new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 3

Transferable Parasitic Estimation via Graph Contrastive Learning and Label Rebalancing in AMS Circuits

Graph representation learning on Analog-Mixed Signal (AMS) circuits is crucial for various downstream tasks, e.g., parasitic estimation. However, the scarcity of design data, the unbalanced distribution of labels, and the inherent diversity of circuit implementations pose significant challenges to learning robust and transferable circuit representations. To address these limitations, we propose CircuitGCL, a novel graph contrastive learning framework that integrates representation scattering and label rebalancing to enhance transferability across heterogeneous circuit graphs. CircuitGCL employs a self-supervised strategy to learn topology-invariant node embeddings through hyperspherical representation scattering, eliminating dependency on large-scale data. Simultaneously, balanced mean squared error (BMSE) and balanced softmax cross-entropy (BSCE) losses are introduced to mitigate label distribution disparities between circuits, enabling robust and transferable parasitic estimation. Evaluated on parasitic capacitance estimation (edge-level task) and ground capacitance classification (node-level task) across TSMC 28nm AMS designs, CircuitGCL outperforms all state-of-the-art (SOTA) methods, with the R^2 improvement of 33.64% sim 44.20% for edge regression and F1-score gain of 0.9times sim 2.1times for node classification. Our code is available at https://github.com/ShenShan123/CircuitGCL.

  • 7 authors
·
Jul 9, 2025

CircuitSense: A Hierarchical Circuit System Benchmark Bridging Visual Comprehension and Symbolic Reasoning in Engineering Design Process

Engineering design operates through hierarchical abstraction from system specifications to component implementations, requiring visual understanding coupled with mathematical reasoning at each level. While Multi-modal Large Language Models (MLLMs) excel at natural image tasks, their ability to extract mathematical models from technical diagrams remains unexplored. We present CircuitSense, a comprehensive benchmark evaluating circuit understanding across this hierarchy through 8,006+ problems spanning component-level schematics to system-level block diagrams. Our benchmark uniquely examines the complete engineering workflow: Perception, Analysis, and Design, with a particular emphasis on the critical but underexplored capability of deriving symbolic equations from visual inputs. We introduce a hierarchical synthetic generation pipeline consisting of a grid-based schematic generator and a block diagram generator with auto-derived symbolic equation labels. Comprehensive evaluation of six state-of-the-art MLLMs, including both closed-source and open-source models, reveals fundamental limitations in visual-to-mathematical reasoning. Closed-source models achieve over 85\% accuracy on perception tasks involving component recognition and topology identification, yet their performance on symbolic derivation and analytical reasoning falls below 19\%, exposing a critical gap between visual parsing and symbolic reasoning. Models with stronger symbolic reasoning capabilities consistently achieve higher design task accuracy, confirming the fundamental role of mathematical understanding in circuit synthesis and establishing symbolic reasoning as the key metric for engineering competence.

  • 9 authors
·
Sep 26, 2025

Learning to Design Circuits

Analog IC design relies on human experts to search for parameters that satisfy circuit specifications with their experience and intuitions, which is highly labor intensive, time consuming and suboptimal. Machine learning is a promising tool to automate this process. However, supervised learning is difficult for this task due to the low availability of training data: 1) Circuit simulation is slow, thus generating large-scale dataset is time-consuming; 2) Most circuit designs are propitiatory IPs within individual IC companies, making it expensive to collect large-scale datasets. We propose Learning to Design Circuits (L2DC) to leverage reinforcement learning that learns to efficiently generate new circuits data and to optimize circuits. We fix the schematic, and optimize the parameters of the transistors automatically by training an RL agent with no prior knowledge about optimizing circuits. After iteratively getting observations, generating a new set of transistor parameters, getting a reward, and adjusting the model, L2DC is able to optimize circuits. We evaluate L2DC on two transimpedance amplifiers. Trained for a day, our RL agent can achieve comparable or better performance than human experts trained for a quarter. It first learns to meet hard-constraints (eg. gain, bandwidth), and then learns to optimize good-to-have targets (eg. area, power). Compared with grid search-aided human design, L2DC can achieve 250times higher sample efficiency with comparable performance. Under the same runtime constraint, the performance of L2DC is also better than Bayesian Optimization.

  • 4 authors
·
Dec 5, 2018

Towards Revealing the Mystery behind Chain of Thought: A Theoretical Perspective

Recent studies have discovered that Chain-of-Thought prompting (CoT) can dramatically improve the performance of Large Language Models (LLMs), particularly when dealing with complex tasks involving mathematics or reasoning. Despite the enormous empirical success, the underlying mechanisms behind CoT and how it unlocks the potential of LLMs remain elusive. In this paper, we take a first step towards theoretically answering these questions. Specifically, we examine the expressivity of LLMs with CoT in solving fundamental mathematical and decision-making problems. By using circuit complexity theory, we first give impossibility results showing that bounded-depth Transformers are unable to directly produce correct answers for basic arithmetic/equation tasks unless the model size grows super-polynomially with respect to the input length. In contrast, we then prove by construction that autoregressive Transformers of constant size suffice to solve both tasks by generating CoT derivations using a commonly used math language format. Moreover, we show LLMs with CoT can handle a general class of decision-making problems known as Dynamic Programming, thus justifying its power in tackling complex real-world tasks. Finally, an extensive set of experiments show that, while Transformers always fail to directly predict the answers, they can consistently learn to generate correct solutions step-by-step given sufficient CoT demonstrations.

  • 6 authors
·
May 24, 2023

How Long It Takes for an Ordinary Node with an Ordinary ID to Output?

In the context of distributed synchronous computing, processors perform in rounds, and the time-complexity of a distributed algorithm is classically defined as the number of rounds before all computing nodes have output. Hence, this complexity measure captures the running time of the slowest node(s). In this paper, we are interested in the running time of the ordinary nodes, to be compared with the running time of the slowest nodes. The node-averaged time-complexity of a distributed algorithm on a given instance is defined as the average, taken over every node of the instance, of the number of rounds before that node output. We compare the node-averaged time-complexity with the classical one in the standard LOCAL model for distributed network computing. We show that there can be an exponential gap between the node-averaged time-complexity and the classical time-complexity, as witnessed by, e.g., leader election. Our first main result is a positive one, stating that, in fact, the two time-complexities behave the same for a large class of problems on very sparse graphs. In particular, we show that, for LCL problems on cycles, the node-averaged time complexity is of the same order of magnitude as the slowest node time-complexity. In addition, in the LOCAL model, the time-complexity is computed as a worst case over all possible identity assignments to the nodes of the network. In this paper, we also investigate the ID-averaged time-complexity, when the number of rounds is averaged over all possible identity assignments. Our second main result is that the ID-averaged time-complexity is essentially the same as the expected time-complexity of randomized algorithms (where the expectation is taken over all possible random bits used by the nodes, and the number of rounds is measured for the worst-case identity assignment). Finally, we study the node-averaged ID-averaged time-complexity.

  • 1 authors
·
Apr 19, 2017

Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach

We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS). Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians. This tailored approach has two clear advantages over previous algorithms that were designed to map a generic MPS to a quantum circuit. First, we optimize all parameters of a parametric circuit at once using Approximate Quantum Compiling (AQC) - this is to be contrasted with other approaches based on locally optimizing a subset of circuit parameters and "sweeping" across the system. We introduce an optimization scheme to avoid the so-called ``orthogonality catastrophe" - i.e. the fact that the fidelity of two arbitrary quantum states decays exponentially with the number of qubits - that would otherwise render a global optimization of the circuit impractical. Second, the depth of our parametric circuit is constant in the number of qubits for a fixed simulation time and fixed error tolerance. This is to be contrasted with the linear circuit Ansatz used in generic algorithms whose depth scales linearly in the number of qubits. For simulation problems on 100 qubits, we show that AQCtensor thus achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit, as compared with the best generic MPS to quantum circuit algorithms. We demonstrate our approach on simulation problems on Heisenberg-like Hamiltonians on up to 100 qubits and find optimized quantum circuits that have significantly reduced depth as compared to standard Trotterized circuits.

