent systems are commonly referred to as "AI Scientists." However, existing AI Scientists predominantly formulate scientific discovery as a standalone search or optimization problem, overlooking the fact that scientific research is inherently a social and collaborative endeavor. Real-world science relies on a complex scientific infrastructure composed of collaborative mechanisms, contribution attribution, peer review, and structured scientific knowledge networks. Due to the lack of modeling for these critical dimensions, current systems struggle to establish a genuine research ecosystem or interact deeply with the human scientific community. To bridge this gap, we introduce OmniScientist, a framework that explicitly encodes the underlying mechanisms of human research into the AI scientific workflow. OmniScientist not only achieves end-to-end automation across data foundation, literature review, research ideation, experiment automation, scientific writing, and peer review, but also provides comprehensive infrastructural support by simulating the human scientific system, comprising: (1) a structured knowledge system built upon citation networks and conceptual correlations; (2) a collaborative research protocol (OSP), which enables seamless multi-agent collaboration and human researcher participation; and (3) an open evaluation platform (ScienceArena) based on blind pairwise user voting and Elo rankings. This infrastructure empowers agents to not only comprehend and leverage human knowledge systems but also to collaborate and co-evolve, fostering a sustainable and scalable innovation ecosystem.
Profiling News Media for Factuality and Bias Using LLMs and the Fact-Checking Methodology of Human Experts
In an age characterized by the proliferation of mis- and disinformation online, it is critical to empower readers to understand the content they are reading. Important efforts in this direction rely on manual or automatic fact-checking, which can be challenging for emerging claims with limited information. Such scenarios can be handled by assessing the reliability and the political bias of the source of the claim, i.e., characterizing entire news outlets rather than individual claims or articles. This is an important but understudied research direction. While prior work has looked into linguistic and social contexts, we do not analyze individual articles or information in social media. Instead, we propose a novel methodology that emulates the criteria that professional fact-checkers use to assess the factuality and political bias of an entire outlet. Specifically, we design a variety of prompts based on these criteria and elicit responses from large language models (LLMs), which we aggregate to make predictions. In addition to demonstrating sizable improvements over strong baselines via extensive experiments with multiple LLMs, we provide an in-depth error analysis of the effect of media popularity and region on model performance. Further, we conduct an ablation study to highlight the key components of our dataset that contribute to these improvements. To facilitate future research, we released our dataset and code at https://github.com/mbzuai-nlp/llm-media-profiling.
NewsEdits 2.0: Learning the Intentions Behind Updating News
As events progress, news articles often update with new information: if we are not cautious, we risk propagating outdated facts. In this work, we hypothesize that linguistic features indicate factual fluidity, and that we can predict which facts in a news article will update using solely the text of a news article (i.e. not external resources like search engines). We test this hypothesis, first, by isolating fact-updates in large news revisions corpora. News articles may update for many reasons (e.g. factual, stylistic, narrative). We introduce the NewsEdits 2.0 taxonomy, an edit-intentions schema that separates fact updates from stylistic and narrative updates in news writing. We annotate over 9,200 pairs of sentence revisions and train high-scoring ensemble models to apply this schema. Then, taking a large dataset of silver-labeled pairs, we show that we can predict when facts will update in older article drafts with high precision. Finally, to demonstrate the usefulness of these findings, we construct a language model question asking (LLM-QA) abstention task. We wish the LLM to abstain from answering questions when information is likely to become outdated. Using our predictions, we show, LLM absention reaches near oracle levels of accuracy.
Zoom Out and Observe: News Environment Perception for Fake News Detection
Fake news detection is crucial for preventing the dissemination of misinformation on social media. To differentiate fake news from real ones, existing methods observe the language patterns of the news post and "zoom in" to verify its content with knowledge sources or check its readers' replies. However, these methods neglect the information in the external news environment where a fake news post is created and disseminated. The news environment represents recent mainstream media opinion and public attention, which is an important inspiration of fake news fabrication because fake news is often designed to ride the wave of popular events and catch public attention with unexpected novel content for greater exposure and spread. To capture the environmental signals of news posts, we "zoom out" to observe the news environment and propose the News Environment Perception Framework (NEP). For each post, we construct its macro and micro news environment from recent mainstream news. Then we design a popularity-oriented and a novelty-oriented module to perceive useful signals and further assist final prediction. Experiments on our newly built datasets show that the NEP can efficiently improve the performance of basic fake news detectors.
