new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 30

SATA-BENCH: Select All That Apply Benchmark for Multiple Choice Questions

Large language models (LLMs) are increasingly evaluated on single-answer multiple-choice tasks, yet many real-world problems require identifying all correct answers from a set of options. This capability remains underexplored. We introduce SATA-BENCH, the first dedicated benchmark for evaluating LLMs on Select All That Apply (SATA) questions across diverse domains, including reading comprehension, law, and biomedicine. Our evaluation of 27 open-source and proprietary models reveals a significant gap: even the strongest model achieves only 41.8% exact match, exposing LLMs' inability to reliably identify all correct answers. We find that this weakness stems from two core challenges: selection bias - models favor certain choices regardless of content, and count bias - models fail to predict the correct number of answers. To address these issues, we propose Choice Funnel, a decoding strategy that combines token debiasing with adaptive thresholding to guide models toward complete and accurate selections. Choice Funnel achieves up to 29% higher exact match than competitive baselines while reducing inference cost by over 64%. Our findings expose fundamental limitations in current LLMs and introduce a new framework for diagnosing and improving multi-answer reasoning. We release SATA-BENCH and Choice Funnel to promote LLM development for robust decision-making in realistic, multi-answer applications.

  • 6 authors
·
May 31 2

Multiple Choice Questions: Reasoning Makes Large Language Models (LLMs) More Self-Confident Even When They Are Wrong

One of the most widely used methods to evaluate LLMs are Multiple Choice Question (MCQ) tests. MCQ benchmarks enable the testing of LLM knowledge on almost any topic at scale as the results can be processed automatically. To help the LLM answer, a few examples called few shots can be included in the prompt. Moreover, the LLM can be asked to answer the question directly with the selected option or to first provide the reasoning and then the selected answer, which is known as chain of thought. In addition to checking whether the selected answer is correct, the evaluation can look at the LLM-estimated probability of its response as an indication of the confidence of the LLM in the response. In this paper, we study how the LLM confidence in its answer depends on whether the model has been asked to answer directly or to provide the reasoning before answering. The results of the evaluation of questions on a wide range of topics in seven different models show that LLMs are more confident in their answers when they provide reasoning before the answer. This occurs regardless of whether the selected answer is correct. Our hypothesis is that this behavior is due to the reasoning that modifies the probability of the selected answer, as the LLM predicts the answer based on the input question and the reasoning that supports the selection made. Therefore, LLM estimated probabilities seem to have intrinsic limitations that should be understood in order to use them in evaluation procedures. Interestingly, the same behavior has been observed in humans, for whom explaining an answer increases confidence in its correctness.

  • 5 authors
·
Jan 16 2

Answer Matching Outperforms Multiple Choice for Language Model Evaluation

Multiple choice benchmarks have long been the workhorse of language model evaluation because grading multiple choice is objective and easy to automate. However, we show multiple choice questions from popular benchmarks can often be answered without even seeing the question. These shortcuts arise from a fundamental limitation of discriminative evaluation not shared by evaluations of the model's free-form, generative answers. Until recently, there appeared to be no viable, scalable alternative to multiple choice--but, we show that this has changed. We consider generative evaluation via what we call answer matching: Give the candidate model the question without the options, have it generate a free-form response, then use a modern language model with the reference answer to determine if the response matches the reference. To compare the validity of different evaluation strategies, we annotate MMLU-Pro and GPQA-Diamond to obtain human grading data, and measure the agreement of each evaluation approach. We find answer matching using recent models--even small ones--achieves near-perfect agreement, in the range of inter-annotator agreement. In contrast, both multiple choice evaluation and using LLM-as-a-judge without reference answers aligns poorly with human grading. Improving evaluations via answer matching is not merely a conceptual concern: the rankings of several models change significantly when evaluating their free-form responses with answer matching. In light of these findings, we discuss how to move the evaluation ecosystem from multiple choice to answer matching.