  • 4 authors
·
Jan 20, 2023

Retrieval-Guided Reinforcement Learning for Boolean Circuit Minimization

Logic synthesis, a pivotal stage in chip design, entails optimizing chip specifications encoded in hardware description languages like Verilog into highly efficient implementations using Boolean logic gates. The process involves a sequential application of logic minimization heuristics (``synthesis recipe"), with their arrangement significantly impacting crucial metrics such as area and delay. Addressing the challenge posed by the broad spectrum of design complexities - from variations of past designs (e.g., adders and multipliers) to entirely novel configurations (e.g., innovative processor instructions) - requires a nuanced `synthesis recipe` guided by human expertise and intuition. This study conducts a thorough examination of learning and search techniques for logic synthesis, unearthing a surprising revelation: pre-trained agents, when confronted with entirely novel designs, may veer off course, detrimentally affecting the search trajectory. We present ABC-RL, a meticulously tuned alpha parameter that adeptly adjusts recommendations from pre-trained agents during the search process. Computed based on similarity scores through nearest neighbor retrieval from the training dataset, ABC-RL yields superior synthesis recipes tailored for a wide array of hardware designs. Our findings showcase substantial enhancements in the Quality-of-result (QoR) of synthesized circuits, boasting improvements of up to 24.8% compared to state-of-the-art techniques. Furthermore, ABC-RL achieves an impressive up to 9x reduction in runtime (iso-QoR) when compared to current state-of-the-art methodologies.

  • 5 authors
·
Jan 22, 2024

Bridging Reasoning to Learning: Unmasking Illusions using Complexity Out of Distribution Generalization

Recent progress has pushed AI frontiers from pattern recognition tasks toward problems that require step by step, System2 style reasoning, especially with large language models. Yet, unlike learning, where generalization and out of distribution (OoD) evaluation concepts are well formalized, there is no clear, consistent definition or metric for reasoning ability. We propose Complexity Out of Distribution (Complexity OoD) generalization as a framework and problem setting to define and measure reasoning. A model exhibits Complexity OoD generalization when it maintains performance on test instances whose minimal required solution complexity, either representational (richer solution structure) or computational (more reasoning steps/program length), exceeds that of all training examples. We formalize complexity via solution description Kolmogorov complexity and operational proxies (e.g., object/relation counts; reasoning step counts), clarifying how Complexity OoD differs from length and compositional OoD. This lens unifies learning and reasoning: many cases solvable with System1 like processing at low complexity become System2 like under complexity pressure, while System2 can be viewed as generalization over solution structures. We translate this perspective into practice with recommendations for operationalizing Complexity OoD across the stack: incorporating complexity into benchmark and evaluation metric design, rethinking supervision to target solution traces, seeking and designing inductive biases for Complexity OoD generalization, addressing learning to reason spillovers such as spurious shortcuts, semantic robustness, catastrophic forgetting, and step wise calibration. Because Complexity OoD cannot be solved by scaling data alone, progress toward robust reasoning will require architectures and training regimes that explicitly model and allocate computation with respect to complexity.

  • 6 authors
·
Oct 6, 2025 2

Circuit Representation Learning with Masked Gate Modeling and Verilog-AIG Alignment

Understanding the structure and function of circuits is crucial for electronic design automation (EDA). Circuits can be formulated as And-Inverter graphs (AIGs), enabling efficient implementation of representation learning through graph neural networks (GNNs). Masked modeling paradigms have been proven effective in graph representation learning. However, masking augmentation to original circuits will destroy their logical equivalence, which is unsuitable for circuit representation learning. Moreover, existing masked modeling paradigms often prioritize structural information at the expense of abstract information such as circuit function. To address these limitations, we introduce MGVGA, a novel constrained masked modeling paradigm incorporating masked gate modeling (MGM) and Verilog-AIG alignment (VGA). Specifically, MGM preserves logical equivalence by masking gates in the latent space rather than in the original circuits, subsequently reconstructing the attributes of these masked gates. Meanwhile, large language models (LLMs) have demonstrated an excellent understanding of the Verilog code functionality. Building upon this capability, VGA performs masking operations on original circuits and reconstructs masked gates under the constraints of equivalent Verilog codes, enabling GNNs to learn circuit functions from LLMs. We evaluate MGVGA on various logic synthesis tasks for EDA and show the superior performance of MGVGA compared to previous state-of-the-art methods. Our code is available at https://github.com/wuhy68/MGVGA.

  • 4 authors
·
Feb 18, 2025

KetGPT - Dataset Augmentation of Quantum Circuits using Transformers

Quantum algorithms, represented as quantum circuits, can be used as benchmarks for assessing the performance of quantum systems. Existing datasets, widely utilized in the field, suffer from limitations in size and versatility, leading researchers to employ randomly generated circuits. Random circuits are, however, not representative benchmarks as they lack the inherent properties of real quantum algorithms for which the quantum systems are manufactured. This shortage of `useful' quantum benchmarks poses a challenge to advancing the development and comparison of quantum compilers and hardware. This research aims to enhance the existing quantum circuit datasets by generating what we refer to as `realistic-looking' circuits by employing the Transformer machine learning architecture. For this purpose, we introduce KetGPT, a tool that generates synthetic circuits in OpenQASM language, whose structure is based on quantum circuits derived from existing quantum algorithms and follows the typical patterns of human-written algorithm-based code (e.g., order of gates and qubits). Our three-fold verification process, involving manual inspection and Qiskit framework execution, transformer-based classification, and structural analysis, demonstrates the efficacy of KetGPT in producing large amounts of additional circuits that closely align with algorithm-based structures. Beyond benchmarking, we envision KetGPT contributing substantially to AI-driven quantum compilers and systems.

  • 4 authors
·
Feb 20, 2024

CircuitLM: A Multi-Agent LLM-Aided Design Framework for Generating Circuit Schematics from Natural Language Prompts

Generating accurate circuit schematics from high-level natural language descriptions remains a persistent challenge in electronics design, as large language models (LLMs) frequently hallucinate in granular details, violate electrical constraints, and produce non-machine-readable outputs. We present CircuitLM, a novel multi-agent LLM-aided circuit design pipeline that translates user prompts into structured, visually interpretable CircuitJSON schematics through five sequential stages: (i) LLM-based component identification, (ii) canonical pinout retrieval, (iii) chain-of-thought reasoning by an electronics expert agent, (iv) JSON schematic synthesis, and (v) force-directed SVG visualization. Anchored by a curated, embedding-powered component knowledge base. While LLMs often violate electrical constraints, CircuitLM bridges this gap by grounding generation in a verified and dynamically extensible component database, initially comprising 50 components. To ensure safety, we incorporate a hybrid evaluation framework, namely Dual-Metric Circuit Validation (DMCV), validated against human-expert assessments, which achieves high fidelity in microcontroller-centric designs. We evaluate the system on 100 diverse embedded-systems prompts across six LLMs and introduce DMCV to assess both structural and electrical validity. This work bridges natural language input to deployable hardware designs, enabling reliable circuit prototyping by non-experts. Our code and data will be made public upon acceptance.

  • 4 authors
·
Jan 7

Transcoders Find Interpretable LLM Feature Circuits

A key goal in mechanistic interpretability is circuit analysis: finding sparse subgraphs of models corresponding to specific behaviors or capabilities. However, MLP sublayers make fine-grained circuit analysis on transformer-based language models difficult. In particular, interpretable features -- such as those found by sparse autoencoders (SAEs) -- are typically linear combinations of extremely many neurons, each with its own nonlinearity to account for. Circuit analysis in this setting thus either yields intractably large circuits or fails to disentangle local and global behavior. To address this we explore transcoders, which seek to faithfully approximate a densely activating MLP layer with a wider, sparsely-activating MLP layer. We successfully train transcoders on language models with 120M, 410M, and 1.4B parameters, and find them to perform at least on par with SAEs in terms of sparsity, faithfulness, and human-interpretability. We then introduce a novel method for using transcoders to perform weights-based circuit analysis through MLP sublayers. The resulting circuits neatly factorize into input-dependent and input-invariant terms. Finally, we apply transcoders to reverse-engineer unknown circuits in the model, and we obtain novel insights regarding the greater-than circuit in GPT2-small. Our results suggest that transcoders can prove effective in decomposing model computations involving MLPs into interpretable circuits. Code is available at https://github.com/jacobdunefsky/transcoder_circuits.