Frame In, Frame Out: Do LLMs Generate More Biased News Headlines than Humans?
Framing in media critically shapes public perception by selectively emphasizing some details while downplaying others. With the rise of large language models in automated news and content creation, there is growing concern that these systems may introduce or even amplify framing biases compared to human authors. In this paper, we explore how framing manifests in both out-of-the-box and fine-tuned LLM-generated news content. Our analysis reveals that, particularly in politically and socially sensitive contexts, LLMs tend to exhibit more pronounced framing than their human counterparts. In addition, we observe significant variation in framing tendencies across different model architectures, with some models displaying notably higher biases. These findings point to the need for effective post-training mitigation strategies and tighter evaluation frameworks to ensure that automated news content upholds the standards of balanced reporting.
CSMeD: Bridging the Dataset Gap in Automated Citation Screening for Systematic Literature Reviews
Systematic literature reviews (SLRs) play an essential role in summarising, synthesising and validating scientific evidence. In recent years, there has been a growing interest in using machine learning techniques to automate the identification of relevant studies for SLRs. However, the lack of standardised evaluation datasets makes comparing the performance of such automated literature screening systems difficult. In this paper, we analyse the citation screening evaluation datasets, revealing that many of the available datasets are either too small, suffer from data leakage or have limited applicability to systems treating automated literature screening as a classification task, as opposed to, for example, a retrieval or question-answering task. To address these challenges, we introduce CSMeD, a meta-dataset consolidating nine publicly released collections, providing unified access to 325 SLRs from the fields of medicine and computer science. CSMeD serves as a comprehensive resource for training and evaluating the performance of automated citation screening models. Additionally, we introduce CSMeD-FT, a new dataset designed explicitly for evaluating the full text publication screening task. To demonstrate the utility of CSMeD, we conduct experiments and establish baselines on new datasets.
MOOSE-Chem3: Toward Experiment-Guided Hypothesis Ranking via Simulated Experimental Feedback
Hypothesis ranking is a crucial component of automated scientific discovery, particularly in natural sciences where wet-lab experiments are costly and throughput-limited. Existing approaches focus on pre-experiment ranking, relying solely on large language model's internal reasoning without incorporating empirical outcomes from experiments. We introduce the task of experiment-guided ranking, which aims to prioritize candidate hypotheses based on the results of previously tested ones. However, developing such strategies is challenging due to the impracticality of repeatedly conducting real experiments in natural science domains. To address this, we propose a simulator grounded in three domain-informed assumptions, modeling hypothesis performance as a function of similarity to a known ground truth hypothesis, perturbed by noise. We curate a dataset of 124 chemistry hypotheses with experimentally reported outcomes to validate the simulator. Building on this simulator, we develop a pseudo experiment-guided ranking method that clusters hypotheses by shared functional characteristics and prioritizes candidates based on insights derived from simulated experimental feedback. Experiments show that our method outperforms pre-experiment baselines and strong ablations.
Agent-based Learning of Materials Datasets from Scientific Literature
Advancements in machine learning and artificial intelligence are transforming materials discovery. Yet, the availability of structured experimental data remains a bottleneck. The vast corpus of scientific literature presents a valuable and rich resource of such data. However, manual dataset creation from these resources is challenging due to issues in maintaining quality and consistency, scalability limitations, and the risk of human error and bias. Therefore, in this work, we develop a chemist AI agent, powered by large language models (LLMs), to overcome these challenges by autonomously creating structured datasets from natural language text, ranging from sentences and paragraphs to extensive scientific research articles. Our chemist AI agent, Eunomia, can plan and execute actions by leveraging the existing knowledge from decades of scientific research articles, scientists, the Internet and other tools altogether. We benchmark the performance of our approach in three different information extraction tasks with various levels of complexity, including solid-state impurity doping, metal-organic framework (MOF) chemical formula, and property relations. Our results demonstrate that our zero-shot agent, with the appropriate tools, is capable of attaining performance that is either superior or comparable to the state-of-the-art fine-tuned materials information extraction methods. This approach simplifies compilation of machine learning-ready datasets for various materials discovery applications, and significantly ease the accessibility of advanced natural language processing tools for novice users in natural language. The methodology in this work is developed as an open-source software on https://github.com/AI4ChemS/Eunomia.