The Choice of Divergence: A Neglected Key to Mitigating Diversity Collapse in Reinforcement Learning with Verifiable Reward

A central paradox in fine-tuning Large Language Models (LLMs) with Reinforcement Learning with Verifiable Reward (RLVR) is the frequent degradation of multi-attempt performance (Pass@k) despite improvements in single-attempt accuracy (Pass@1). This is often accompanied by catastrophic forgetting, where models lose previously acquired skills. While various methods have been proposed, the choice and function of the divergence term have been surprisingly unexamined as a proactive solution. We argue that standard RLVR objectives -- both those using the mode-seeking reverse KL-divergence and those forgoing a divergence term entirely -- lack a crucial mechanism for knowledge retention. The reverse-KL actively accelerates this decay by narrowing the policy, while its absence provides no safeguard against the model drifting from its diverse knowledge base. We propose a fundamental shift in perspective: using the divergence term itself as the solution. Our framework, Diversity-Preserving Hybrid RL (DPH-RL), leverages mass-covering f-divergences (like forward-KL and JS-divergence) to function as a rehearsal mechanism. By continuously referencing the initial policy, this approach forces the model to maintain broad solution coverage. Extensive experiments on math and SQL generation demonstrate that DPH-RL not only resolves the Pass@k degradation but improves both Pass@1 and Pass@k in- and out-of-domain. Additionally, DPH-RL is more training-efficient because it computes f-divergence using generator functions, requiring only sampling from the initial policy and no online reference model. Our work highlights a crucial, overlooked axis for improving RLVR, demonstrating that the proper selection of a divergence measure is a powerful tool for building more general and diverse reasoning models.

Adaptive Sparse Allocation with Mutual Choice & Feature Choice Sparse Autoencoders

Sparse autoencoders (SAEs) are a promising approach to extracting features from neural networks, enabling model interpretability as well as causal interventions on model internals. SAEs generate sparse feature representations using a sparsifying activation function that implicitly defines a set of token-feature matches. We frame the token-feature matching as a resource allocation problem constrained by a total sparsity upper bound. For example, TopK SAEs solve this allocation problem with the additional constraint that each token matches with at most k features. In TopK SAEs, the k active features per token constraint is the same across tokens, despite some tokens being more difficult to reconstruct than others. To address this limitation, we propose two novel SAE variants, Feature Choice SAEs and Mutual Choice SAEs, which each allow for a variable number of active features per token. Feature Choice SAEs solve the sparsity allocation problem under the additional constraint that each feature matches with at most m tokens. Mutual Choice SAEs solve the unrestricted allocation problem where the total sparsity budget can be allocated freely between tokens and features. Additionally, we introduce a new auxiliary loss function, aux_zipf_loss, which generalises the aux_k_loss to mitigate dead and underutilised features. Our methods result in SAEs with fewer dead features and improved reconstruction loss at equivalent sparsity levels as a result of the inherent adaptive computation. More accurate and scalable feature extraction methods provide a path towards better understanding and more precise control of foundation models.

  • 1 authors
·
Nov 4, 2024

Multiple Choice Questions and Large Languages Models: A Case Study with Fictional Medical Data

Large Language Models (LLMs) like ChatGPT demonstrate significant potential in the medical field, often evaluated using multiple-choice questions (MCQs) similar to those found on the USMLE. Despite their prevalence in medical education, MCQs have limitations that might be exacerbated when assessing LLMs. To evaluate the effectiveness of MCQs in assessing the performance of LLMs, we developed a fictional medical benchmark focused on a non-existent gland, the Glianorex. This approach allowed us to isolate the knowledge of the LLM from its test-taking abilities. We used GPT-4 to generate a comprehensive textbook on the Glianorex in both English and French and developed corresponding multiple-choice questions in both languages. We evaluated various open-source, proprietary, and domain-specific LLMs using these questions in a zero-shot setting. The models achieved average scores around 67%, with minor performance differences between larger and smaller models. Performance was slightly higher in English than in French. Fine-tuned medical models showed some improvement over their base versions in English but not in French. The uniformly high performance across models suggests that traditional MCQ-based benchmarks may not accurately measure LLMs' clinical knowledge and reasoning abilities, instead highlighting their pattern recognition skills. This study underscores the need for more robust evaluation methods to better assess the true capabilities of LLMs in medical contexts.