  • 3 authors
·
Jun 17, 2024

The Expressive Power of Transformers with Chain of Thought

Recent theoretical work has identified surprisingly simple reasoning problems, such as checking if two nodes in a graph are connected or simulating finite-state machines, that are provably unsolvable by standard transformers that answer immediately after reading their input. However, in practice, transformers' reasoning can be improved by allowing them to use a "chain of thought" or "scratchpad", i.e., generate and condition on a sequence of intermediate tokens before answering. Motivated by this, we ask: Does such intermediate generation fundamentally extend the computational power of a decoder-only transformer? We show that the answer is yes, but the amount of increase depends crucially on the amount of intermediate generation. For instance, we find that transformer decoders with a logarithmic number of decoding steps (w.r.t. the input length) push the limits of standard transformers only slightly, while a linear number of decoding steps, assuming a slight generalization to standard pre-norm, adds a clear new ability (under standard complexity conjectures): recognizing all regular languages. Our results also imply that linear steps keep transformer decoders within context-sensitive languages, and polynomial steps with generalized pre-norm make them recognize exactly the class of polynomial-time solvable problems -- the first exact characterization of a type of transformers in terms of standard complexity classes. Together, our results provide a nuanced framework for understanding how the length of a transformer's chain of thought or scratchpad impacts its reasoning power.

  • 2 authors
·
Oct 11, 2023

PreRoutGNN for Timing Prediction with Order Preserving Partition: Global Circuit Pre-training, Local Delay Learning and Attentional Cell Modeling

Pre-routing timing prediction has been recently studied for evaluating the quality of a candidate cell placement in chip design. It involves directly estimating the timing metrics for both pin-level (slack, slew) and edge-level (net delay, cell delay), without time-consuming routing. However, it often suffers from signal decay and error accumulation due to the long timing paths in large-scale industrial circuits. To address these challenges, we propose a two-stage approach. First, we propose global circuit training to pre-train a graph auto-encoder that learns the global graph embedding from circuit netlist. Second, we use a novel node updating scheme for message passing on GCN, following the topological sorting sequence of the learned graph embedding and circuit graph. This scheme residually models the local time delay between two adjacent pins in the updating sequence, and extracts the lookup table information inside each cell via a new attention mechanism. To handle large-scale circuits efficiently, we introduce an order preserving partition scheme that reduces memory consumption while maintaining the topological dependencies. Experiments on 21 real world circuits achieve a new SOTA R2 of 0.93 for slack prediction, which is significantly surpasses 0.59 by previous SOTA method. Code will be available at: https://github.com/Thinklab-SJTU/EDA-AI.

  • 7 authors
·
Feb 26, 2024

CayleyPy Growth: Efficient growth computations and hundreds of new conjectures on Cayley graphs (Brief version)

This is the third paper of the CayleyPy project applying artificial intelligence to problems in group theory. We announce the first public release of CayleyPy, an open source Python library for computations with Cayley and Schreier graphs. Compared with systems such as GAP and Sage, CayleyPy handles much larger graphs and performs several orders of magnitude faster. Using CayleyPy we obtained about 200 new conjectures on Cayley and Schreier graphs, focused on diameters and growth. For many Cayley graphs of symmetric groups Sn we observe quasi polynomial diameter formulas: a small set of quadratic or linear polynomials indexed by n mod s. We conjecture that this is a general phenomenon, giving efficient diameter computation despite the problem being NP hard. We propose a refinement of the Babai type conjecture on diameters of Sn: n^2/2 + 4n upper bounds in the undirected case, compared to previous O(n^2) bounds. We also provide explicit generator families, related to involutions in a square with whiskers pattern, conjectured to maximize the diameter; search confirms this for all n up to 15. We further conjecture an answer to a question posed by V M Glushkov in 1968 on directed Cayley graphs generated by a cyclic shift and a transposition. For nilpotent groups we conjecture an improvement of J S Ellenberg's results on upper unitriangular matrices over Z/pZ, showing linear dependence of diameter on p. Moreover. Some conjectures are LLM friendly, naturally stated as sorting problems verifiable by algorithms or Python code. To benchmark path finding we created more than 10 Kaggle datasets. CayleyPy works with arbitrary permutation or matrix groups and includes over 100 predefined generators. Our growth computation code outperforms GAP and Sage up to 1000 times in speed and size.

  • 49 authors
·
Sep 23, 2025

On the Existence of Simpler Machine Learning Models

It is almost always easier to find an accurate-but-complex model than an accurate-yet-simple model. Finding optimal, sparse, accurate models of various forms (linear models with integer coefficients, decision sets, rule lists, decision trees) is generally NP-hard. We often do not know whether the search for a simpler model will be worthwhile, and thus we do not go to the trouble of searching for one. In this work, we ask an important practical question: can accurate-yet-simple models be proven to exist, or shown likely to exist, before explicitly searching for them? We hypothesize that there is an important reason that simple-yet-accurate models often do exist. This hypothesis is that the size of the Rashomon set is often large, where the Rashomon set is the set of almost-equally-accurate models from a function class. If the Rashomon set is large, it contains numerous accurate models, and perhaps at least one of them is the simple model we desire. In this work, we formally present the Rashomon ratio as a new gauge of simplicity for a learning problem, depending on a function class and a data set. The Rashomon ratio is the ratio of the volume of the set of accurate models to the volume of the hypothesis space, and it is different from standard complexity measures from statistical learning theory. Insight from studying the Rashomon ratio provides an easy way to check whether a simpler model might exist for a problem before finding it, namely whether several different machine learning methods achieve similar performance on the data. In that sense, the Rashomon ratio is a powerful tool for understanding why and when an accurate-yet-simple model might exist. If, as we hypothesize in this work, many real-world data sets admit large Rashomon sets, the implications are vast: it means that simple or interpretable models may often be used for high-stakes decisions without losing accuracy.

  • 3 authors
·
Aug 5, 2019

AnalogSeeker: An Open-source Foundation Language Model for Analog Circuit Design

In this paper, we propose AnalogSeeker, an effort toward an open-source foundation language model for analog circuit design, with the aim of integrating domain knowledge and giving design assistance. To overcome the scarcity of data in this field, we employ a corpus collection strategy based on the domain knowledge framework of analog circuits. High-quality, accessible textbooks across relevant subfields are systematically curated and cleaned into a textual domain corpus. To address the complexity of knowledge of analog circuits, we introduce a granular domain knowledge distillation method. Raw, unlabeled domain corpus is decomposed into typical, granular learning nodes, where a multi-agent framework distills implicit knowledge embedded in unstructured text into question-answer data pairs with detailed reasoning processes, yielding a fine-grained, learnable dataset for fine-tuning. To address the unexplored challenges in training analog circuit foundation models, we explore and share our training methods through both theoretical analysis and experimental validation. We finally establish a fine-tuning-centric training paradigm, customizing and implementing a neighborhood self-constrained supervised fine-tuning algorithm. This approach enhances training outcomes by constraining the perturbation magnitude between the model's output distributions before and after training. In practice, we train the Qwen2.5-32B-Instruct model to obtain AnalogSeeker, which achieves 85.04% accuracy on AMSBench-TQA, the analog circuit knowledge evaluation benchmark, with a 15.67% point improvement over the original model and is competitive with mainstream commercial models. Furthermore, AnalogSeeker also shows effectiveness in the downstream operational amplifier design task. AnalogSeeker is open-sourced at https://huggingface.co/analogllm/analogseeker for research use.