ByteScience: Bridging Unstructured Scientific Literature and Structured Data with Auto Fine-tuned Large Language Model in Token Granularity
Natural Language Processing (NLP) is widely used to supply summarization ability from long context to structured information. However, extracting structured knowledge from scientific text by NLP models remains a challenge because of its domain-specific nature to complex data preprocessing and the granularity of multi-layered device-level information. To address this, we introduce ByteScience, a non-profit cloud-based auto fine-tuned Large Language Model (LLM) platform, which is designed to extract structured scientific data and synthesize new scientific knowledge from vast scientific corpora. The platform capitalizes on DARWIN, an open-source, fine-tuned LLM dedicated to natural science. The platform was built on Amazon Web Services (AWS) and provides an automated, user-friendly workflow for custom model development and data extraction. The platform achieves remarkable accuracy with only a small amount of well-annotated articles. This innovative tool streamlines the transition from the science literature to structured knowledge and data and benefits the advancements in natural informatics.
Fundus: A Simple-to-Use News Scraper Optimized for High Quality Extractions
This paper introduces Fundus, a user-friendly news scraper that enables users to obtain millions of high-quality news articles with just a few lines of code. Unlike existing news scrapers, we use manually crafted, bespoke content extractors that are specifically tailored to the formatting guidelines of each supported online newspaper. This allows us to optimize our scraping for quality such that retrieved news articles are textually complete and without HTML artifacts. Further, our framework combines both crawling (retrieving HTML from the web or large web archives) and content extraction into a single pipeline. By providing a unified interface for a predefined collection of newspapers, we aim to make Fundus broadly usable even for non-technical users. This paper gives an overview of the framework, discusses our design choices, and presents a comparative evaluation against other popular news scrapers. Our evaluation shows that Fundus yields significantly higher quality extractions (complete and artifact-free news articles) than prior work. The framework is available on GitHub under https://github.com/flairNLP/fundus and can be simply installed using pip.
ScoreRAG: A Retrieval-Augmented Generation Framework with Consistency-Relevance Scoring and Structured Summarization for News Generation
This research introduces ScoreRAG, an approach to enhance the quality of automated news generation. Despite advancements in Natural Language Processing and large language models, current news generation methods often struggle with hallucinations, factual inconsistencies, and lack of domain-specific expertise when producing news articles. ScoreRAG addresses these challenges through a multi-stage framework combining retrieval-augmented generation, consistency relevance evaluation, and structured summarization. The system first retrieves relevant news documents from a vector database, maps them to complete news items, and assigns consistency relevance scores based on large language model evaluations. These documents are then reranked according to relevance, with low-quality items filtered out. The framework proceeds to generate graded summaries based on relevance scores, which guide the large language model in producing complete news articles following professional journalistic standards. Through this methodical approach, ScoreRAG aims to significantly improve the accuracy, coherence, informativeness, and professionalism of generated news articles while maintaining stability and consistency throughout the generation process. The code and demo are available at: https://github.com/peiyun2260/ScoreRAG.
Zero-shot reasoning for simulating scholarly peer-review
The scholarly publishing ecosystem faces a dual crisis of unmanageable submission volumes and unregulated AI, creating an urgent need for new governance models to safeguard scientific integrity. The traditional human-only peer review regime lacks a scalable, objective benchmark, making editorial processes opaque and difficult to audit. Here we investigate a deterministic simulation framework that provides the first stable, evidence-based standard for evaluating AI-generated peer review reports. Analyzing 352 peer-review simulation reports, we identify consistent system state indicators that demonstrate its reliability. First, the system is able to simulate calibrated editorial judgment, with 'Revise' decisions consistently forming the majority outcome (>50%) across all disciplines, while 'Reject' rates dynamically adapt to field-specific norms, rising to 45% in Health Sciences. Second, it maintains unwavering procedural integrity, enforcing a stable 29% evidence-anchoring compliance rate that remains invariant across diverse review tasks and scientific domains. These findings demonstrate a system that is predictably rule-bound, mitigating the stochasticity of generative AI. For the scientific community, this provides a transparent tool to ensure fairness; for publishing strategists, it offers a scalable instrument for auditing workflows, managing integrity risks, and implementing evidence-based governance. The framework repositions AI as an essential component of institutional accountability, providing the critical infrastructure to maintain trust in scholarly communication.