  • 4 authors
·
Jun 4, 2024

Does Circuit Analysis Interpretability Scale? Evidence from Multiple Choice Capabilities in Chinchilla

Circuit analysis is a promising technique for understanding the internal mechanisms of language models. However, existing analyses are done in small models far from the state of the art. To address this, we present a case study of circuit analysis in the 70B Chinchilla model, aiming to test the scalability of circuit analysis. In particular, we study multiple-choice question answering, and investigate Chinchilla's capability to identify the correct answer label given knowledge of the correct answer text. We find that the existing techniques of logit attribution, attention pattern visualization, and activation patching naturally scale to Chinchilla, allowing us to identify and categorize a small set of `output nodes' (attention heads and MLPs). We further study the `correct letter' category of attention heads aiming to understand the semantics of their features, with mixed results. For normal multiple-choice question answers, we significantly compress the query, key and value subspaces of the head without loss of performance when operating on the answer labels for multiple-choice questions, and we show that the query and key subspaces represent an `Nth item in an enumeration' feature to at least some extent. However, when we attempt to use this explanation to understand the heads' behaviour on a more general distribution including randomized answer labels, we find that it is only a partial explanation, suggesting there is more to learn about the operation of `correct letter' heads on multiple choice question answering.

  • 6 authors
·
Jul 18, 2023

FailureSensorIQ: A Multi-Choice QA Dataset for Understanding Sensor Relationships and Failure Modes

We introduce FailureSensorIQ, a novel Multi-Choice Question-Answering (MCQA) benchmarking system designed to assess the ability of Large Language Models (LLMs) to reason and understand complex, domain-specific scenarios in Industry 4.0. Unlike traditional QA benchmarks, our system focuses on multiple aspects of reasoning through failure modes, sensor data, and the relationships between them across various industrial assets. Through this work, we envision a paradigm shift where modeling decisions are not only data-driven using statistical tools like correlation analysis and significance tests, but also domain-driven by specialized LLMs which can reason about the key contributors and useful patterns that can be captured with feature engineering. We evaluate the Industrial knowledge of over a dozen LLMs-including GPT-4, Llama, and Mistral-on FailureSensorIQ from different lens using Perturbation-Uncertainty-Complexity analysis, Expert Evaluation study, Asset-Specific Knowledge Gap analysis, ReAct agent using external knowledge-bases. Even though closed-source models with strong reasoning capabilities approach expert-level performance, the comprehensive benchmark reveals a significant drop in performance that is fragile to perturbations, distractions, and inherent knowledge gaps in the models. We also provide a real-world case study of how LLMs can drive the modeling decisions on 3 different failure prediction datasets related to various assets. We release: (a) expert-curated MCQA for various industrial assets, (b) FailureSensorIQ benchmark and Hugging Face leaderboard based on MCQA built from non-textual data found in ISO documents, and (c) LLMFeatureSelector, an LLM-based feature selection scikit-learn pipeline. The software is available at https://github.com/IBM/FailureSensorIQ.

