Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMultilingual Models for Check-Worthy Social Media Posts Detection
This work presents an extensive study of transformer-based NLP models for detection of social media posts that contain verifiable factual claims and harmful claims. The study covers various activities, including dataset collection, dataset pre-processing, architecture selection, setup of settings, model training (fine-tuning), model testing, and implementation. The study includes a comprehensive analysis of different models, with a special focus on multilingual models where the same model is capable of processing social media posts in both English and in low-resource languages such as Arabic, Bulgarian, Dutch, Polish, Czech, Slovak. The results obtained from the study were validated against state-of-the-art models, and the comparison demonstrated the robustness of the proposed models. The novelty of this work lies in the development of multi-label multilingual classification models that can simultaneously detect harmful posts and posts that contain verifiable factual claims in an efficient way.
Towards the TopMost: A Topic Modeling System Toolkit
Topic models have been proposed for decades with various applications and recently refreshed by the neural variational inference. However, these topic models adopt totally distinct dataset, implementation, and evaluation settings, which hinders their quick utilization and fair comparisons. This greatly hinders the research progress of topic models. To address these issues, in this paper we propose a Topic Modeling System Toolkit (TopMost). Compared to existing toolkits, TopMost stands out by covering a wider range of topic modeling scenarios including complete lifecycles with dataset pre-processing, model training, testing, and evaluations. The highly cohesive and decoupled modular design of TopMost enables quick utilization, fair comparisons, and flexible extensions of different topic models. This can facilitate the research and applications of topic models. Our code, tutorials, and documentation are available at https://github.com/bobxwu/topmost.
Building pre-train LLM Dataset for the INDIC Languages: a case study on Hindi
Large language models (LLMs) demonstrated transformative capabilities in many applications that require automatically generating responses based on human instruction. However, the major challenge for building LLMs, particularly in Indic languages, is the availability of high-quality data for building foundation LLMs. In this paper, we are proposing a large pre-train dataset in Hindi useful for the Indic language Hindi. We have collected the data span across several domains including major dialects in Hindi. The dataset contains 1.28 billion Hindi tokens. We have explained our pipeline including data collection, pre-processing, and availability for LLM pre-training. The proposed approach can be easily extended to other Indic and low-resource languages and will be available freely for LLM pre-training and LLM research purposes.
SynthRAD2025 Grand Challenge dataset: generating synthetic CTs for radiotherapy
Medical imaging is essential in modern radiotherapy, supporting diagnosis, treatment planning, and monitoring. Synthetic imaging, particularly synthetic computed tomography (sCT), is gaining traction in radiotherapy. The SynthRAD2025 dataset and Grand Challenge promote advancements in sCT generation by providing a benchmarking platform for algorithms using cone-beam CT (CBCT) and magnetic resonance imaging (MRI). The dataset includes 2362 cases: 890 MRI-CT and 1472 CBCT-CT pairs from head-and-neck, thoracic, and abdominal cancer patients treated at five European university medical centers (UMC Groningen, UMC Utrecht, Radboud UMC, LMU University Hospital Munich, and University Hospital of Cologne). Data were acquired with diverse scanners and protocols. Pre-processing, including rigid and deformable image registration, ensures high-quality, modality-aligned images. Extensive quality assurance validates image consistency and usability. All imaging data is provided in MetaImage (.mha) format, ensuring compatibility with medical image processing tools. Metadata, including acquisition parameters and registration details, is available in structured CSV files. To maintain dataset integrity, SynthRAD2025 is divided into training (65%), validation (10%), and test (25%) sets. The dataset is accessible at https://doi.org/10.5281/zenodo.14918089 under the SynthRAD2025 collection. This dataset supports benchmarking and the development of synthetic imaging techniques for radiotherapy applications. Use cases include sCT generation for MRI-only and MR-guided photon/proton therapy, CBCT-based dose calculations, and adaptive radiotherapy workflows. By integrating diverse acquisition settings, SynthRAD2025 fosters robust, generalizable image synthesis algorithms, advancing personalized cancer care and adaptive radiotherapy.
Large Raw Emotional Dataset with Aggregation Mechanism
We present a new data set for speech emotion recognition (SER) tasks called Dusha. The corpus contains approximately 350 hours of data, more than 300 000 audio recordings with Russian speech and their transcripts. Therefore it is the biggest open bi-modal data collection for SER task nowadays. It is annotated using a crowd-sourcing platform and includes two subsets: acted and real-life. Acted subset has a more balanced class distribution than the unbalanced real-life part consisting of audio podcasts. So the first one is suitable for model pre-training, and the second is elaborated for fine-tuning purposes, model approbation, and validation. This paper describes pre-processing routine, annotation, and experiment with a baseline model to demonstrate some actual metrics which could be obtained with the Dusha data set.