  • 14 authors
·
Aug 14, 2025

Fine-Tuning Large Language Models on Quantum Optimization Problems for Circuit Generation

Large language models (LLM) have achieved remarkable outcomes in addressing complex problems, including math, coding, and analyzing large amounts of scientific reports. Yet few works have explored the potential of LLM in quantum computing. The most challenging problem is how to leverage LLMs to automatically generate quantum circuits at a large scale. In this paper, we address such a challenge by fine-tuning LLMs and injecting the domain-specific knowledge of quantum computing. In particular, we investigate the mechanisms to generate training data sets and construct the end-to-end pipeline to fine-tune pre-trained LLMs that produce parameterized quantum circuits for optimization problems. We have prepared 14,000 quantum circuits covering a substantial part of the quantum optimization landscape: 12 optimization problem instances and their optimized QAOA, VQE, and adaptive VQE circuits. The fine-tuned LLMs can construct syntactically correct parametrized quantum circuits in the most recent OpenQASM 3.0. We have evaluated the quality of the parameters by comparing them to the optimized expectation values and distributions. Our evaluation shows that the fine-tuned LLM outperforms state-of-the-art models and that the parameters are better than random. The LLM-generated parametrized circuits and initial parameters can be used as a starting point for further optimization, e.g., templates in quantum machine learning and the benchmark for compilers and hardware.

  • 4 authors
·
Apr 15, 2025

Classification with Quantum Neural Networks on Near Term Processors

We introduce a quantum neural network, QNN, that can represent labeled data, classical or quantum, and be trained by supervised learning. The quantum circuit consists of a sequence of parameter dependent unitary transformations which acts on an input quantum state. For binary classification a single Pauli operator is measured on a designated readout qubit. The measured output is the quantum neural network's predictor of the binary label of the input state. First we look at classifying classical data sets which consist of n-bit strings with binary labels. The input quantum state is an n-bit computational basis state corresponding to a sample string. We show how to design a circuit made from two qubit unitaries that can correctly represent the label of any Boolean function of n bits. For certain label functions the circuit is exponentially long. We introduce parameter dependent unitaries that can be adapted by supervised learning of labeled data. We study an example of real world data consisting of downsampled images of handwritten digits each of which has been labeled as one of two distinct digits. We show through classical simulation that parameters can be found that allow the QNN to learn to correctly distinguish the two data sets. We then discuss presenting the data as quantum superpositions of computational basis states corresponding to different label values. Here we show through simulation that learning is possible. We consider using our QNN to learn the label of a general quantum state. By example we show that this can be done. Our work is exploratory and relies on the classical simulation of small quantum systems. The QNN proposed here was designed with near-term quantum processors in mind. Therefore it will be possible to run this QNN on a near term gate model quantum computer where its power can be explored beyond what can be explored with simulation.

  • 2 authors
·
Feb 16, 2018

MMCircuitEval: A Comprehensive Multimodal Circuit-Focused Benchmark for Evaluating LLMs

The emergence of multimodal large language models (MLLMs) presents promising opportunities for automation and enhancement in Electronic Design Automation (EDA). However, comprehensively evaluating these models in circuit design remains challenging due to the narrow scope of existing benchmarks. To bridge this gap, we introduce MMCircuitEval, the first multimodal benchmark specifically designed to assess MLLM performance comprehensively across diverse EDA tasks. MMCircuitEval comprises 3614 meticulously curated question-answer (QA) pairs spanning digital and analog circuits across critical EDA stages - ranging from general knowledge and specifications to front-end and back-end design. Derived from textbooks, technical question banks, datasheets, and real-world documentation, each QA pair undergoes rigorous expert review for accuracy and relevance. Our benchmark uniquely categorizes questions by design stage, circuit type, tested abilities (knowledge, comprehension, reasoning, computation), and difficulty level, enabling detailed analysis of model capabilities and limitations. Extensive evaluations reveal significant performance gaps among existing LLMs, particularly in back-end design and complex computations, highlighting the critical need for targeted training datasets and modeling approaches. MMCircuitEval provides a foundational resource for advancing MLLMs in EDA, facilitating their integration into real-world circuit design workflows. Our benchmark is available at https://github.com/cure-lab/MMCircuitEval.

  • 22 authors
·
Jul 20, 2025

The I/O Complexity of Attention, or How Optimal is Flash Attention?

Self-attention is at the heart of the popular Transformer architecture, yet suffers from quadratic time and memory complexity. The breakthrough FlashAttention algorithm revealed I/O complexity as the true bottleneck in scaling Transformers. Given two levels of memory hierarchy, a fast cache (e.g. GPU on-chip SRAM) and a slow memory (e.g. GPU high-bandwidth memory), the I/O complexity measures the number of accesses to memory. FlashAttention computes attention using N^2d^2{M} I/O operations where N is the dimension of the attention matrix, d the head-dimension and M the cache size. However, is this I/O complexity optimal? The known lower bound only rules out an I/O complexity of o(Nd) when M=Theta(Nd), since the output that needs to be written to slow memory is Omega(Nd). This leads to the main question of our work: Is FlashAttention I/O optimal for all values of M? We resolve the above question in its full generality by showing an I/O complexity lower bound that matches the upper bound provided by FlashAttention for any values of M geq d^2 within any constant factors. Further, we give a better algorithm with lower I/O complexity for M < d^2, and show that it is optimal as well. Moreover, our lower bounds do not rely on using combinatorial matrix multiplication for computing the attention matrix. We show even if one uses fast matrix multiplication, the above I/O complexity bounds cannot be improved. We do so by introducing a new communication complexity protocol for matrix compression, and connecting communication complexity to I/O complexity. To the best of our knowledge, this is the first work to establish a connection between communication complexity and I/O complexity, and we believe this connection could be of independent interest and will find many more applications in proving I/O complexity lower bounds in the future.

  • 2 authors
·
Feb 12, 2024

Quantum Architecture Search with Unsupervised Representation Learning

Unsupervised representation learning presents new opportunities for advancing Quantum Architecture Search (QAS) on Noisy Intermediate-Scale Quantum (NISQ) devices. QAS is designed to optimize quantum circuits for Variational Quantum Algorithms (VQAs). Most QAS algorithms tightly couple the search space and search algorithm, typically requiring the evaluation of numerous quantum circuits, resulting in high computational costs and limiting scalability to larger quantum circuits. Predictor-based QAS algorithms mitigate this issue by estimating circuit performance based on structure or embedding. However, these methods often demand time-intensive labeling to optimize gate parameters across many circuits, which is crucial for training accurate predictors. Inspired by the classical neural architecture search algorithm Arch2vec, we investigate the potential of unsupervised representation learning for QAS without relying on predictors. Our framework decouples unsupervised architecture representation learning from the search process, enabling the learned representations to be applied across various downstream tasks. Additionally, it integrates an improved quantum circuit graph encoding scheme, addressing the limitations of existing representations and enhancing search efficiency. This predictor-free approach removes the need for large labeled datasets. During the search, we employ REINFORCE and Bayesian Optimization to explore the latent representation space and compare their performance against baseline methods. Our results demonstrate that the framework efficiently identifies high-performing quantum circuits with fewer search iterations.

  • 4 authors
·
Jan 21, 2024

AITEE -- Agentic Tutor for Electrical Engineering

Intelligent tutoring systems combined with large language models offer a promising approach to address students' diverse needs and promote self-efficacious learning. While large language models possess good foundational knowledge of electrical engineering basics, they remain insufficiently capable of addressing specific questions about electrical circuits. In this paper, we present AITEE, an agent-based tutoring system for electrical engineering designed to accompany students throughout their learning process, offer individualized support, and promote self-directed learning. AITEE supports both hand-drawn and digital circuits through an adapted circuit reconstruction process, enabling natural interaction with students. Our novel graph-based similarity measure identifies relevant context from lecture materials through a retrieval augmented generation approach, while parallel Spice simulation further enhances accuracy in applying solution methodologies. The system implements a Socratic dialogue to foster learner autonomy through guided questioning. Experimental evaluations demonstrate that AITEE significantly outperforms baseline approaches in domain-specific knowledge application, with even medium-sized LLM models showing acceptable performance. Our results highlight the potential of agentic tutors to deliver scalable, personalized, and effective learning environments for electrical engineering education.