Attentiveness to Answer Choices Doesn't Always Entail High QA Accuracy

When large language models (LMs) are applied in zero- or few-shot settings to discriminative tasks such as multiple-choice questions, their attentiveness (i.e., probability mass) is spread across many vocabulary tokens that are not valid choices. Such a spread across multiple surface forms with identical meaning is thought to cause an underestimation of a model's true performance, referred to as the "surface form competition" (SFC) hypothesis. This has motivated the introduction of various probability normalization methods. However, many core questions remain unanswered. How do we measure SFC or attentiveness? Are there direct ways of increasing attentiveness on valid choices? Does increasing attentiveness always improve task accuracy? We propose a mathematical formalism for studying this phenomenon, provide a metric for quantifying attentiveness, and identify a simple method for increasing it -- namely, in-context learning with even just one example containing answer choices. The formalism allows us to quantify SFC and bound its impact. Our experiments on three diverse datasets and six LMs reveal several surprising findings. For example, encouraging models to generate a valid answer choice can, in fact, be detrimental to task performance for some LMs, and prior probability normalization methods are less effective (sometimes even detrimental) to instruction-tuned LMs. We conclude with practical insights for effectively using prompted LMs for multiple-choice tasks.

  • 5 authors
·
May 23, 2023

PLD: A Choice-Theoretic List-Wise Knowledge Distillation

Knowledge distillation is a model compression technique in which a compact "student" network is trained to replicate the predictive behavior of a larger "teacher" network. In logit-based knowledge distillation, it has become the de facto approach to augment cross-entropy with a distillation term. Typically, this term is either a KL divergence that matches marginal probabilities or a correlation-based loss that captures intra- and inter-class relationships. In every case, it acts as an additional term to cross-entropy. This term has its own weight, which must be carefully tuned. In this paper, we adopt a choice-theoretic perspective and recast knowledge distillation under the Plackett-Luce model by interpreting teacher logits as "worth" scores. We introduce "Plackett-Luce Distillation (PLD)", a weighted list-wise ranking loss. In PLD, the teacher model transfers knowledge of its full ranking of classes, weighting each ranked choice by its own confidence. PLD directly optimizes a single "teacher-optimal" ranking. The true label is placed first, followed by the remaining classes in descending teacher confidence. This process yields a convex and translation-invariant surrogate that subsumes weighted cross-entropy. Empirically, across CIFAR-100, ImageNet-1K, and MS-COCO, PLD achieves consistent gains across diverse architectures and distillation objectives, including divergence-based, correlation-based, and feature-based methods, in both homogeneous and heterogeneous teacher-student pairs.

  • 3 authors
·
Jun 14

GIRAFFE: Design Choices for Extending the Context Length of Visual Language Models

Visual Language Models (VLMs) demonstrate impressive capabilities in processing multimodal inputs, yet applications such as visual agents, which require handling multiple images and high-resolution videos, demand enhanced long-range modeling. Moreover, existing open-source VLMs lack systematic exploration into extending their context length, and commercial models often provide limited details. To tackle this, we aim to establish an effective solution that enhances long context performance of VLMs while preserving their capacities in short context scenarios. Towards this goal, we make the best design choice through extensive experiment settings from data curation to context window extending and utilizing: (1) we analyze data sources and length distributions to construct ETVLM - a data recipe to balance the performance across scenarios; (2) we examine existing position extending methods, identify their limitations and propose M-RoPE++ as an enhanced approach; we also choose to solely instruction-tune the backbone with mixed-source data; (3) we discuss how to better utilize extended context windows and propose hybrid-resolution training. Built on the Qwen-VL series model, we propose Giraffe, which is effectively extended to 128K lengths. Evaluated on extensive long context VLM benchmarks such as VideoMME and Viusal Haystacks, our Giraffe achieves state-of-the-art performance among similarly sized open-source long VLMs and is competitive with commercial model GPT-4V. We will open-source the code, data, and models.

  • 4 authors
·
Dec 17, 2024

Recovering Top-Two Answers and Confusion Probability in Multi-Choice Crowdsourcing

Crowdsourcing has emerged as an effective platform for labeling large amounts of data in a cost- and time-efficient manner. Most previous work has focused on designing an efficient algorithm to recover only the ground-truth labels of the data. In this paper, we consider multi-choice crowdsourcing tasks with the goal of recovering not only the ground truth, but also the most confusing answer and the confusion probability. The most confusing answer provides useful information about the task by revealing the most plausible answer other than the ground truth and how plausible it is. To theoretically analyze such scenarios, we propose a model in which there are the top two plausible answers for each task, distinguished from the rest of the choices. Task difficulty is quantified by the probability of confusion between the top two, and worker reliability is quantified by the probability of giving an answer among the top two. Under this model, we propose a two-stage inference algorithm to infer both the top two answers and the confusion probability. We show that our algorithm achieves the minimax optimal convergence rate. We conduct both synthetic and real data experiments and demonstrate that our algorithm outperforms other recent algorithms. We also show the applicability of our algorithms in inferring the difficulty of tasks and in training neural networks with top-two soft labels.