BN-HTRd: A Benchmark Dataset for Document Level Offline Bangla Handwritten Text Recognition (HTR) and Line Segmentation
We introduce a new dataset for offline Handwritten Text Recognition (HTR) from images of Bangla scripts comprising words, lines, and document-level annotations. The BN-HTRd dataset is based on the BBC Bangla News corpus, meant to act as ground truth texts. These texts were subsequently used to generate the annotations that were filled out by people with their handwriting. Our dataset includes 788 images of handwritten pages produced by approximately 150 different writers. It can be adopted as a basis for various handwriting classification tasks such as end-to-end document recognition, word-spotting, word or line segmentation, and so on. We also propose a scheme to segment Bangla handwritten document images into corresponding lines in an unsupervised manner. Our line segmentation approach takes care of the variability involved in different writing styles, accurately segmenting complex handwritten text lines of curvilinear nature. Along with a bunch of pre-processing and morphological operations, both Hough line and circle transforms were employed to distinguish different linear components. In order to arrange those components into their corresponding lines, we followed an unsupervised clustering approach. The average success rate of our segmentation technique is 81.57% in terms of FM metrics (similar to F-measure) with a mean Average Precision (mAP) of 0.547.
Adapting HouseDiffusion for conditional Floor Plan generation on Modified Swiss Dwellings dataset
Automated floor plan generation has recently gained momentum with several methods that have been proposed. The CVAAD Floor Plan Auto-Completion workshop challenge introduced MSD, a new dataset that includes existing structural walls of the building as an additional input constraint. This technical report presents an approach for extending a recent work, HouseDiffusion (arXiv:2211.13287 [cs.CV]), to the MSD dataset. The adaption involves modifying the model's transformer layers to condition on a set of wall lines. The report introduces a pre-processing pipeline to extract wall lines from the binary mask of the building structure provided as input. Additionally, it was found that a data processing procedure that simplifies all room polygons to rectangles leads to better performance. This indicates that future work should explore better representations of variable-length polygons in diffusion models. The code will be made available at a later date.
ATCO2 corpus: A Large-Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications
Personal assistants, automatic speech recognizers and dialogue understanding systems are becoming more critical in our interconnected digital world. A clear example is air traffic control (ATC) communications. ATC aims at guiding aircraft and controlling the airspace in a safe and optimal manner. These voice-based dialogues are carried between an air traffic controller (ATCO) and pilots via very-high frequency radio channels. In order to incorporate these novel technologies into ATC (low-resource domain), large-scale annotated datasets are required to develop the data-driven AI systems. Two examples are automatic speech recognition (ASR) and natural language understanding (NLU). In this paper, we introduce the ATCO2 corpus, a dataset that aims at fostering research on the challenging ATC field, which has lagged behind due to lack of annotated data. The ATCO2 corpus covers 1) data collection and pre-processing, 2) pseudo-annotations of speech data, and 3) extraction of ATC-related named entities. The ATCO2 corpus is split into three subsets. 1) ATCO2-test-set corpus contains 4 hours of ATC speech with manual transcripts and a subset with gold annotations for named-entity recognition (callsign, command, value). 2) The ATCO2-PL-set corpus consists of 5281 hours of unlabeled ATC data enriched with automatic transcripts from an in-domain speech recognizer, contextual information, speaker turn information, signal-to-noise ratio estimate and English language detection score per sample. Both available for purchase through ELDA at http://catalog.elra.info/en-us/repository/browse/ELRA-S0484. 3) The ATCO2-test-set-1h corpus is a one-hour subset from the original test set corpus, that we are offering for free at https://www.atco2.org/data. We expect the ATCO2 corpus will foster research on robust ASR and NLU not only in the field of ATC communications but also in the general research community.
