- Decoding the Configuration of AI Coding Agents: Insights from Claude Code Projects Agentic code assistants are a new generation of AI systems capable of performing end-to-end software engineering tasks. While these systems promise unprecedented productivity gains, their behavior and effectiveness depend heavily on configuration files that define architectural constraints, coding practices, and tool usage policies. However, little is known about the structure and content of these configuration artifacts. This paper presents an empirical study of the configuration ecosystem of Claude Code, one of the most widely used agentic coding systems. We collected and analyzed 328 configuration files from public Claude Code projects to identify (i) the software engineering concerns and practices they specify and (ii) how these concerns co-occur within individual files. The results highlight the importance of defining a wide range of concerns and practices in agent configuration files, with particular emphasis on specifying the architecture the agent should follow. 4 authors · Nov 12, 2025
- torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation While knowledge distillation (transfer) has been attracting attentions from the research community, the recent development in the fields has heightened the need for reproducible studies and highly generalized frameworks to lower barriers to such high-quality, reproducible deep learning research. Several researchers voluntarily published frameworks used in their knowledge distillation studies to help other interested researchers reproduce their original work. Such frameworks, however, are usually neither well generalized nor maintained, thus researchers are still required to write a lot of code to refactor/build on the frameworks for introducing new methods, models, datasets and designing experiments. In this paper, we present our developed open-source framework built on PyTorch and dedicated for knowledge distillation studies. The framework is designed to enable users to design experiments by declarative PyYAML configuration files, and helps researchers complete the recently proposed ML Code Completeness Checklist. Using the developed framework, we demonstrate its various efficient training strategies, and implement a variety of knowledge distillation methods. We also reproduce some of their original experimental results on the ImageNet and COCO datasets presented at major machine learning conferences such as ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods. All the source code, configurations, log files and trained model weights are publicly available at https://github.com/yoshitomo-matsubara/torchdistill . 1 authors · Nov 25, 2020
1 Mamba-FCS: Joint Spatio- Frequency Feature Fusion, Change-Guided Attention, and SeK Loss for Enhanced Semantic Change Detection in Remote Sensing Semantic Change Detection (SCD) from remote sensing imagery requires models balancing extensive spatial context, computational efficiency, and sensitivity to class-imbalanced land-cover transitions. While Convolutional Neural Networks excel at local feature extraction but lack global context, Transformers provide global modeling at high computational costs. Recent Mamba architectures based on state-space models offer compelling solutions through linear complexity and efficient long-range modeling. In this study, we introduce Mamba-FCS, a SCD framework built upon Visual State Space Model backbone incorporating, a Joint Spatio-Frequency Fusion block incorporating log-amplitude frequency domain features to enhance edge clarity and suppress illumination artifacts, a Change-Guided Attention (CGA) module that explicitly links the naturally intertwined BCD and SCD tasks, and a Separated Kappa (SeK) loss tailored for class-imbalanced performance optimization. Extensive evaluation on SECOND and Landsat-SCD datasets shows that Mamba-FCS achieves state-of-the-art metrics, 88.62% Overall Accuracy, 65.78% F_scd, and 25.50% SeK on SECOND, 96.25% Overall Accuracy, 89.27% F_scd, and 60.26% SeK on Landsat-SCD. Ablation analyses confirm distinct contributions of each novel component, with qualitative assessments highlighting significant improvements in SCD. Our results underline the substantial potential of Mamba architectures, enhanced by proposed techniques, setting a new benchmark for effective and scalable semantic change detection in remote sensing applications. The complete source code, configuration files, and pre-trained models will be publicly available upon publication. 7 authors · Aug 11, 2025
- Ludwig: a type-based declarative deep learning toolbox In this work we present Ludwig, a flexible, extensible and easy to use toolbox which allows users to train deep learning models and use them for obtaining predictions without writing code. Ludwig implements a novel approach to deep learning model building based on two main abstractions: data types and declarative configuration files. The data type abstraction allows for easier code and sub-model reuse, and the standardized interfaces imposed by this abstraction allow for encapsulation and make the code easy to extend. Declarative model definition configuration files enable inexperienced users to obtain effective models and increase the productivity of expert users. Alongside these two innovations, Ludwig introduces a general modularized deep learning architecture called Encoder-Combiner-Decoder that can be instantiated to perform a vast amount of machine learning tasks. These innovations make it possible for engineers, scientists from other fields and, in general, a much broader audience to adopt deep learning models for their tasks, concretely helping in its democratization. 3 authors · Sep 17, 2019