Science-T2I: Addressing Scientific Illusions in Image Synthesis
We present a novel approach to integrating scientific knowledge into generative models, enhancing their realism and consistency in image synthesis. First, we introduce Science-T2I, an expert-annotated adversarial dataset comprising adversarial 20k image pairs with 9k prompts, covering wide distinct scientific knowledge categories. Leveraging Science-T2I, we present SciScore, an end-to-end reward model that refines the assessment of generated images based on scientific knowledge, which is achieved by augmenting both the scientific comprehension and visual capabilities of pre-trained CLIP model. Additionally, based on SciScore, we propose a two-stage training framework, comprising a supervised fine-tuning phase and a masked online fine-tuning phase, to incorporate scientific knowledge into existing generative models. Through comprehensive experiments, we demonstrate the effectiveness of our framework in establishing new standards for evaluating the scientific realism of generated content. Specifically, SciScore attains performance comparable to human-level, demonstrating a 5% improvement similar to evaluations conducted by experienced human evaluators. Furthermore, by applying our proposed fine-tuning method to FLUX, we achieve a performance enhancement exceeding 50% on SciScore.
New Methods for Metadata Extraction from Scientific Literature
Within the past few decades we have witnessed digital revolution, which moved scholarly communication to electronic media and also resulted in a substantial increase in its volume. Nowadays keeping track with the latest scientific achievements poses a major challenge for the researchers. Scientific information overload is a severe problem that slows down scholarly communication and knowledge propagation across the academia. Modern research infrastructures facilitate studying scientific literature by providing intelligent search tools, proposing similar and related documents, visualizing citation and author networks, assessing the quality and impact of the articles, and so on. In order to provide such high quality services the system requires the access not only to the text content of stored documents, but also to their machine-readable metadata. Since in practice good quality metadata is not always available, there is a strong demand for a reliable automatic method of extracting machine-readable metadata directly from source documents. This research addresses these problems by proposing an automatic, accurate and flexible algorithm for extracting wide range of metadata directly from scientific articles in born-digital form. Extracted information includes basic document metadata, structured full text and bibliography section. Designed as a universal solution, proposed algorithm is able to handle a vast variety of publication layouts with high precision and thus is well-suited for analyzing heterogeneous document collections. This was achieved by employing supervised and unsupervised machine-learning algorithms trained on large, diverse datasets. The evaluation we conducted showed good performance of proposed metadata extraction algorithm. The comparison with other similar solutions also proved our algorithm performs better than competition for most metadata types.
Neural Media Bias Detection Using Distant Supervision With BABE -- Bias Annotations By Experts
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
WikiVideo: Article Generation from Multiple Videos
We present the challenging task of automatically creating a high-level Wikipedia-style article that aggregates information from multiple diverse videos about real-world events, such as natural disasters or political elections. Videos are intuitive sources for retrieval-augmented generation (RAG), but most contemporary RAG workflows focus heavily on text and existing methods for video-based summarization focus on low-level scene understanding rather than high-level event semantics. To close this gap, we introduce WikiVideo, a benchmark consisting of expert-written articles and densely annotated videos that provide evidence for articles' claims, facilitating the integration of video into RAG pipelines and enabling the creation of in-depth content that is grounded in multimodal sources. We further propose Collaborative Article Generation (CAG), a novel interactive method for article creation from multiple videos. CAG leverages an iterative interaction between an r1-style reasoning model and a VideoLLM to draw higher level inferences about the target event than is possible with VideoLLMs alone, which fixate on low-level visual features. We benchmark state-of-the-art VideoLLMs and CAG in both oracle retrieval and RAG settings and find that CAG consistently outperforms alternative methods, while suggesting intriguing avenues for future work.
From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.