FindVehicle and VehicleFinder: A NER dataset for natural language-based vehicle retrieval and a keyword-based cross-modal vehicle retrieval system
Natural language (NL) based vehicle retrieval is a task aiming to retrieve a vehicle that is most consistent with a given NL query from among all candidate vehicles. Because NL query can be easily obtained, such a task has a promising prospect in building an interactive intelligent traffic system (ITS). Current solutions mainly focus on extracting both text and image features and mapping them to the same latent space to compare the similarity. However, existing methods usually use dependency analysis or semantic role-labelling techniques to find keywords related to vehicle attributes. These techniques may require a lot of pre-processing and post-processing work, and also suffer from extracting the wrong keyword when the NL query is complex. To tackle these problems and simplify, we borrow the idea from named entity recognition (NER) and construct FindVehicle, a NER dataset in the traffic domain. It has 42.3k labelled NL descriptions of vehicle tracks, containing information such as the location, orientation, type and colour of the vehicle. FindVehicle also adopts both overlapping entities and fine-grained entities to meet further requirements. To verify its effectiveness, we propose a baseline NL-based vehicle retrieval model called VehicleFinder. Our experiment shows that by using text encoders pre-trained by FindVehicle, VehicleFinder achieves 87.7\% precision and 89.4\% recall when retrieving a target vehicle by text command on our homemade dataset based on UA-DETRAC. The time cost of VehicleFinder is 279.35 ms on one ARM v8.2 CPU and 93.72 ms on one RTX A4000 GPU, which is much faster than the Transformer-based system. The dataset is open-source via the link https://github.com/GuanRunwei/FindVehicle, and the implementation can be found via the link https://github.com/GuanRunwei/VehicleFinder-CTIM.
CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of Coding Tasks
Over the last several decades, software has been woven into the fabric of every aspect of our society. As software development surges and code infrastructure of enterprise applications ages, it is now more critical than ever to increase software development productivity and modernize legacy applications. Advances in deep learning and machine learning algorithms have enabled numerous breakthroughs, motivating researchers to leverage AI techniques to improve software development efficiency. Thus, the fast-emerging research area of AI for Code has garnered new interest and gathered momentum. In this paper, we present a large-scale dataset CodeNet, consisting of over 14 million code samples and about 500 million lines of code in 55 different programming languages, which is aimed at teaching AI to code. In addition to its large scale, CodeNet has a rich set of high-quality annotations to benchmark and help accelerate research in AI techniques for a variety of critical coding tasks, including code similarity and classification, code translation between a large variety of programming languages, and code performance (runtime and memory) improvement techniques. Additionally, CodeNet provides sample input and output test sets for 98.5% of the code samples, which can be used as an oracle for determining code correctness and potentially guide reinforcement learning for code quality improvements. As a usability feature, we provide several pre-processing tools in CodeNet to transform source code into representations that can be readily used as inputs into machine learning models. Results of code classification and code similarity experiments using the CodeNet dataset are provided as a reference. We hope that the scale, diversity and rich, high-quality annotations of CodeNet will offer unprecedented research opportunities at the intersection of AI and Software Engineering.
MTReD: 3D Reconstruction Dataset for Fly-over Videos of Maritime Domain
This work tackles 3D scene reconstruction for a video fly-over perspective problem in the maritime domain, with a specific emphasis on geometrically and visually sound reconstructions. This will allow for downstream tasks such as segmentation, navigation, and localization. To our knowledge, there is no dataset available in this domain. As such, we propose a novel maritime 3D scene reconstruction benchmarking dataset, named as MTReD (Maritime Three-Dimensional Reconstruction Dataset). The MTReD comprises 19 fly-over videos curated from the Internet containing ships, islands, and coastlines. As the task is aimed towards geometrical consistency and visual completeness, the dataset uses two metrics: (1) Reprojection error; and (2) Perception based metrics. We find that existing perception-based metrics, such as Learned Perceptual Image Patch Similarity (LPIPS), do not appropriately measure the completeness of a reconstructed image. Thus, we propose a novel semantic similarity metric utilizing DINOv2 features coined DiFPS (DinoV2 Features Perception Similarity). We perform initial evaluation on two baselines: (1) Structured from Motion (SfM) through Colmap; and (2) the recent state-of-the-art MASt3R model. We find that the reconstructed scenes by MASt3R have higher reprojection errors, but superior perception based metric scores. To this end, some pre-processing methods are explored, and we find a pre-processing method which improves both the reprojection error and perception-based score. We envisage our proposed MTReD to stimulate further research in these directions. The dataset and all the code will be made available in https://github.com/RuiYiYong/MTReD.