  • 2 authors
·
Dec 29, 2022

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on

Virtual try-on has garnered interest as a neural rendering benchmark task to evaluate complex object transfer and scene composition. Recent works in virtual clothing try-on feature a plethora of possible architectural and data representation choices. However, they present little clarity on quantifying the isolated visual effect of each choice, nor do they specify the hyperparameter details that are key to experimental reproduction. Our work, ShineOn, approaches the try-on task from a bottom-up approach and aims to shine light on the visual and quantitative effects of each experiment. We build a series of scientific experiments to isolate effective design choices in video synthesis for virtual clothing try-on. Specifically, we investigate the effect of different pose annotations, self-attention layer placement, and activation functions on the quantitative and qualitative performance of video virtual try-on. We find that DensePose annotations not only enhance face details but also decrease memory usage and training time. Next, we find that attention layers improve face and neck quality. Finally, we show that GELU and ReLU activation functions are the most effective in our experiments despite the appeal of newer activations such as Swish and Sine. We will release a well-organized code base, hyperparameters, and model checkpoints to support the reproducibility of our results. We expect our extensive experiments and code to greatly inform future design choices in video virtual try-on. Our code may be accessed at https://github.com/andrewjong/ShineOn-Virtual-Tryon.

  • 5 authors
·
Dec 18, 2020

TSGym: Design Choices for Deep Multivariate Time-Series Forecasting

Recently, deep learning has driven significant advancements in multivariate time series forecasting (MTSF) tasks. However, much of the current research in MTSF tends to evaluate models from a holistic perspective, which obscures the individual contributions and leaves critical issues unaddressed. Adhering to the current modeling paradigms, this work bridges these gaps by systematically decomposing deep MTSF methods into their core, fine-grained components like series-patching tokenization, channel-independent strategy, attention modules, or even Large Language Models and Time-series Foundation Models. Through extensive experiments and component-level analysis, our work offers more profound insights than previous benchmarks that typically discuss models as a whole. Furthermore, we propose a novel automated solution called TSGym for MTSF tasks. Unlike traditional hyperparameter tuning, neural architecture searching or fixed model selection, TSGym performs fine-grained component selection and automated model construction, which enables the creation of more effective solutions tailored to diverse time series data, therefore enhancing model transferability across different data sources and robustness against distribution shifts. Extensive experiments indicate that TSGym significantly outperforms existing state-of-the-art MTSF and AutoML methods. All code is publicly available on https://github.com/SUFE-AILAB/TSGym.

  • 7 authors
·
Sep 21

Revisiting Design Choices in Offline Model-Based Reinforcement Learning

Offline reinforcement learning enables agents to leverage large pre-collected datasets of environment transitions to learn control policies, circumventing the need for potentially expensive or unsafe online data collection. Significant progress has been made recently in offline model-based reinforcement learning, approaches which leverage a learned dynamics model. This typically involves constructing a probabilistic model, and using the model uncertainty to penalize rewards where there is insufficient data, solving for a pessimistic MDP that lower bounds the true MDP. Existing methods, however, exhibit a breakdown between theory and practice, whereby pessimistic return ought to be bounded by the total variation distance of the model from the true dynamics, but is instead implemented through a penalty based on estimated model uncertainty. This has spawned a variety of uncertainty heuristics, with little to no comparison between differing approaches. In this paper, we compare these heuristics, and design novel protocols to investigate their interaction with other hyperparameters, such as the number of models, or imaginary rollout horizon. Using these insights, we show that selecting these key hyperparameters using Bayesian Optimization produces superior configurations that are vastly different to those currently used in existing hand-tuned state-of-the-art methods, and result in drastically stronger performance.