- On the Use of Agentic Coding Manifests: An Empirical Study of Claude Code Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write/execute the actual code with minimal human intervention. Key to this process are agent manifests, configuration files (such as Claude.md) that provide agents with essential project context, identity, and operational rules. However, the lack of comprehensive and accessible documentation for creating these manifests presents a significant challenge for developers. We analyzed 253 Claude.md files from 242 repositories to identify structural patterns and common content. Our findings show that manifests typically have shallow hierarchies with one main heading and several subsections, with content dominated by operational commands, technical implementation notes, and high-level architecture. 8 authors · Sep 18, 2025
6 Performance Prediction for Large Systems via Text-to-Text Regression In many industries, predicting metric outcomes of large systems is a fundamental problem, driven largely by traditional tabular regression. However, such methods struggle on complex systems data in the wild such as configuration files or system logs, where feature engineering is often infeasible. We propose text-to-text regression as a general, scalable alternative. For predicting resource efficiency on Borg, Google's massive compute cluster scheduling system, a 60M parameter encoder-decoder, trained from random initialization, achieves up to a near perfect 0.99 (0.9 average) rank correlation across the entire fleet, and 100x lower MSE than tabular approaches. The model also easily adapts to new tasks in only 500 few-shot examples and captures the densities of complex outcome distributions. Ablation studies highlight the importance of using encoders, increasing sequence length, and the model's inherent uncertainty quantification. These findings pave the way for universal simulators of real-world outcomes. Google · Jun 26, 2025 2
- ELMES: An Automated Framework for Evaluating Large Language Models in Educational Scenarios The emergence of Large Language Models (LLMs) presents transformative opportunities for education, generating numerous novel application scenarios. However, significant challenges remain: evaluation metrics vary substantially across different educational scenarios, while many emerging scenarios lack appropriate assessment metrics. Current benchmarks predominantly measure general intelligence rather than pedagogical capabilities. To address this gap, we introduce ELMES, an open-source automated evaluation framework specifically designed for assessing LLMs in educational settings. ELMES features a modular architecture that enables researchers to create dynamic, multi-agent dialogues through simple configuration files, facilitating flexible scenario design without requiring extensive programming expertise. The framework incorporates a hybrid evaluation engine that objectively quantifies traditionally subjective pedagogical metrics using an LLM-as-a-Judge methodology. We conduct systematic benchmarking of state-of-the-art LLMs across four critical educational scenarios: Knowledge Point Explanation, Guided Problem-Solving Teaching, Interdisciplinary Lesson Plan Generation, and Contextualized Question Generation, employing fine-grained metrics developed in collaboration with education specialists. Our results demonstrate distinct capability distributions among models, revealing context-specific strengths and limitations. ELMES provides educators and researchers with an accessible evaluation framework that significantly reduces adaptation barriers for diverse educational applications while advancing the practical implementation of LLMs in pedagogy. The framework is publicly available at https://github.com/sii-research/elmes.git. 12 authors · Jul 27, 2025
120 Paper2Code: Automating Code Generation from Scientific Papers in Machine Learning Despite the rapid growth of machine learning research, corresponding code implementations are often unavailable, making it slow and labor-intensive for researchers to reproduce results and build upon prior work. In the meantime, recent Large Language Models (LLMs) excel at understanding scientific documents and generating high-quality code. Inspired by this, we introduce PaperCoder, a multi-agent LLM framework that transforms machine learning papers into functional code repositories. PaperCoder operates in three stages: planning, where it constructs a high-level roadmap, designs the system architecture with diagrams, identifies file dependencies, and generates configuration files; analysis, which focuses on interpreting implementation-specific details; and generation, where modular, dependency-aware code is produced. Moreover, each phase is instantiated through a set of specialized agents designed to collaborate effectively across the pipeline. We then evaluate PaperCoder on generating code implementations from machine learning papers based on both model-based and human evaluations, specifically from the original paper authors, with author-released repositories as ground truth if available. Our results demonstrate the effectiveness of PaperCoder in creating high-quality, faithful implementations. Furthermore, it consistently shows strengths in the recently released PaperBench benchmark, surpassing strong baselines by substantial margins. 4 authors · Apr 23, 2025 6
1 Foam-Agent: Towards Automated Intelligent CFD Workflows Computational Fluid Dynamics (CFD) is an essential simulation tool in various engineering disciplines, but it often requires substantial domain expertise and manual configuration, creating barriers to entry. We present Foam-Agent, a multi-agent framework that automates complex OpenFOAM-based CFD simulation workflows from natural language inputs. Our innovation includes (1) a hierarchical multi-index retrieval system with specialized indices for different simulation aspects, (2) a dependency-aware file generation system that provides consistency management across configuration files, and (3) an iterative error correction mechanism that diagnoses and resolves simulation failures without human intervention. Through comprehensive evaluation on the dataset of 110 simulation tasks, Foam-Agent achieves an 83.6% success rate with Claude 3.5 Sonnet, significantly outperforming existing frameworks (55.5% for MetaOpenFOAM and 37.3% for OpenFOAM-GPT). Ablation studies demonstrate the critical contribution of each system component, with the specialized error correction mechanism providing a 36.4% performance improvement. Foam-Agent substantially lowers the CFD expertise threshold while maintaining modeling accuracy, demonstrating the potential of specialized multi-agent systems to democratize access to complex scientific simulation tools. The code is public at https://github.com/csml-rpi/Foam-Agent 4 authors · May 8, 2025
- KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at https://github.com/vboussot/KonfAI{https://github.com/vboussot/KonfAI}. 2 authors · Aug 13, 2025
- Inferflow: an Efficient and Highly Configurable Inference Engine for Large Language Models We present Inferflow, an efficient and highly configurable inference engine for large language models (LLMs). With Inferflow, users can serve most of the common transformer models by simply modifying some lines in corresponding configuration files, without writing a single line of source code. Compared with most existing inference engines, Inferflow has some key features. First, by implementing a modular framework of atomic build-blocks and technologies, Inferflow is compositionally generalizable to new models. Second, 3.5-bit quantization is introduced in Inferflow as a tradeoff between 3-bit and 4-bit quantization. Third, hybrid model partitioning for multi-GPU inference is introduced in Inferflow to better balance inference speed and throughput than the existing partition-by-layer and partition-by-tensor strategies. 6 authors · Jan 16, 2024
12 Agent READMEs: An Empirical Study of Context Files for Agentic Coding Agentic coding tools receive goals written in natural language as input, break them down into specific tasks, and write or execute the actual code with minimal human intervention. Central to this process are agent context files ("READMEs for agents") that provide persistent, project-level instructions. In this paper, we conduct the first large-scale empirical study of 2,303 agent context files from 1,925 repositories to characterize their structure, maintenance, and content. We find that these files are not static documentation but complex, difficult-to-read artifacts that evolve like configuration code, maintained through frequent, small additions. Our content analysis of 16 instruction types shows that developers prioritize functional context, such as build and run commands (62.3%), implementation details (69.9%), and architecture (67.7%). We also identify a significant gap: non-functional requirements like security (14.5%) and performance (14.5%) are rarely specified. These findings indicate that while developers use context files to make agents functional, they provide few guardrails to ensure that agent-written code is secure or performant, highlighting the need for improved tooling and practices. 11 authors · Nov 16, 2025 2
1 AstronomicAL: An interactive dashboard for visualisation, integration and classification of data using Active Learning AstronomicAL is a human-in-the-loop interactive labelling and training dashboard that allows users to create reliable datasets and robust classifiers using active learning. This technique prioritises data that offer high information gain, leading to improved performance using substantially less data. The system allows users to visualise and integrate data from different sources and deal with incorrect or missing labels and imbalanced class sizes. AstronomicAL enables experts to visualise domain-specific plots and key information relating both to broader context and details of a point of interest drawn from a variety of data sources, ensuring reliable labels. In addition, AstronomicAL provides functionality to explore all aspects of the training process, including custom models and query strategies. This makes the software a tool for experimenting with both domain-specific classifications and more general-purpose machine learning strategies. We illustrate using the system with an astronomical dataset due to the field's immediate need; however, AstronomicAL has been designed for datasets from any discipline. Finally, by exporting a simple configuration file, entire layouts, models, and assigned labels can be shared with the community. This allows for complete transparency and ensures that the process of reproducing results is effortless 4 authors · Sep 11, 2021
- Parallel Bayesian Optimization of Agent-based Transportation Simulation MATSim (Multi-Agent Transport Simulation Toolkit) is an open source large-scale agent-based transportation planning project applied to various areas like road transport, public transport, freight transport, regional evacuation, etc. BEAM (Behavior, Energy, Autonomy, and Mobility) framework extends MATSim to enable powerful and scalable analysis of urban transportation systems. The agents from the BEAM simulation exhibit 'mode choice' behavior based on multinomial logit model. In our study, we consider eight mode choices viz. bike, car, walk, ride hail, driving to transit, walking to transit, ride hail to transit, and ride hail pooling. The 'alternative specific constants' for each mode choice are critical hyperparameters in a configuration file related to a particular scenario under experimentation. We use the 'Urbansim-10k' BEAM scenario (with 10,000 population size) for all our experiments. Since these hyperparameters affect the simulation in complex ways, manual calibration methods are time consuming. We present a parallel Bayesian optimization method with early stopping rule to achieve fast convergence for the given multi-in-multi-out problem to its optimal configurations. Our model is based on an open source HpBandSter package. This approach combines hierarchy of several 1D Kernel Density Estimators (KDE) with a cheap evaluator (Hyperband, a single multidimensional KDE). Our model has also incorporated extrapolation based early stopping rule. With our model, we could achieve a 25% L1 norm for a large-scale BEAM simulation in fully autonomous manner. To the best of our knowledge, our work is the first of its kind applied to large-scale multi-agent transportation simulations. This work can be useful for surrogate modeling of scenarios with very large populations. Lawrence Berkeley National Laboratory · Jul 11, 2022