EMT: A Visual Multi-Task Benchmark Dataset for Autonomous Driving in the Arab Gulf Region
This paper introduces the Emirates Multi-Task (EMT) dataset - the first publicly available dataset for autonomous driving collected in the Arab Gulf region. The EMT dataset captures the unique road topology, high traffic congestion, and distinctive characteristics of the Gulf region, including variations in pedestrian clothing and weather conditions. It contains over 30,000 frames from a dash-camera perspective, along with 570,000 annotated bounding boxes, covering approximately 150 kilometers of driving routes. The EMT dataset supports three primary tasks: tracking, trajectory forecasting and intention prediction. Each benchmark dataset is complemented with corresponding evaluations: (1) multi-agent tracking experiments, focusing on multi-class scenarios and occlusion handling; (2) trajectory forecasting evaluation using deep sequential and interaction-aware models; and (3) intention benchmark experiments conducted for predicting agents intentions from observed trajectories. The dataset is publicly available at avlab.io/emt-dataset, and pre-processing scripts along with evaluation models can be accessed at github.com/AV-Lab/emt-dataset.
MiraBest: A Dataset of Morphologically Classified Radio Galaxies for Machine Learning
The volume of data from current and future observatories has motivated the increased development and application of automated machine learning methodologies for astronomy. However, less attention has been given to the production of standardised datasets for assessing the performance of different machine learning algorithms within astronomy and astrophysics. Here we describe in detail the MiraBest dataset, a publicly available batched dataset of 1256 radio-loud AGN from NVSS and FIRST, filtered to 0.03 < z < 0.1, manually labelled by Miraghaei and Best (2017) according to the Fanaroff-Riley morphological classification, created for machine learning applications and compatible for use with standard deep learning libraries. We outline the principles underlying the construction of the dataset, the sample selection and pre-processing methodology, dataset structure and composition, as well as a comparison of MiraBest to other datasets used in the literature. Existing applications that utilise the MiraBest dataset are reviewed, and an extended dataset of 2100 sources is created by cross-matching MiraBest with other catalogues of radio-loud AGN that have been used more widely in the literature for machine learning applications.
Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation
Recent advancements in medical imaging and artificial intelligence (AI) have greatly enhanced diagnostic capabilities, but the development of effective deep learning (DL) models is still constrained by the lack of high-quality annotated datasets. The traditional manual annotation process by medical experts is time- and resource-intensive, limiting the scalability of these datasets. In this work, we introduce a robust and versatile framework that combines AI and crowdsourcing to improve both the quality and quantity of medical image datasets across different modalities. Our approach utilises a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently. By integrating the MedSAM segmentation AI with this platform, we accelerate the annotation process while maintaining expert-level quality through an algorithm that merges crowd-labelled images. Additionally, we employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features. These methods are combined into a cohesive framework designed to produce an enhanced dataset, which can serve as a universal pre-processing pipeline to boost the training of any medical deep learning segmentation model. Our results demonstrate that this framework significantly improves model performance, especially when training data is limited.
Fine Tuning LLM for Enterprise: Practical Guidelines and Recommendations
There is a compelling necessity from enterprises for fine tuning LLMs (Large Language Models) o get them trained on proprietary domain knowledge. The challenge is to imbibe the LLMs with domain specific knowledge using the most optimial resource and cost and in the best possible time. Many enterprises rely on RAG (Retrieval Augmented Generation) which does not need LLMs to be ine-tuned but they are limited by the quality of vector databases and their retrieval capabilities rather than the intrinsic capabilities of the LLMs themselves. In our current work we focus on fine tuning LLaMA, an open source LLM using proprietary documents and code from an enterprise repository and use the fine tuned models to evaluate the quality of responses. As part of this work, we aim to guide beginners on how to start with fine tuning an LLM for documentation and code by making educated guesses on size of GPU required and options that are available for formatting the data. We also propose pre processing recipes for both documentation and code to prepare dataset in different formats. The proposed methods of data preparation for document datasets are forming paragraph chunks, forming question and answer pairs and forming keyword and paragraph chunk pairs. For code dataset we propose forming summary and function pairs. Further, we qualitatively evaluate the results of the models for domain specific queries. Finally, we also propose practical guidelines and recommendations for fine tuning LLMs.