  • 3 authors
·
May 27, 2025 2

Complexity of counting points on curves and the factor P_1(T) of the zeta function of surfaces

This article concerns the computational complexity of a fundamental problem in number theory: counting points on curves and surfaces over finite fields. There is no subexponential-time algorithm known and it is unclear if it can be NP-hard. Given a curve, we present the first efficient Arthur-Merlin protocol to certify its point-count, its Jacobian group structure, and its Hasse-Weil zeta function. We extend this result to a smooth projective surface to certify the factor P_{1}(T), corresponding to the first Betti number, of the zeta function; by using the counting oracle. We give the first algorithm to compute P_{1}(T) that is poly(log q)-time if the degree D of the input surface is fixed; and in quantum poly(Dlog q)-time in general. Our technique in the curve case, is to sample hash functions using the Weil and Riemann-Roch bounds, to certify the group order of its Jacobian. For higher dimension varieties, we first reduce to the case of a surface, which is fibred as a Lefschetz pencil of hyperplane sections over P^{1}. The formalism of vanishing cycles, and the inherent big monodromy, enable us to prove an effective version of Deligne's `theoreme du pgcd' using the hard-Lefschetz theorem and an equidistribution result due to Katz. These reduce our investigations to that of computing the zeta function of a curve, defined over a finite field extension F_{Q}/F_{q} of poly-bounded degree. This explicitization of the theory yields the first nontrivial upper bounds on the computational complexity.

  • 3 authors
·
Nov 4, 2025

Neural Circuit Diagrams: Robust Diagrams for the Communication, Implementation, and Analysis of Deep Learning Architectures

Diagrams matter. Unfortunately, the deep learning community has no standard method for diagramming architectures. The current combination of linear algebra notation and ad-hoc diagrams fails to offer the necessary precision to understand architectures in all their detail. However, this detail is critical for faithful implementation, mathematical analysis, further innovation, and ethical assurances. I present neural circuit diagrams, a graphical language tailored to the needs of communicating deep learning architectures. Neural circuit diagrams naturally keep track of the changing arrangement of data, precisely show how operations are broadcast over axes, and display the critical parallel behavior of linear operations. A lingering issue with existing diagramming methods is the inability to simultaneously express the detail of axes and the free arrangement of data, which neural circuit diagrams solve. Their compositional structure is analogous to code, creating a close correspondence between diagrams and implementation. In this work, I introduce neural circuit diagrams for an audience of machine learning researchers. After introducing neural circuit diagrams, I cover a host of architectures to show their utility and breed familiarity. This includes the transformer architecture, convolution (and its difficult-to-explain extensions), residual networks, the U-Net, and the vision transformer. I include a Jupyter notebook that provides evidence for the close correspondence between diagrams and code. Finally, I examine backpropagation using neural circuit diagrams. I show their utility in providing mathematical insight and analyzing algorithms' time and space complexities.

  • 1 authors
·
Feb 8, 2024 1

ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation

In this work, we make the first attempt to evaluate LLMs in a more challenging code generation scenario, i.e. class-level code generation. We first manually construct the first class-level code generation benchmark ClassEval of 100 class-level Python code generation tasks with approximately 500 person-hours. Based on it, we then perform the first study of 11 state-of-the-art LLMs on class-level code generation. Based on our results, we have the following main findings. First, we find that all existing LLMs show much worse performance on class-level code generation compared to on standalone method-level code generation benchmarks like HumanEval; and the method-level coding ability cannot equivalently reflect the class-level coding ability among LLMs. Second, we find that GPT-4 and GPT-3.5 still exhibit dominate superior than other LLMs on class-level code generation, and the second-tier models includes Instruct-Starcoder, Instruct-Codegen, and Wizardcoder with very similar performance. Third, we find that generating the entire class all at once (i.e. holistic generation strategy) is the best generation strategy only for GPT-4 and GPT-3.5, while method-by-method generation (i.e. incremental and compositional) is better strategies for the other models with limited ability of understanding long instructions and utilizing the middle information. Lastly, we find the limited model ability of generating method-dependent code and discuss the frequent error types in generated classes. Our benchmark is available at https://github.com/FudanSELab/ClassEval.

  • 10 authors
·
Aug 3, 2023

Learning Hierarchical Polynomials with Three-Layer Neural Networks

We study the problem of learning hierarchical polynomials over the standard Gaussian distribution with three-layer neural networks. We specifically consider target functions of the form h = g circ p where p : R^d rightarrow R is a degree k polynomial and g: R rightarrow R is a degree q polynomial. This function class generalizes the single-index model, which corresponds to k=1, and is a natural class of functions possessing an underlying hierarchical structure. Our main result shows that for a large subclass of degree k polynomials p, a three-layer neural network trained via layerwise gradient descent on the square loss learns the target h up to vanishing test error in mathcal{O}(d^k) samples and polynomial time. This is a strict improvement over kernel methods, which require widetilde Theta(d^{kq}) samples, as well as existing guarantees for two-layer networks, which require the target function to be low-rank. Our result also generalizes prior works on three-layer neural networks, which were restricted to the case of p being a quadratic. When p is indeed a quadratic, we achieve the information-theoretically optimal sample complexity mathcal{O}(d^2), which is an improvement over prior work~nichani2023provable requiring a sample size of widetildeTheta(d^4). Our proof proceeds by showing that during the initial stage of training the network performs feature learning to recover the feature p with mathcal{O}(d^k) samples. This work demonstrates the ability of three-layer neural networks to learn complex features and as a result, learn a broad class of hierarchical functions.

  • 3 authors
·
Nov 22, 2023

Can Transformers Do Enumerative Geometry?

How can Transformers model and learn enumerative geometry? What is a robust procedure for using Transformers in abductive knowledge discovery within a mathematician-machine collaboration? In this work, we introduce a Transformer-based approach to computational enumerative geometry, specifically targeting the computation of psi-class intersection numbers on the moduli space of curves. By reformulating the problem as a continuous optimization task, we compute intersection numbers across a wide value range from 10^{-45} to 10^{45}. To capture the recursive nature inherent in these intersection numbers, we propose the Dynamic Range Activator (DRA), a new activation function that enhances the Transformer's ability to model recursive patterns and handle severe heteroscedasticity. Given precision requirements for computing the intersections, we quantify the uncertainty of the predictions using Conformal Prediction with a dynamic sliding window adaptive to the partitions of equivalent number of marked points. To the best of our knowledge, there has been no prior work on modeling recursive functions with such a high-variance and factorial growth. Beyond simply computing intersection numbers, we explore the enumerative "world-model" of Transformers. Our interpretability analysis reveals that the network is implicitly modeling the Virasoro constraints in a purely data-driven manner. Moreover, through abductive hypothesis testing, probing, and causal inference, we uncover evidence of an emergent internal representation of the the large-genus asymptotic of psi-class intersection numbers. These findings suggest that the network internalizes the parameters of the asymptotic closed-form and the polynomiality phenomenon of psi-class intersection numbers in a non-linear manner.