- Dynatask: A Framework for Creating Dynamic AI Benchmark Tasks We introduce Dynatask: an open source system for setting up custom NLP tasks that aims to greatly lower the technical knowledge and effort required for hosting and evaluating state-of-the-art NLP models, as well as for conducting model in the loop data collection with crowdworkers. Dynatask is integrated with Dynabench, a research platform for rethinking benchmarking in AI that facilitates human and model in the loop data collection and evaluation. To create a task, users only need to write a short task configuration file from which the relevant web interfaces and model hosting infrastructure are automatically generated. The system is available at https://dynabench.org/ and the full library can be found at https://github.com/facebookresearch/dynabench. 10 authors · Apr 4, 2022
- A Survey of Methods for Automated Algorithm Configuration Algorithm configuration (AC) is concerned with the automated search of the most suitable parameter configuration of a parametrized algorithm. There is currently a wide variety of AC problem variants and methods proposed in the literature. Existing reviews do not take into account all derivatives of the AC problem, nor do they offer a complete classification scheme. To this end, we introduce taxonomies to describe the AC problem and features of configuration methods, respectively. We review existing AC literature within the lens of our taxonomies, outline relevant design choices of configuration approaches, contrast methods and problem variants against each other, and describe the state of AC in industry. Finally, our review provides researchers and practitioners with a look at future research directions in the field of AC. 7 authors · Feb 3, 2022
- An Empirical Study of Security-Policy Related Issues in Open Source Projects GitHub recommends that projects adopt a security file that outlines vulnerability reporting procedures. However, the effectiveness and operational challenges of such files are not yet fully understood. This study aims to clarify the challenges that security files face in the vulnerability reporting process within open-source communities. Specifically, we classified and analyzed the content of 711 randomly sampled issues related to security files. We also conducted a quantitative comparative analysis of the close time and number of responses for issues concerning six community health files, including security files. Our analysis revealed that 79.5% of security file-related issues were requests to add the file, and reports that included links were closed, with a median time that was 2 days shorter. These findings offer practical insights for improving security reporting policies and community management, ultimately contributing to a more secure open-source ecosystem. 5 authors · Oct 7, 2025
- A ground-truth dataset of real security patches Training machine learning approaches for vulnerability identification and producing reliable tools to assist developers in implementing quality software -- free of vulnerabilities -- is challenging due to the lack of large datasets and real data. Researchers have been looking at these issues and building datasets. However, these datasets usually miss natural language artifacts and programming language diversity. We scraped the entire CVE details database for GitHub references and augmented the data with 3 security-related datasets. We used the data to create a ground-truth dataset of natural language artifacts (such as commit messages, commits comments, and summaries), meta-data and code changes. Our dataset integrates a total of 8057 security-relevant commits -- the equivalent to 5942 security patches -- from 1339 different projects spanning 146 different types of vulnerabilities and 20 languages. A dataset of 110k non-security-related commits is also provided. Data and scripts are all available on GitHub. Data is stored in a .CSV file. Codebases can be downloaded using our scripts. Our dataset is a valuable asset to answer research questions on different topics such as the identification of security-relevant information using NLP models; software engineering and security best practices; and, vulnerability detection and patching; and, security program analysis. 2 authors · Oct 18, 2021
17 OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4. 13 authors · Dec 27, 2024 2
- Facilitating Database Tuning with Hyper-Parameter Optimization: A Comprehensive Experimental Evaluation Recently, using automatic configuration tuning to improve the performance of modern database management systems (DBMSs) has attracted increasing interest from the database community. This is embodied with a number of systems featuring advanced tuning capabilities being developed. However, it remains a challenge to select the best solution for database configuration tuning, considering the large body of algorithm choices. In addition, beyond the applications on database systems, we could find more potential algorithms designed for configuration tuning. To this end, this paper provides a comprehensive evaluation of configuration tuning techniques from a broader perspective, hoping to better benefit the database community. In particular, we summarize three key modules of database configuration tuning systems and conduct extensive ablation studies using various challenging cases. Our evaluation demonstrates that the hyper-parameter optimization algorithms can be borrowed to further enhance the database configuration tuning. Moreover, we identify the best algorithm choices for different modules. Beyond the comprehensive evaluations, we offer an efficient and unified database configuration tuning benchmark via surrogates that reduces the evaluation cost to a minimum, allowing for extensive runs and analysis of new techniques. 7 authors · Oct 25, 2021