MatKB: Semantic Search for Polycrystalline Materials Synthesis Procedures
In this paper, we present a novel approach to knowledge extraction and retrieval using Natural Language Processing (NLP) techniques for material science. Our goal is to automatically mine structured knowledge from millions of research articles in the field of polycrystalline materials and make it easily accessible to the broader community. The proposed method leverages NLP techniques such as entity recognition and document classification to extract relevant information and build an extensive knowledge base, from a collection of 9.5 Million publications. The resulting knowledge base is integrated into a search engine, which enables users to search for information about specific materials, properties, and experiments with greater precision than traditional search engines like Google. We hope our results can enable material scientists quickly locate desired experimental procedures, compare their differences, and even inspire them to design new experiments. Our website will be available at Github https://github.com/Xianjun-Yang/PcMSP.git soon.
NewsEdits: A News Article Revision Dataset and a Document-Level Reasoning Challenge
News article revision histories provide clues to narrative and factual evolution in news articles. To facilitate analysis of this evolution, we present the first publicly available dataset of news revision histories, NewsEdits. Our dataset is large-scale and multilingual; it contains 1.2 million articles with 4.6 million versions from over 22 English- and French-language newspaper sources based in three countries, spanning 15 years of coverage (2006-2021). We define article-level edit actions: Addition, Deletion, Edit and Refactor, and develop a high-accuracy extraction algorithm to identify these actions. To underscore the factual nature of many edit actions, we conduct analyses showing that added and deleted sentences are more likely to contain updating events, main content and quotes than unchanged sentences. Finally, to explore whether edit actions are predictable, we introduce three novel tasks aimed at predicting actions performed during version updates. We show that these tasks are possible for expert humans but are challenging for large NLP models. We hope this can spur research in narrative framing and help provide predictive tools for journalists chasing breaking news.
CitePrompt: Using Prompts to Identify Citation Intent in Scientific Papers
Citations in scientific papers not only help us trace the intellectual lineage but also are a useful indicator of the scientific significance of the work. Citation intents prove beneficial as they specify the role of the citation in a given context. In this paper, we present CitePrompt, a framework which uses the hitherto unexplored approach of prompt-based learning for citation intent classification. We argue that with the proper choice of the pretrained language model, the prompt template, and the prompt verbalizer, we can not only get results that are better than or comparable to those obtained with the state-of-the-art methods but also do it with much less exterior information about the scientific document. We report state-of-the-art results on the ACL-ARC dataset, and also show significant improvement on the SciCite dataset over all baseline models except one. As suitably large labelled datasets for citation intent classification can be quite hard to find, in a first, we propose the conversion of this task to the few-shot and zero-shot settings. For the ACL-ARC dataset, we report a 53.86% F1 score for the zero-shot setting, which improves to 63.61% and 66.99% for the 5-shot and 10-shot settings, respectively.
Generating EDU Extracts for Plan-Guided Summary Re-Ranking
Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.
Dolphin: Closed-loop Open-ended Auto-research through Thinking, Practice, and Feedback
The scientific research paradigm is undergoing a profound transformation owing to the development of Artificial Intelligence (AI). Recent works demonstrate that various AI-assisted research methods can largely improve research efficiency by improving data analysis, accelerating computation, and fostering novel idea generation. To further move towards the ultimate goal (i.e., automatic scientific research), in this paper, we propose Dolphin, the first closed-loop open-ended auto-research framework to further build the entire process of human scientific research. Dolphin can generate research ideas, perform experiments, and get feedback from experimental results to generate higher-quality ideas. More specifically, Dolphin first generates novel ideas based on relevant papers which are ranked by the topic and task attributes. Then, the codes are automatically generated and debugged with the exception-traceback-guided local code structure. Finally, Dolphin automatically analyzes the results of each idea and feeds the results back to the next round of idea generation. Experiments are conducted on the benchmark datasets of different topics and results show that Dolphin can generate novel ideas continuously and complete the experiment in a loop. We highlight that Dolphin can automatically propose methods that are comparable to the state-of-the-art in some tasks such as 2D image classification and 3D point classification.
Literature Meets Data: A Synergistic Approach to Hypothesis Generation
AI holds promise for transforming scientific processes, including hypothesis generation. Prior work on hypothesis generation can be broadly categorized into theory-driven and data-driven approaches. While both have proven effective in generating novel and plausible hypotheses, it remains an open question whether they can complement each other. To address this, we develop the first method that combines literature-based insights with data to perform LLM-powered hypothesis generation. We apply our method on five different datasets and demonstrate that integrating literature and data outperforms other baselines (8.97\% over few-shot, 15.75\% over literature-based alone, and 3.37\% over data-driven alone). Additionally, we conduct the first human evaluation to assess the utility of LLM-generated hypotheses in assisting human decision-making on two challenging tasks: deception detection and AI generated content detection. Our results show that human accuracy improves significantly by 7.44\% and 14.19\% on these tasks, respectively. These findings suggest that integrating literature-based and data-driven approaches provides a comprehensive and nuanced framework for hypothesis generation and could open new avenues for scientific inquiry.