  • 5 authors
·
Oct 8, 2021

Student Answer Forecasting: Transformer-Driven Answer Choice Prediction for Language Learning

Intelligent Tutoring Systems (ITS) enhance personalized learning by predicting student answers to provide immediate and customized instruction. However, recent research has primarily focused on the correctness of the answer rather than the student's performance on specific answer choices, limiting insights into students' thought processes and potential misconceptions. To address this gap, we present MCQStudentBert, an answer forecasting model that leverages the capabilities of Large Language Models (LLMs) to integrate contextual understanding of students' answering history along with the text of the questions and answers. By predicting the specific answer choices students are likely to make, practitioners can easily extend the model to new answer choices or remove answer choices for the same multiple-choice question (MCQ) without retraining the model. In particular, we compare MLP, LSTM, BERT, and Mistral 7B architectures to generate embeddings from students' past interactions, which are then incorporated into a finetuned BERT's answer-forecasting mechanism. We apply our pipeline to a dataset of language learning MCQ, gathered from an ITS with over 10,000 students to explore the predictive accuracy of MCQStudentBert, which incorporates student interaction patterns, in comparison to correct answer prediction and traditional mastery-learning feature-based approaches. This work opens the door to more personalized content, modularization, and granular support.

  • 7 authors
·
May 30, 2024

Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? A Comprehensive Assessment for Catalan

Multilingual language models have been a crucial breakthrough as they considerably reduce the need of data for under-resourced languages. Nevertheless, the superiority of language-specific models has already been proven for languages having access to large amounts of data. In this work, we focus on Catalan with the aim to explore to what extent a medium-sized monolingual language model is competitive with state-of-the-art large multilingual models. For this, we: (1) build a clean, high-quality textual Catalan corpus (CaText), the largest to date (but only a fraction of the usual size of the previous work in monolingual language models), (2) train a Transformer-based language model for Catalan (BERTa), and (3) devise a thorough evaluation in a diversity of settings, comprising a complete array of downstream tasks, namely, Part of Speech Tagging, Named Entity Recognition and Classification, Text Classification, Question Answering, and Semantic Textual Similarity, with most of the corresponding datasets being created ex novo. The result is a new benchmark, the Catalan Language Understanding Benchmark (CLUB), which we publish as an open resource, together with the clean textual corpus, the language model, and the cleaning pipeline. Using state-of-the-art multilingual models and a monolingual model trained only on Wikipedia as baselines, we consistently observe the superiority of our model across tasks and settings.

  • 8 authors
·
Jul 16, 2021

Overlooked factors in concept-based explanations: Dataset choice, concept learnability, and human capability

Concept-based interpretability methods aim to explain deep neural network model predictions using a predefined set of semantic concepts. These methods evaluate a trained model on a new, "probe" dataset and correlate model predictions with the visual concepts labeled in that dataset. Despite their popularity, they suffer from limitations that are not well-understood and articulated by the literature. In this work, we analyze three commonly overlooked factors in concept-based explanations. First, the choice of the probe dataset has a profound impact on the generated explanations. Our analysis reveals that different probe datasets may lead to very different explanations, and suggests that the explanations are not generalizable outside the probe dataset. Second, we find that concepts in the probe dataset are often less salient and harder to learn than the classes they claim to explain, calling into question the correctness of the explanations. We argue that only visually salient concepts should be used in concept-based explanations. Finally, while existing methods use hundreds or even thousands of concepts, our human studies reveal a much stricter upper bound of 32 concepts or less, beyond which the explanations are much less practically useful. We make suggestions for future development and analysis of concept-based interpretability methods. Code for our analysis and user interface can be found at https://github.com/princetonvisualai/OverlookedFactors