FOLD-SE: An Efficient Rule-based Machine Learning Algorithm with Scalable Explainability
We present FOLD-SE, an efficient, explainable machine learning algorithm for classification tasks given tabular data containing numerical and categorical values. FOLD-SE generates a set of default rules-essentially a stratified normal logic program-as an (explainable) trained model. Explainability provided by FOLD-SE is scalable, meaning that regardless of the size of the dataset, the number of learned rules and learned literals stay quite small while good accuracy in classification is maintained. A model with smaller number of rules and literals is easier to understand for human beings. FOLD-SE is competitive with state-of-the-art machine learning algorithms such as XGBoost and Multi-Layer Perceptrons (MLP) wrt accuracy of prediction. However, unlike XGBoost and MLP, the FOLD-SE algorithm is explainable. The FOLD-SE algorithm builds upon our earlier work on developing the explainable FOLD-R++ machine learning algorithm for binary classification and inherits all of its positive features. Thus, pre-processing of the dataset, using techniques such as one-hot encoding, is not needed. Like FOLD-R++, FOLD-SE uses prefix sum to speed up computations resulting in FOLD-SE being an order of magnitude faster than XGBoost and MLP in execution speed. The FOLD-SE algorithm outperforms FOLD-R++ as well as other rule-learning algorithms such as RIPPER in efficiency, performance and scalability, especially for large datasets. A major reason for scalable explainability of FOLD-SE is the use of a literal selection heuristics based on Gini Impurity, as opposed to Information Gain used in FOLD-R++. A multi-category classification version of FOLD-SE is also presented.
Report on UG^2+ Challenge Track 1: Assessing Algorithms to Improve Video Object Detection and Classification from Unconstrained Mobility Platforms
How can we effectively engineer a computer vision system that is able to interpret videos from unconstrained mobility platforms like UAVs? One promising option is to make use of image restoration and enhancement algorithms from the area of computational photography to improve the quality of the underlying frames in a way that also improves automatic visual recognition. Along these lines, exploratory work is needed to find out which image pre-processing algorithms, in combination with the strongest features and supervised machine learning approaches, are good candidates for difficult scenarios like motion blur, weather, and mis-focus -- all common artifacts in UAV acquired images. This paper summarizes the protocols and results of Track 1 of the UG^2+ Challenge held in conjunction with IEEE/CVF CVPR 2019. The challenge looked at two separate problems: (1) object detection improvement in video, and (2) object classification improvement in video. The challenge made use of the UG^2 (UAV, Glider, Ground) dataset, which is an established benchmark for assessing the interplay between image restoration and enhancement and visual recognition. 16 algorithms were submitted by academic and corporate teams, and a detailed analysis of how they performed on each challenge problem is reported here.
Code Structure-Aware through Line-level Semantic Learning for Code Vulnerability Detection
Different from the flow semantics of natural languages, programming languages are inherently rigid in structure and grammar. Existing fine-tuning methodologies for code vulnerability detection generally treat code as long text sequences, stripping away structural elements such as newlines ('/n') and whitespace. However, this approach inadvertently results in the loss of crucial structural information, diminishing the distinct characteristics of code and impairing the accuracy of vulnerability detection. To address these challenges, we propose a novel network architecture method based on pre-trained code models, which incorporates structural information awareness. We propose an enhanced code text processing workflow that retains structural elements prior to modeling. This refinement allows the model to retain and exploit line-level structural information and semantic information during the modeling process. Furthermore, we introduce a new network architecture, the Code Structure-Aware Network through Line-level Semantic Learning (CSLS), which integrates three key components: global vulnerability awareness, line-structural awareness, and sensitive-line awareness. We have conducted comprehensive experiments using vulnerability detection datasets from real-world projects. Extensive experiments were conducted on vulnerability detection datasets derived from real-world projects. The results demonstrate that our new code pre-processing flow significantly improves existing baselines (e.g., a 3\% accuracy improvement on the Devign dataset when applied to popular models such as CoderBert and UniXcoder). The proposed network architecture also demonstrates superior accuracy in detecting vulnerabilities, surpassing newly established benchmarks. These findings underscore the importance of structural information in enhancing the efficacy of code vulnerability detection models.
Sig-Networks Toolkit: Signature Networks for Longitudinal Language Modelling
We present an open-source, pip installable toolkit, Sig-Networks, the first of its kind for longitudinal language modelling. A central focus is the incorporation of Signature-based Neural Network models, which have recently shown success in temporal tasks. We apply and extend published research providing a full suite of signature-based models. Their components can be used as PyTorch building blocks in future architectures. Sig-Networks enables task-agnostic dataset plug-in, seamless pre-processing for sequential data, parameter flexibility, automated tuning across a range of models. We examine signature networks under three different NLP tasks of varying temporal granularity: counselling conversations, rumour stance switch and mood changes in social media threads, showing SOTA performance in all three, and provide guidance for future tasks. We release the Toolkit as a PyTorch package with an introductory video, Git repositories for preprocessing and modelling including sample notebooks on the modeled NLP tasks.