Beyond the Lens: Quantifying the Impact of Scientific Documentaries through Amazon Reviews
Engaging the public with science is critical for a well-informed population. A popular method of scientific communication is documentaries. Once released, it can be difficult to assess the impact of such works on a large scale, due to the overhead required for in-depth audience feedback studies. In what follows, we overview our complementary approach to qualitative studies through quantitative impact and sentiment analysis of Amazon reviews for several scientific documentaries. In addition to developing a novel impact category taxonomy for this analysis, we release a dataset containing 1296 human-annotated sentences from 1043 Amazon reviews for six movies created in whole or part by a team of visualization designers who focus on cinematic presentations of scientific data. Using this data, we train and evaluate several machine learning and large language models, discussing their effectiveness and possible generalizability for documentaries beyond those focused on for this work. Themes are also extracted from our annotated dataset which, along with our large language model analysis, demonstrate a measure of the ability of scientific documentaries to engage with the public.
The Evolving Role of Large Language Models in Scientific Innovation: Evaluator, Collaborator, and Scientist
Scientific innovation is undergoing a paradigm shift driven by the rapid advancement of Large Language Models (LLMs). As science faces mounting challenges including information overload, disciplinary silos, and diminishing returns on conventional research methods, LLMs are emerging as powerful agents capable not only of enhancing scientific workflows but also of participating in and potentially leading the innovation process. Existing surveys mainly focus on different perspectives, phrases, and tasks in scientific research and discovery, while they have limitations in understanding the transformative potential and role differentiation of LLM. This survey proposes a comprehensive framework to categorize the evolving roles of LLMs in scientific innovation across three hierarchical levels: Evaluator, Collaborator, and Scientist. We distinguish between LLMs' contributions to structured scientific research processes and open-ended scientific discovery, thereby offering a unified taxonomy that clarifies capability boundaries, evaluation criteria, and human-AI interaction patterns at each level. Through an extensive analysis of current methodologies, benchmarks, systems, and evaluation metrics, this survey delivers an in-depth and systematic synthesis on LLM-driven scientific innovation. We present LLMs not only as tools for automating existing processes, but also as catalysts capable of reshaping the epistemological foundations of science itself. This survey offers conceptual clarity, practical guidance, and theoretical foundations for future research, while also highlighting open challenges and ethical considerations in the pursuit of increasingly autonomous AI-driven science. Resources related to this survey can be accessed on GitHub at: https://github.com/haoxuan-unt2024/llm4innovation.
SciSage: A Multi-Agent Framework for High-Quality Scientific Survey Generation
The rapid growth of scientific literature demands robust tools for automated survey-generation. However, current large language model (LLM)-based methods often lack in-depth analysis, structural coherence, and reliable citations. To address these limitations, we introduce SciSage, a multi-agent framework employing a reflect-when-you-write paradigm. SciSage features a hierarchical Reflector agent that critically evaluates drafts at outline, section, and document levels, collaborating with specialized agents for query interpretation, content retrieval, and refinement. We also release SurveyScope, a rigorously curated benchmark of 46 high-impact papers (2020-2025) across 11 computer science domains, with strict recency and citation-based quality controls. Evaluations demonstrate that SciSage outperforms state-of-the-art baselines (LLM x MapReduce-V2, AutoSurvey), achieving +1.73 points in document coherence and +32% in citation F1 scores. Human evaluations reveal mixed outcomes (3 wins vs. 7 losses against human-written surveys), but highlight SciSage's strengths in topical breadth and retrieval efficiency. Overall, SciSage offers a promising foundation for research-assistive writing tools.