  • 4 authors
·
Jul 19, 2022

Self-supervised pre-training and contrastive representation learning for multiple-choice video QA

Video Question Answering (Video QA) requires fine-grained understanding of both video and language modalities to answer the given questions. In this paper, we propose novel training schemes for multiple-choice video question answering with a self-supervised pre-training stage and a supervised contrastive learning in the main stage as an auxiliary learning. In the self-supervised pre-training stage, we transform the original problem format of predicting the correct answer into the one that predicts the relevant question to provide a model with broader contextual inputs without any further dataset or annotation. For contrastive learning in the main stage, we add a masking noise to the input corresponding to the ground-truth answer, and consider the original input of the ground-truth answer as a positive sample, while treating the rest as negative samples. By mapping the positive sample closer to the masked input, we show that the model performance is improved. We further employ locally aligned attention to focus more effectively on the video frames that are particularly relevant to the given corresponding subtitle sentences. We evaluate our proposed model on highly competitive benchmark datasets related to multiple-choice video QA: TVQA, TVQA+, and DramaQA. Experimental results show that our model achieves state-of-the-art performance on all datasets. We also validate our approaches through further analyses.

  • 5 authors
·
Sep 16, 2020

The Achievement of Higher Flexibility in Multiple Choice-based Tests Using Image Classification Techniques

In spite of the high accuracy of the existing optical mark reading (OMR) systems and devices, a few restrictions remain existent. In this work, we aim to reduce the restrictions of multiple choice questions (MCQ) within tests. We use an image registration technique to extract the answer boxes from answer sheets. Unlike other systems that rely on simple image processing steps to recognize the extracted answer boxes, we address the problem from another perspective by training a machine learning classifier to recognize the class of each answer box (i.e., confirmed, crossed out, or blank answer). This gives us the ability to deal with a variety of shading and mark patterns, and distinguish between chosen (i.e., confirmed) and canceled answers (i.e., crossed out). All existing machine learning techniques require a large number of examples in order to train a model for classification, therefore we present a dataset including six real MCQ assessments with different answer sheet templates. We evaluate two strategies of classification: a straight-forward approach and a two-stage classifier approach. We test two handcrafted feature methods and a convolutional neural network. In the end, we present an easy-to-use graphical user interface of the proposed system. Compared with existing OMR systems, the proposed system has the least constraints and achieves a high accuracy. We believe that the presented work will further direct the development of OMR systems towards reducing the restrictions of the MCQ tests.

  • 2 authors
·
Nov 2, 2017

Anchored Answers: Unravelling Positional Bias in GPT-2's Multiple-Choice Questions

Large Language Models (LLMs), such as the GPT-4 and LLaMA families, have demonstrated considerable success across diverse tasks, including multiple-choice questions (MCQs). However, these models exhibit a positional bias, particularly an even worse anchored bias in the GPT-2 family, where they consistently favour the first choice 'A' in MCQs during inference. This anchored bias challenges the integrity of GPT-2's decision-making process, as it skews performance based on the position rather than the content of the choices in MCQs. In this study, we utilise the mechanistic interpretability approach to identify the internal modules within GPT-2 models responsible for this bias. We focus on the Multi-Layer Perceptron (MLP) layers and attention heads, using the "logit lens" method to trace and modify the specific value vectors that contribute to the bias. By updating these vectors within MLP and recalibrating attention patterns to neutralise the preference for the first choice 'A', we effectively mitigate the anchored bias. Our interventions not only mitigate the bias but also improve the overall MCQ prediction accuracy for the GPT-2 family across various datasets. This work represents the first comprehensive mechanistic analysis of anchored bias in MCQs within the GPT-2 models, introducing targeted, minimal-intervention strategies that significantly enhance GPT2 model robustness and accuracy in MCQs. Our code is available at https://github.com/ruizheliUOA/Anchored_Bias_GPT2.