  • 3 authors
·
Aug 27, 2024

AnalogGenie: A Generative Engine for Automatic Discovery of Analog Circuit Topologies

The massive and large-scale design of foundational semiconductor integrated circuits (ICs) is crucial to sustaining the advancement of many emerging and future technologies, such as generative AI, 5G/6G, and quantum computing. Excitingly, recent studies have shown the great capabilities of foundational models in expediting the design of digital ICs. Yet, applying generative AI techniques to accelerate the design of analog ICs remains a significant challenge due to critical domain-specific issues, such as the lack of a comprehensive dataset and effective representation methods for analog circuits. This paper proposes, AnalogGenie, a textbf{Gen}erattextbf{i}ve textbf{e}ngine for automatic design/discovery of textbf{Analog} circuit topologies--the most challenging and creative task in the conventional manual design flow of analog ICs. AnalogGenie addresses two key gaps in the field: building a foundational comprehensive dataset of analog circuit topology and developing a scalable sequence-based graph representation universal to analog circuits. Experimental results show the remarkable generation performance of AnalogGenie in broadening the variety of analog ICs, increasing the number of devices within a single design, and discovering unseen circuit topologies far beyond any prior arts. Our work paves the way to transform the longstanding time-consuming manual design flow of analog ICs to an automatic and massive manner powered by generative AI. Our source code is available at https://github.com/xz-group/AnalogGenie.

  • 4 authors
·
Feb 28, 2025

COLEP: Certifiably Robust Learning-Reasoning Conformal Prediction via Probabilistic Circuits

Conformal prediction has shown spurring performance in constructing statistically rigorous prediction sets for arbitrary black-box machine learning models, assuming the data is exchangeable. However, even small adversarial perturbations during the inference can violate the exchangeability assumption, challenge the coverage guarantees, and result in a subsequent decline in empirical coverage. In this work, we propose a certifiably robust learning-reasoning conformal prediction framework (COLEP) via probabilistic circuits, which comprise a data-driven learning component that trains statistical models to learn different semantic concepts, and a reasoning component that encodes knowledge and characterizes the relationships among the trained models for logic reasoning. To achieve exact and efficient reasoning, we employ probabilistic circuits (PCs) within the reasoning component. Theoretically, we provide end-to-end certification of prediction coverage for COLEP in the presence of bounded adversarial perturbations. We also provide certified coverage considering the finite size of the calibration set. Furthermore, we prove that COLEP achieves higher prediction coverage and accuracy over a single model as long as the utilities of knowledge models are non-trivial. Empirically, we show the validity and tightness of our certified coverage, demonstrating the robust conformal prediction of COLEP on various datasets, including GTSRB, CIFAR10, and AwA2. We show that COLEP achieves up to 12% improvement in certified coverage on GTSRB, 9% on CIFAR-10, and 14% on AwA2.

  • 4 authors
·
Mar 17, 2024

DART-Math: Difficulty-Aware Rejection Tuning for Mathematical Problem-Solving

Solving mathematical problems requires advanced reasoning abilities and presents notable challenges for large language models. Previous works usually synthesize data from proprietary models to augment existing datasets, followed by instruction tuning to achieve top-tier results. However, our analysis of these datasets reveals severe biases towards easy queries, with frequent failures to generate any correct response for the most challenging queries. Hypothesizing that difficult queries are crucial to learn complex reasoning, we propose Difficulty-Aware Rejection Tuning (DART), a method that allocates difficult queries more trials during the synthesis phase, enabling more extensive training on difficult samples. Utilizing DART, we have created new datasets for mathematical problem-solving that focus more on difficult queries and are substantially smaller than previous ones. Remarkably, our synthesis process solely relies on a 7B-sized open-weight model, without reliance on the commonly used proprietary GPT-4. We fine-tune various base models on our datasets ranging from 7B to 70B in size, resulting in a series of strong models called DART-MATH. In comprehensive in-domain and out-of-domain evaluation on 6 mathematical benchmarks, DART-MATH outperforms vanilla rejection tuning significantly, being superior or comparable to previous arts, despite using much smaller datasets and no proprietary models. Furthermore, our results position our synthetic datasets as the most effective and cost-efficient publicly available resources for advancing mathematical problem-solving.

  • 5 authors
·
Jun 18, 2024 2

Energy-Consumption Advantage of Quantum Computation

Energy consumption in solving computational problems has been gaining growing attention as a part of the performance measures of computers. Quantum computation is known to offer advantages over classical computation in terms of various computational resources; however, its advantage in energy consumption has been challenging to analyze due to the lack of a theoretical foundation to relate the physical notion of energy and the computer-scientific notion of complexity for quantum computation with finite computational resources. To bridge this gap, we introduce a general framework for studying the energy consumption of quantum and classical computation based on a computational model that has been conventionally used for studying query complexity in computational complexity theory. With this framework, we derive an upper bound for the achievable energy consumption of quantum computation. We also develop techniques for proving a nonzero lower bound of energy consumption of classical computation based on the energy-conservation law and Landauer's principle. With these general bounds, we rigorously prove that quantum computation achieves an exponential energy-consumption advantage over classical computation for solving a specific computational problem, Simon's problem. Furthermore, we clarify how to demonstrate this energy-consumption advantage of quantum computation in an experimental setting. These results provide a fundamental framework and techniques to explore the physical meaning of quantum advantage in the query-complexity setting based on energy consumption, opening an alternative way to study the advantages of quantum computation.

  • 2 authors
·
May 18, 2023

Complexity-Based Prompting for Multi-Step Reasoning

We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A central question is which reasoning examples make the most effective prompts. In this work, we propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning. We show that prompts with higher reasoning complexity, i.e., chains with more reasoning steps, achieve substantially better performance on multi-step reasoning tasks over strong baselines. We further extend our complexity-based criteria from prompting (selecting inputs) to decoding (selecting outputs), where we sample multiple reasoning chains from the model, then choose the majority of generated answers from complex reasoning chains (over simple chains). When used to prompt GPT-3 and Codex, our approach substantially improves multi-step reasoning accuracy and achieves new state-of-the-art (SOTA) performance on three math benchmarks (GSM8K, MultiArith, and MathQA) and two BigBenchHard tasks (Date Understanding and Penguins), with an average +5.3 and up to +18 accuracy improvements. Compared with existing example selection schemes like manual tuning or retrieval-based selection, selection based on reasoning complexity is intuitive, easy to implement, and annotation-efficient. Further results demonstrate the robustness of performance gains from complex prompts under format perturbation and distribution shift.

  • 5 authors
·
Oct 3, 2022

ECM: A Unified Electronic Circuit Model for Explaining the Emergence of In-Context Learning and Chain-of-Thought in Large Language Model

Recent advancements in large language models (LLMs) have led to significant successes across various applications, where the most noticeable is to a series of emerging capabilities, particularly in the areas of In-Context Learning (ICL) and Chain-of-Thought (CoT). To better understand and control model performance, many studies have begun investigating the underlying causes of these phenomena and their impact on task outcomes. However, existing explanatory frameworks predominantly focus on isolating and explaining ICL and CoT independently, leading to an incomplete understanding of their combined influence on model performance. To address this gap, we propose the Electronic Circuit Model (ECM), which provides a foundation for developing scalable, learnable policies and improving the management of AI-generated content. Specifically, ECM conceptualizes model behavior as an electronic circuit: ICL is represented as semantic magnetic field to providing an additional voltage following Faraday's Law, while CoT is modeled as series resistors to constrain the model output performance following Ohm's Law. Experimental results demonstrate that the ECM effectively predicts and explains LLM performance across a variety of prompting strategies. Furthermore, we apply ECM to advanced reasoning strategy optimization on a series of tasks, such as the International Olympiad in Informatics (IOI) and the International Mathematical Olympiad (IMO), achieving competitive performance that surpasses nearly 80% of top human competitors.