SciEducator: Scientific Video Understanding and Educating via Deming-Cycle Multi-Agent System
Recent advancements in multimodal large language models (MLLMs) and video agent systems have significantly improved general video understanding. However, when applied to scientific video understanding and educating, a domain that demands external professional knowledge integration and rigorous step-wise reasoning, existing approaches often struggle. To bridge this gap, we propose SciEducator, the first iterative self-evolving multi-agent system for scientific video comprehension and education. Rooted in the classical Deming Cycle from management science, our design reformulates its Plan-Do-Study-Act philosophy into a self-evolving reasoning and feedback mechanism, which facilitates the interpretation of intricate scientific activities in videos. Moreover, SciEducator can produce multimodal educational content tailored to specific scientific processes, including textual instructions, visual guides, audio narrations, and interactive references. To support evaluation, we construct SciVBench, a benchmark consisting of 500 expert-verified and literature-grounded science QA pairs across five categories, covering physical, chemical, and everyday phenomena. Extensive experiments demonstrate that SciEducator substantially outperforms leading closed-source MLLMs (e.g., Gemini, GPT-4o) and state-of-the-art video agents on the benchmark, establishing a new paradigm for the community.
Human-Agent Collaborative Paper-to-Page Crafting for Under $0.1
In the quest for scientific progress, communicating research is as vital as the discovery itself. Yet, researchers are often sidetracked by the manual, repetitive chore of building project webpages to make their dense papers accessible. While automation has tackled static slides and posters, the dynamic, interactive nature of webpages has remained an unaddressed challenge. To bridge this gap, we reframe the problem, arguing that the solution lies not in a single command, but in a collaborative, hierarchical process. We introduce AutoPage, a novel multi-agent system that embodies this philosophy. AutoPage deconstructs paper-to-page creation into a coarse-to-fine pipeline from narrative planning to multimodal content generation and interactive rendering. To combat AI hallucination, dedicated "Checker" agents verify each step against the source paper, while optional human checkpoints ensure the final product aligns perfectly with the author's vision, transforming the system from a mere tool into a powerful collaborative assistant. To rigorously validate our approach, we also construct PageBench, the first benchmark for this new task. Experiments show AutoPage not only generates high-quality, visually appealing pages but does so with remarkable efficiency in under 15 minutes for less than \0.1. Code and dataset will be released at https://mqleet.github.io/AutoPage_ProjectPage/{Webpage}$.
Is Your Paper Being Reviewed by an LLM? Benchmarking AI Text Detection in Peer Review
Peer review is a critical process for ensuring the integrity of published scientific research. Confidence in this process is predicated on the assumption that experts in the relevant domain give careful consideration to the merits of manuscripts which are submitted for publication. With the recent rapid advancements in large language models (LLMs), a new risk to the peer review process is that negligent reviewers will rely on LLMs to perform the often time consuming process of reviewing a paper. However, there is a lack of existing resources for benchmarking the detectability of AI text in the domain of peer review. To address this deficiency, we introduce a comprehensive dataset containing a total of 788,984 AI-written peer reviews paired with corresponding human reviews, covering 8 years of papers submitted to each of two leading AI research conferences (ICLR and NeurIPS). We use this new resource to evaluate the ability of 18 existing AI text detection algorithms to distinguish between peer reviews fully written by humans and different state-of-the-art LLMs. Additionally, we explore a context-aware detection method called Anchor, which leverages manuscript content to detect AI-generated reviews, and analyze the sensitivity of detection models to LLM-assisted editing of human-written text. Our work reveals the difficulty of identifying AI-generated text at the individual peer review level, highlighting the urgent need for new tools and methods to detect this unethical use of generative AI. Our dataset is publicly available at: https://huggingface.co/datasets/IntelLabs/AI-Peer-Review-Detection-Benchmark.