  • 2 authors
·
May 6, 2024

Large Language Models (GPT) Struggle to Answer Multiple-Choice Questions about Code

We analyzed effectiveness of three generative pre-trained transformer (GPT) models in answering multiple-choice question (MCQ) assessments, often involving short snippets of code, from introductory and intermediate programming courses at the postsecondary level. This emerging technology stirs countless discussions of its potential uses (e.g., exercise generation, code explanation) as well as misuses in programming education (e.g., cheating). However, the capabilities of GPT models and their limitations to reason about and/or analyze code in educational settings have been under-explored. We evaluated several OpenAI's GPT models on formative and summative MCQ assessments from three Python courses (530 questions). We found that MCQs containing code snippets are not answered as successfully as those that only contain natural language. While questions requiring to fill-in a blank in the code or completing a natural language statement about the snippet are handled rather successfully, MCQs that require analysis and/or reasoning about the code (e.g., what is true/false about the snippet, or what is its output) appear to be the most challenging. These findings can be leveraged by educators to adapt their instructional practices and assessments in programming courses, so that GPT becomes a valuable assistant for a learner as opposed to a source of confusion and/or potential hindrance in the learning process.

  • 4 authors
·
Mar 9, 2023

Effect Heterogeneity with Earth Observation in Randomized Controlled Trials: Exploring the Role of Data, Model, and Evaluation Metric Choice

Many social and environmental phenomena are associated with macroscopic changes in the built environment, captured by satellite imagery on a global scale and with daily temporal resolution. While widely used for prediction, these images and especially image sequences remain underutilized for causal inference, especially in the context of randomized controlled trials (RCTs), where causal identification is established by design. In this paper, we develop and compare a set of general tools for analyzing Conditional Average Treatment Effects (CATEs) from temporal satellite data that can be applied to any RCT where geographical identifiers are available. Through a simulation study, we analyze different modeling strategies for estimating CATE in sequences of satellite images. We find that image sequence representation models with more parameters generally yield a greater ability to detect heterogeneity. To explore the role of model and data choice in practice, we apply the approaches to two influential RCTs -- Banerjee et al. (2015), a poverty study in Cusco, Peru, and Bolsen et al. (2014), a water conservation experiment in Georgia, USA. We benchmark our image sequence models against image-only, tabular-only, and combined image-tabular data sources, summarizing practical implications for investigators in a multivariate analysis. Land cover classifications over satellite images facilitate interpretation of what image features drive heterogeneity. We also show robustness to data and model choice of satellite-based generalization of the RCT results to larger geographical areas outside the original. Overall, this paper shows how satellite sequence data can be incorporated into the analysis of RCTs, and provides evidence about the implications of data, model, and evaluation metric choice for causal analysis.

Language Models Trained to do Arithmetic Predict Human Risky and Intertemporal Choice

The observed similarities in the behavior of humans and Large Language Models (LLMs) have prompted researchers to consider the potential of using LLMs as models of human cognition. However, several significant challenges must be addressed before LLMs can be legitimately regarded as cognitive models. For instance, LLMs are trained on far more data than humans typically encounter, and may have been directly trained on human data in specific cognitive tasks or aligned with human preferences. Consequently, the origins of these behavioral similarities are not well understood. In this paper, we propose a novel way to enhance the utility of LLMs as cognitive models. This approach involves (i) leveraging computationally equivalent tasks that both an LLM and a rational agent need to master for solving a cognitive problem and (ii) examining the specific task distributions required for an LLM to exhibit human-like behaviors. We apply this approach to decision-making -- specifically risky and intertemporal choice -- where the key computationally equivalent task is the arithmetic of expected value calculations. We show that an LLM pretrained on an ecologically valid arithmetic dataset, which we call Arithmetic-GPT, predicts human behavior better than many traditional cognitive models. Pretraining LLMs on ecologically valid arithmetic datasets is sufficient to produce a strong correspondence between these models and human decision-making. Our results also suggest that LLMs used as cognitive models should be carefully investigated via ablation studies of the pretraining data.

  • 3 authors
·
May 29, 2024 2