  • 9 authors
·
Feb 5, 2025

OSIRIS: Bridging Analog Circuit Design and Machine Learning with Scalable Dataset Generation

The automation of analog integrated circuit (IC) design remains a longstanding challenge, primarily due to the intricate interdependencies among physical layout, parasitic effects, and circuit-level performance. These interactions impose complex constraints that are difficult to accurately capture and optimize using conventional design methodologies. Although recent advances in machine learning (ML) have shown promise in automating specific stages of the analog design flow, the development of holistic, end-to-end frameworks that integrate these stages and iteratively refine layouts using post-layout, parasitic-aware performance feedback is still in its early stages. Furthermore, progress in this direction is hindered by the limited availability of open, high-quality datasets tailored to the analog domain, restricting both the benchmarking and the generalizability of ML-based techniques. To address these limitations, we present OSIRIS, a scalable dataset generation pipeline for analog IC design. OSIRIS systematically explores the design space of analog circuits while producing comprehensive performance metrics and metadata, thereby enabling ML-driven research in electronic design automation (EDA). In addition, we release a dataset consisting of 87,100 circuit variations generated with OSIRIS, accompanied by a reinforcement learning (RL)-based baseline method that exploits OSIRIS for analog design optimization.

  • 3 authors
·
Jan 27

Evaluating the Performance of Some Local Optimizers for Variational Quantum Classifiers

In this paper, we have studied the performance and role of local optimizers in quantum variational circuits. We studied the performance of the two most popular optimizers and compared their results with some popular classical machine learning algorithms. The classical algorithms we used in our study are support vector machine (SVM), gradient boosting (GB), and random forest (RF). These were compared with a variational quantum classifier (VQC) using two sets of local optimizers viz AQGD and COBYLA. For experimenting with VQC, IBM Quantum Experience and IBM Qiskit was used while for classical machine learning models, sci-kit learn was used. The results show that machine learning on noisy immediate scale quantum machines can produce comparable results as on classical machines. For our experiments, we have used a popular restaurant sentiment analysis dataset. The extracted features from this dataset and then after applying PCA reduced the feature set into 5 features. Quantum ML models were trained using 100 epochs and 150 epochs on using EfficientSU2 variational circuit. Overall, four Quantum ML models were trained and three Classical ML models were trained. The performance of the trained models was evaluated using standard evaluation measures viz, Accuracy, Precision, Recall, F-Score. In all the cases AQGD optimizer-based model with 100 Epochs performed better than all other models. It produced an accuracy of 77% and an F-Score of 0.785 which were highest across all the trained models.

  • 3 authors
·
Feb 17, 2021

Lossless Compression with Probabilistic Circuits

Despite extensive progress on image generation, common deep generative model architectures are not easily applied to lossless compression. For example, VAEs suffer from a compression cost overhead due to their latent variables. This overhead can only be partially eliminated with elaborate schemes such as bits-back coding, often resulting in poor single-sample compression rates. To overcome such problems, we establish a new class of tractable lossless compression models that permit efficient encoding and decoding: Probabilistic Circuits (PCs). These are a class of neural networks involving |p| computational units that support efficient marginalization over arbitrary subsets of the D feature dimensions, enabling efficient arithmetic coding. We derive efficient encoding and decoding schemes that both have time complexity O (log(D) cdot |p|), where a naive scheme would have linear costs in D and |p|, making the approach highly scalable. Empirically, our PC-based (de)compression algorithm runs 5-40 times faster than neural compression algorithms that achieve similar bitrates. By scaling up the traditional PC structure learning pipeline, we achieve state-of-the-art results on image datasets such as MNIST. Furthermore, PCs can be naturally integrated with existing neural compression algorithms to improve the performance of these base models on natural image datasets. Our results highlight the potential impact that non-standard learning architectures may have on neural data compression.

  • 3 authors
·
Nov 22, 2021

Curriculum reinforcement learning for quantum architecture search under hardware errors

The key challenge in the noisy intermediate-scale quantum era is finding useful circuits compatible with current device limitations. Variational quantum algorithms (VQAs) offer a potential solution by fixing the circuit architecture and optimizing individual gate parameters in an external loop. However, parameter optimization can become intractable, and the overall performance of the algorithm depends heavily on the initially chosen circuit architecture. Several quantum architecture search (QAS) algorithms have been developed to design useful circuit architectures automatically. In the case of parameter optimization alone, noise effects have been observed to dramatically influence the performance of the optimizer and final outcomes, which is a key line of study. However, the effects of noise on the architecture search, which could be just as critical, are poorly understood. This work addresses this gap by introducing a curriculum-based reinforcement learning QAS (CRLQAS) algorithm designed to tackle challenges in realistic VQA deployment. The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently, (ii) an episode halting scheme to steer the agent to find shorter circuits, and (iii) a novel variant of simultaneous perturbation stochastic approximation as an optimizer for faster convergence. To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in simulating noisy quantum circuits by employing the Pauli-transfer matrix formalism in the Pauli-Liouville basis. Numerical experiments focusing on quantum chemistry tasks demonstrate that CRLQAS outperforms existing QAS algorithms across several metrics in both noiseless and noisy environments.

  • 6 authors
·
Feb 5, 2024

Counting Ability of Large Language Models and Impact of Tokenization

Transformers, the backbone of modern large language models (LLMs), face inherent architectural limitations that impede their reasoning capabilities. Unlike recurrent networks, Transformers lack recurrent connections, confining them to constant-depth computation. This restriction places them in the complexity class TC^0, making them theoretically incapable of solving tasks that demand increasingly deep reasoning as input length grows. Counting, a fundamental component of many reasoning tasks, also requires reasoning depth to grow linearly to be performed inductively. While previous studies have established the upper limits of counting ability in Transformer-based expert models (i.e., models specifically trained for counting tasks), these findings do not directly extend to general-purpose LLMs due to differences in reasoning mechanisms. Recent work has highlighted how Chain of Thought (CoT) reasoning can help alleviate some of the architectural limitations of Transformers in counting tasks. However, little attention has been paid to the role of tokenization in these models. Unlike expert models that often use character-level tokenization, LLMs typically rely on byte-level (BPE) tokenizers, which fundamentally alters the way reasoning is processed. Our work investigates the impact of tokenization on the counting abilities of LLMs, uncovering substantial performance variations based on input tokenization differences. We provide both theoretical and experimental analyses, offering insights into how tokenization choices can undermine models' theoretical computability, thereby inspiring the design of new tokenization methods to enhance reasoning in LLMs.

  • 3 authors
·
Oct 25, 2024 2

Less Quantum, More Advantage: An End-to-End Quantum Algorithm for the Jones Polynomial

We present an end-to-end reconfigurable algorithmic pipeline for solving a famous problem in knot theory using a noisy digital quantum computer, namely computing the value of the Jones polynomial at the fifth root of unity within additive error for any input link, i.e. a closed braid. This problem is DQC1-complete for Markov-closed braids and BQP-complete for Plat-closed braids, and we accommodate both versions of the problem. Even though it is widely believed that DQC1 is strictly contained in BQP, and so is 'less quantum', the resource requirements of classical algorithms for the DQC1 version are at least as high as for the BQP version, and so we potentially gain 'more advantage' by focusing on Markov-closed braids in our exposition. We demonstrate our quantum algorithm on Quantinuum's H2-2 quantum computer and show the effect of problem-tailored error-mitigation techniques. Further, leveraging that the Jones polynomial is a link invariant, we construct an efficiently verifiable benchmark to characterise the effect of noise present in a given quantum processor. In parallel, we implement and benchmark the state-of-the-art tensor-network-based classical algorithms for computing the Jones polynomial. The practical tools provided in this work allow for precise resource estimation to identify near-term quantum advantage for a meaningful quantum-native problem in knot theory.