FACT: Learning Governing Abstractions Behind Integer Sequences
Integer sequences are of central importance to the modeling of concepts admitting complete finitary descriptions. We introduce a novel view on the learning of such concepts and lay down a set of benchmarking tasks aimed at conceptual understanding by machine learning models. These tasks indirectly assess model ability to abstract, and challenge them to reason both interpolatively and extrapolatively from the knowledge gained by observing representative examples. To further aid research in knowledge representation and reasoning, we present FACT, the Finitary Abstraction Comprehension Toolkit. The toolkit surrounds a large dataset of integer sequences comprising both organic and synthetic entries, a library for data pre-processing and generation, a set of model performance evaluation tools, and a collection of baseline model implementations, enabling the making of the future advancements with ease.
Elderly Activity Recognition in the Wild: Results from the EAR Challenge
This paper presents our solution for the Elderly Action Recognition (EAR) Challenge, part of the Computer Vision for Smalls Workshop at WACV 2025. The competition focuses on recognizing Activities of Daily Living (ADLs) performed by the elderly, covering six action categories with a diverse dataset. Our approach builds upon a state-of-the-art action recognition model, fine-tuned through transfer learning on elderly-specific datasets to enhance adaptability. To improve generalization and mitigate dataset bias, we carefully curated training data from multiple publicly available sources and applied targeted pre-processing techniques. Our solution currently achieves 0.81455 accuracy on the public leaderboard, highlighting its effectiveness in classifying elderly activities. Source codes are publicly available at https://github.com/ffyyytt/EAR-WACV25-DAKiet-TSM.
Exploring Language Model Generalization in Low-Resource Extractive QA
In this paper, we investigate Extractive Question Answering (EQA) with Large Language Models (LLMs) under domain drift, i.e., can LLMs generalize to domains that require specific knowledge such as medicine and law in a zero-shot fashion without additional in-domain training? To this end, we devise a series of experiments to explain the performance gap empirically. Our findings suggest that: (a) LLMs struggle with dataset demands of closed domains such as retrieving long answer spans; (b) Certain LLMs, despite showing strong overall performance, display weaknesses in meeting basic requirements as discriminating between domain-specific senses of words which we link to pre-processing decisions; (c) Scaling model parameters is not always effective for cross domain generalization; and (d) Closed-domain datasets are quantitatively much different than open-domain EQA datasets and current LLMs struggle to deal with them. Our findings point out important directions for improving existing LLMs.
FineWeb2: One Pipeline to Scale Them All -- Adapting Pre-Training Data Processing to Every Language
Pre-training state-of-the-art large language models (LLMs) requires vast amounts of clean and diverse text data. While the open development of large high-quality English pre-training datasets has seen substantial recent progress, training performant multilingual LLMs remains a challenge, in large part due to the inherent difficulty of tailoring filtering and deduplication pipelines to a large number of languages. In this work, we introduce a new pre-training dataset curation pipeline based on FineWeb that can be automatically adapted to support any language. We extensively ablate our pipeline design choices on a set of nine diverse languages, guided by a set of meaningful and informative evaluation tasks that were chosen through a novel selection process based on measurable criteria. Ultimately, we show that our pipeline can be used to create non-English corpora that produce more performant models than prior datasets. We additionally introduce a straightforward and principled approach to rebalance datasets that takes into consideration both duplication count and quality, providing an additional performance uplift. Finally, we scale our pipeline to over 1000 languages using almost 100 Common Crawl snapshots to produce FineWeb2, a new 20 terabyte (5 billion document) multilingual dataset which we release along with our pipeline, training, and evaluation codebases.
The Effects of Image Pre- and Post-Processing, Wavelet Decomposition, and Local Binary Patterns on U-Nets for Skin Lesion Segmentation
Skin cancer is a widespread, global, and potentially deadly disease, which over the last three decades has afflicted more lives in the USA than all other forms of cancer combined. There have been a lot of promising recent works utilizing deep network architectures, such as FCNs, U-Nets, and ResNets, for developing automated skin lesion segmentation. This paper investigates various pre- and post-processing techniques for improving the performance of U-Nets as measured by the Jaccard Index. The dataset provided as part of the "2017 ISBI Challenges on Skin Lesion Analysis Towards Melanoma Detection" was used for this evaluation and the performance of the finalist competitors was the standard for comparison. The pre-processing techniques employed in the proposed system included contrast enhancement, artifact removal, and vignette correction. More advanced image transformations, such as local binary patterns and wavelet decomposition, were also employed to augment the raw grayscale images used as network input features. While the performance of the proposed system fell short of the winners of the challenge, it was determined that using wavelet decomposition as an early transformation step improved the overall performance of the system over pre- and post-processing steps alone.