The Tiny Time-series Transformer: Low-latency High-throughput Classification of Astronomical Transients using Deep Model Compression
A new golden age in astronomy is upon us, dominated by data. Large astronomical surveys are broadcasting unprecedented rates of information, demanding machine learning as a critical component in modern scientific pipelines to handle the deluge of data. The upcoming Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will raise the big-data bar for time-domain astronomy, with an expected 10 million alerts per-night, and generating many petabytes of data over the lifetime of the survey. Fast and efficient classification algorithms that can operate in real-time, yet robustly and accurately, are needed for time-critical events where additional resources can be sought for follow-up analyses. In order to handle such data, state-of-the-art deep learning architectures coupled with tools that leverage modern hardware accelerators are essential. We showcase how the use of modern deep compression methods can achieve a 18times reduction in model size, whilst preserving classification performance. We also show that in addition to the deep compression techniques, careful choice of file formats can improve inference latency, and thereby throughput of alerts, on the order of 8times for local processing, and 5times in a live production setting. To test this in a live setting, we deploy this optimised version of the original time-series transformer, t2, into the community alert broking system of FINK on real Zwicky Transient Facility (ZTF) alert data, and compare throughput performance with other science modules that exist in FINK. The results shown herein emphasise the time-series transformer's suitability for real-time classification at LSST scale, and beyond, and introduce deep model compression as a fundamental tool for improving deploy-ability and scalable inference of deep learning models for transient classification.
SurveyBench: How Well Can LLM(-Agents) Write Academic Surveys?
Academic survey writing, which distills vast literature into a coherent and insightful narrative, remains a labor-intensive and intellectually demanding task. While recent approaches, such as general DeepResearch agents and survey-specialized methods, can generate surveys automatically (a.k.a. LLM4Survey), their outputs often fall short of human standards and there lacks a rigorous, reader-aligned benchmark for thoroughly revealing their deficiencies. To fill the gap, we propose a fine-grained, quiz-driven evaluation framework SurveyBench, featuring (1) typical survey topics source from recent 11,343 arXiv papers and corresponding 4,947 high-quality surveys; (2) a multifaceted metric hierarchy that assesses the outline quality (e.g., coverage breadth, logical coherence), content quality (e.g., synthesis granularity, clarity of insights), and non-textual richness; and (3) a dual-mode evaluation protocol that includes content-based and quiz-based answerability tests, explicitly aligned with readers' informational needs. Results show SurveyBench effectively challenges existing LLM4Survey approaches (e.g., on average 21% lower than human in content-based evaluation).
Machine learning-driven Anomaly Detection and Forecasting for Euclid Space Telescope Operations
State-of-the-art space science missions increasingly rely on automation due to spacecraft complexity and the costs of human oversight. The high volume of data, including scientific and telemetry data, makes manual inspection challenging. Machine learning offers significant potential to meet these demands. The Euclid space telescope, in its survey phase since February 2024, exemplifies this shift. Euclid's success depends on accurate monitoring and interpretation of housekeeping telemetry and science-derived data. Thousands of telemetry parameters, monitored as time series, may or may not impact the quality of scientific data. These parameters have complex interdependencies, often due to physical relationships (e.g., proximity of temperature sensors). Optimising science operations requires careful anomaly detection and identification of hidden parameter states. Moreover, understanding the interactions between known anomalies and physical quantities is crucial yet complex, as related parameters may display anomalies with varied timing and intensity. We address these challenges by analysing temperature anomalies in Euclid's telemetry from February to August 2024, focusing on eleven temperature parameters and 35 covariates. We use a predictive XGBoost model to forecast temperatures based on historical values, detecting anomalies as deviations from predictions. A second XGBoost model predicts anomalies from covariates, capturing their relationships to temperature anomalies. We identify the top three anomalies per parameter and analyse their interactions with covariates using SHAP (Shapley Additive Explanations), enabling rapid, automated analysis of complex parameter relationships. Our method demonstrates how machine learning can enhance telemetry monitoring, offering scalable solutions for other missions with similar data challenges.
BAGELS: Benchmarking the Automated Generation and Extraction of Limitations from Scholarly Text
In scientific research, limitations refer to the shortcomings, constraints, or weaknesses within a study. Transparent reporting of such limitations can enhance the quality and reproducibility of research and improve public trust in science. However, authors often a) underreport them in the paper text and b) use hedging strategies to satisfy editorial requirements at the cost of readers' clarity and confidence. This underreporting behavior, along with an explosion in the number of publications, has created a pressing need to automatically extract or generate such limitations from scholarly papers. In this direction, we present a complete architecture for the computational analysis of research limitations. Specifically, we create a dataset of limitations in ACL, NeurIPS, and PeerJ papers by extracting them from papers' text and integrating them with external reviews; we propose methods to automatically generate them using a novel Retrieval Augmented Generation (RAG) technique; we create a fine-grained evaluation framework for generated limitations; and we provide a meta-evaluation for the proposed evaluation techniques.