  • 9 authors
·
Mar 7, 2025

CktGen: Automated Analog Circuit Design with Generative Artificial Intelligence

The automatic synthesis of analog circuits presents significant challenges. Most existing approaches formulate the problem as a single-objective optimization task, overlooking that design specifications for a given circuit type vary widely across applications. To address this, we introduce specification-conditioned analog circuit generation, a task that directly generates analog circuits based on target specifications. The motivation is to leverage existing well-designed circuits to improve automation in analog circuit design. Specifically, we propose CktGen, a simple yet effective variational autoencoder that maps discretized specifications and circuits into a joint latent space and reconstructs the circuit from that latent vector. Notably, as a single specification may correspond to multiple valid circuits, naively fusing specification information into the generative model does not capture these one-to-many relationships. To address this, we decouple the encoding of circuits and specifications and align their mapped latent space. Then, we employ contrastive training with a filter mask to maximize differences between encoded circuits and specifications. Furthermore, classifier guidance along with latent feature alignment promotes the clustering of circuits sharing the same specification, avoiding model collapse into trivial one-to-one mappings. By canonicalizing the latent space with respect to specifications, we can search for an optimal circuit that meets valid target specifications. We conduct comprehensive experiments on the open circuit benchmark and introduce metrics to evaluate cross-model consistency. Experimental results demonstrate that CktGen achieves substantial improvements over state-of-the-art methods.

  • 9 authors
·
Oct 1, 2024

Customizing a Large Language Model for VHDL Design of High-Performance Microprocessors

The use of Large Language Models (LLMs) in hardware design has taken off in recent years, principally through its incorporation in tools that increase chip designer productivity. There has been considerable discussion about the use of LLMs in RTL specifications of chip designs, for which the two most popular languages are Verilog and VHDL. LLMs and their use in Verilog design has received significant attention due to the higher popularity of the language, but little attention so far has been given to VHDL despite its continued popularity in the industry. There has also been little discussion about the unique needs of organizations that engage in high-performance processor design, and techniques to deploy AI solutions in these settings. In this paper, we describe our journey in developing a Large Language Model (LLM) specifically for the purpose of explaining VHDL code, a task that has particular importance in an organization with decades of experience and assets in high-performance processor design. We show how we developed test sets specific to our needs and used them for evaluating models as we performed extended pretraining (EPT) of a base LLM. Expert evaluation of the code explanations produced by the EPT model increased to 69% compared to a base model rating of 43%. We further show how we developed an LLM-as-a-judge to gauge models similar to expert evaluators. This led us to deriving and evaluating a host of new models, including an instruction-tuned version of the EPT model with an expected expert evaluator rating of 71%. Our experiments also indicate that with the potential use of newer base models, this rating can be pushed to 85% and beyond. We conclude with a discussion on further improving the quality of hardware design LLMs using exciting new developments in the Generative AI world.

  • 10 authors
·
May 14, 2025

ComplexVCoder: An LLM-Driven Framework for Systematic Generation of Complex Verilog Code

Recent advances have demonstrated the promising capabilities of large language models (LLMs) in generating register-transfer level (RTL) code, such as Verilog. However, existing LLM-based frameworks still face significant challenges in accurately handling the complexity of real-world RTL designs, particularly those that are large-scale and involve multi-level module instantiations. To address this issue, we present ComplexVCoder, an open-source LLM-driven framework that enhances both the generation quality and efficiency of complex Verilog code. Specifically, we introduce a two-stage generation mechanism, which leverages an intermediate representation to enable a more accurate and structured transition from natural language descriptions to intricate Verilog designs. In addition, we introduce a rule-based alignment method and a domain-specific retrieval-augmented generation (RAG) to further improve the correctness of the synthesized code by incorporating relevant design knowledge during generation. To evaluate our approach, we construct a comprehensive dataset comprising 55 complex Verilog designs derived from real-world implementations. We also release an open-source benchmark suite for systematically assessing the quality of auto-generated RTL code together with the ComplexVCoder framework. Experimental results show that ComplexVCoder outperforms SOTA frameworks such as CodeV and RTLCoder by 14.6% and 22.2%, respectively, in terms of function correctness on complex Verilog benchmarks. Furthermore, ComplexVcoder achieves comparable generation performances in terms of functionality correctness using a lightweight 32B model (Qwen2.5), rivaling larger-scale models such as GPT-3.5 and DeepSeek-V3.

  • 10 authors
·
Apr 29, 2025

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

  • 4 authors
·
Mar 2, 2023

New Solutions on LLM Acceleration, Optimization, and Application

Large Language Models (LLMs) have become extremely potent instruments with exceptional capacities for comprehending and producing human-like text in a wide range of applications. However, the increasing size and complexity of LLMs present significant challenges in both training and deployment, leading to substantial computational and storage costs as well as heightened energy consumption. In this paper, we provide a review of recent advancements and research directions aimed at addressing these challenges and enhancing the efficiency of LLM-based systems. We begin by discussing algorithm-level acceleration techniques focused on optimizing LLM inference speed and resource utilization. We also explore LLM-hardware co-design strategies with a vision to improve system efficiency by tailoring hardware architectures to LLM requirements. Further, we delve into LLM-to-accelerator compilation approaches, which involve customizing hardware accelerators for efficient LLM deployment. Finally, as a case study to leverage LLMs for assisting circuit design, we examine LLM-aided design methodologies for an important task: High-Level Synthesis (HLS) functional verification, by creating a new dataset that contains a large number of buggy and bug-free codes, which can be essential for training LLMs to specialize on HLS verification and debugging. For each aspect mentioned above, we begin with a detailed background study, followed by the presentation of several novel solutions proposed to overcome specific challenges. We then outline future research directions to drive further advancements. Through these efforts, we aim to pave the way for more efficient and scalable deployment of LLMs across a diverse range of applications.

  • 8 authors
·
Jun 16, 2024

Reservoir Computing via Quantum Recurrent Neural Networks

Recent developments in quantum computing and machine learning have propelled the interdisciplinary study of quantum machine learning. Sequential modeling is an important task with high scientific and commercial value. Existing VQC or QNN-based methods require significant computational resources to perform the gradient-based optimization of a larger number of quantum circuit parameters. The major drawback is that such quantum gradient calculation requires a large amount of circuit evaluation, posing challenges in current near-term quantum hardware and simulation software. In this work, we approach sequential modeling by applying a reservoir computing (RC) framework to quantum recurrent neural networks (QRNN-RC) that are based on classical RNN, LSTM and GRU. The main idea to this RC approach is that the QRNN with randomly initialized weights is treated as a dynamical system and only the final classical linear layer is trained. Our numerical simulations show that the QRNN-RC can reach results comparable to fully trained QRNN models for several function approximation and time series prediction tasks. Since the QRNN training complexity is significantly reduced, the proposed model trains notably faster. In this work we also compare to corresponding classical RNN-based RC implementations and show that the quantum version learns faster by requiring fewer training epochs in most cases. Our results demonstrate a new possibility to utilize quantum neural network for sequential modeling with greater quantum hardware efficiency, an important design consideration for noisy intermediate-scale quantum (NISQ) computers.

  • 5 authors
·
Nov 4, 2022

SAGE-HLS: Syntax-Aware AST-Guided LLM for High-Level Synthesis Code Generation

In today's rapidly evolving field of electronic design automation (EDA), the complexity of hardware designs is increasing, necessitating more sophisticated automation solutions. High-level synthesis (HLS), as a pivotal solution, automates hardware designs from high-level abstractions (e.g., C/C++). However, it faces significant challenges, particularly in design space exploration and optimization. While large language models (LLMs) have shown notable capabilities in code generation, their application to HLS has been limited due to the scarcity of (publicly) available HLS code datasets. Hence, research in this domain has primarily focused on techniques such as prompt engineering and retrieval-augmented generation (RAG). To overcome this limitation, this paper introduces SAGE-HLS, the first-of-its-kind fine-tuned LLM specifically for HLS code generation. Our method includes three key advancements: (i) We implement Verilog-to-C/C++ porting, converting verified and synthesizable Verilog codes into corresponding C, creating a dataset of 16.7K HLS codes; (ii) We implement a fine-tuning strategy, which is based on instruction prompting to code generation guided by abstract syntax tree (AST); (iii) We develop a semi-automated evaluation framework using VerilogEval to assess the functionality of the generated HLS code. Our experiments show that SAGE-HLS, fined-tuned on the QwenCoder (2.5) 7B model, achieves a near 100% success rate in code synthesizability and a 75% success rate in functional correctness.

  • 5 authors
·
Aug 5, 2025