Revisiting MAE pre-training for 3D medical image segmentation
Self-Supervised Learning (SSL) presents an exciting opportunity to unlock the potential of vast, untapped clinical datasets, for various downstream applications that suffer from the scarcity of labeled data. While SSL has revolutionized fields like natural language processing and computer vision, its adoption in 3D medical image computing has been limited by three key pitfalls: Small pre-training dataset sizes, architectures inadequate for 3D medical image analysis, and insufficient evaluation practices. In this paper, we address these issues by i) leveraging a large-scale dataset of 39k 3D brain MRI volumes and ii) using a Residual Encoder U-Net architecture within the state-of-the-art nnU-Net framework. iii) A robust development framework, incorporating 5 development and 8 testing brain MRI segmentation datasets, allowed performance-driven design decisions to optimize the simple concept of Masked Auto Encoders (MAEs) for 3D CNNs. The resulting model not only surpasses previous SSL methods but also outperforms the strong nnU-Net baseline by an average of approximately 3 Dice points setting a new state-of-the-art. Our code and models are made available here.
TryOffDiff: Virtual-Try-Off via High-Fidelity Garment Reconstruction using Diffusion Models
This paper introduces Virtual Try-Off (VTOFF), a novel task focused on generating standardized garment images from single photos of clothed individuals. Unlike traditional Virtual Try-On (VTON), which digitally dresses models, VTOFF aims to extract a canonical garment image, posing unique challenges in capturing garment shape, texture, and intricate patterns. This well-defined target makes VTOFF particularly effective for evaluating reconstruction fidelity in generative models. We present TryOffDiff, a model that adapts Stable Diffusion with SigLIP-based visual conditioning to ensure high fidelity and detail retention. Experiments on a modified VITON-HD dataset show that our approach outperforms baseline methods based on pose transfer and virtual try-on with fewer pre- and post-processing steps. Our analysis reveals that traditional image generation metrics inadequately assess reconstruction quality, prompting us to rely on DISTS for more accurate evaluation. Our results highlight the potential of VTOFF to enhance product imagery in e-commerce applications, advance generative model evaluation, and inspire future work on high-fidelity reconstruction. Demo, code, and models are available at: https://rizavelioglu.github.io/tryoffdiff/
HebDB: a Weakly Supervised Dataset for Hebrew Speech Processing
We present HebDB, a weakly supervised dataset for spoken language processing in the Hebrew language. HebDB offers roughly 2500 hours of natural and spontaneous speech recordings in the Hebrew language, consisting of a large variety of speakers and topics. We provide raw recordings together with a pre-processed, weakly supervised, and filtered version. The goal of HebDB is to further enhance research and development of spoken language processing tools for the Hebrew language. Hence, we additionally provide two baseline systems for Automatic Speech Recognition (ASR): (i) a self-supervised model; and (ii) a fully supervised model. We present the performance of these two methods optimized on HebDB and compare them to current multi-lingual ASR alternatives. Results suggest the proposed method reaches better results than the evaluated baselines considering similar model sizes. Dataset, code, and models are publicly available under https://pages.cs.huji.ac.il/adiyoss-lab/HebDB/.
Evaluating Synthetic Pre-Training for Handwriting Processing Tasks
In this work, we explore massive pre-training on synthetic word images for enhancing the performance on four benchmark downstream handwriting analysis tasks. To this end, we build a large synthetic dataset of word images rendered in several handwriting fonts, which offers a complete supervision signal. We use it to train a simple convolutional neural network (ConvNet) with a fully supervised objective. The vector representations of the images obtained from the pre-trained ConvNet can then be considered as encodings of the handwriting style. We exploit such representations for Writer Retrieval, Writer Identification, Writer Verification, and Writer Classification and demonstrate that our pre-training strategy allows extracting rich representations of the writers' style that enable the aforementioned tasks with competitive results with respect to task-specific State-of-the-Art approaches.
WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech Processing
Self-supervised learning (SSL) achieves great success in speech recognition, while limited exploration has been attempted for other speech processing tasks. As speech signal contains multi-faceted information including speaker identity, paralinguistics, spoken content, etc., learning universal representations for all speech tasks is challenging. To tackle the problem, we propose a new pre-trained model, WavLM, to solve full-stack downstream speech tasks. WavLM jointly learns masked speech prediction and denoising in pre-training. By this means, WavLM does not only keep the speech content modeling capability by the masked speech prediction, but also improves the potential to non-ASR tasks by the speech denoising. In addition, WavLM employs gated relative position bias for the Transformer structure to better capture the sequence ordering of input speech. We also scale up the training dataset from 60k hours to 94k hours. WavLM Large achieves state-of-the-art performance on the SUPERB benchmark, and brings significant improvements for various speech processing tasks on their representative benchmarks. The code and pre-trained models are available at https://aka.ms/wavlm.
A Dataset and Strong Baselines for Classification of Czech News Texts
Pre-trained models for Czech Natural Language Processing are often evaluated on purely linguistic tasks (POS tagging, parsing, NER) and relatively simple classification tasks such as sentiment classification or article classification from a single news source. As an alternative, we present CZEch~NEws~Classification~dataset (CZE-NEC), one of the largest Czech classification datasets, composed of news articles from various sources spanning over twenty years, which allows a more rigorous evaluation of such models. We define four classification tasks: news source, news category, inferred author's gender, and day of the week. To verify the task difficulty, we conducted a human evaluation, which revealed that human performance lags behind strong machine-learning baselines built upon pre-trained transformer models. Furthermore, we show that language-specific pre-trained encoder analysis outperforms selected commercially available large-scale generative language models.
GECOBench: A Gender-Controlled Text Dataset and Benchmark for Quantifying Biases in Explanations
Large pre-trained language models have become popular for many applications and form an important backbone of many downstream tasks in natural language processing (NLP). Applying 'explainable artificial intelligence' (XAI) techniques to enrich such models' outputs is considered crucial for assuring their quality and shedding light on their inner workings. However, large language models are trained on a plethora of data containing a variety of biases, such as gender biases, affecting model weights and, potentially, behavior. Currently, it is unclear to what extent such biases also impact model explanations in possibly unfavorable ways. We create a gender-controlled text dataset, GECO, in which otherwise identical sentences appear in male and female forms. This gives rise to ground-truth 'world explanations' for gender classification tasks, enabling the objective evaluation of the correctness of XAI methods. We also provide GECOBench, a rigorous quantitative evaluation framework benchmarking popular XAI methods, applying them to pre-trained language models fine-tuned to different degrees. This allows us to investigate how pre-training induces undesirable bias in model explanations and to what extent fine-tuning can mitigate such explanation bias. We show a clear dependency between explanation performance and the number of fine-tuned layers, where XAI methods are observed to particularly benefit from fine-tuning or complete retraining of embedding layers. Remarkably, this relationship holds for models achieving similar classification performance on the same task. With that, we highlight the utility of the proposed gender-controlled dataset and novel benchmarking approach for research and development of novel XAI methods. All code including dataset generation, model training, evaluation and visualization is available at: https://github.com/braindatalab/gecobench
Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning
Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the finetuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and translating existing datasets across 114 languages. In total, we contribute four key resources: we develop and open-source the Aya Annotation Platform, the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as a valuable framework for future research collaborations that aim to bridge gaps in resources.
Using CSNNs to Perform Event-based Data Processing & Classification on ASL-DVS
Recent advancements in bio-inspired visual sensing and neuromorphic computing have led to the development of various highly efficient bio-inspired solutions with real-world applications. One notable application integrates event-based cameras with spiking neural networks (SNNs) to process event-based sequences that are asynchronous and sparse, making them difficult to handle. In this project, we develop a convolutional spiking neural network (CSNN) architecture that leverages convolutional operations and recurrent properties of a spiking neuron to learn the spatial and temporal relations in the ASL-DVS gesture dataset. The ASL-DVS gesture dataset is a neuromorphic dataset containing hand gestures when displaying 24 letters (A to Y, excluding J and Z due to the nature of their symbols) from the American Sign Language (ASL). We performed classification on a pre-processed subset of the full ASL-DVS dataset to identify letter signs and achieved 100\% training accuracy. Specifically, this was achieved by training in the Google Cloud compute platform while using a learning rate of 0.0005, batch size of 25 (total of 20 batches), 200 iterations, and 10 epochs.
A Framework and Dataset for Abstract Art Generation via CalligraphyGAN
With the advancement of deep learning, artificial intelligence (AI) has made many breakthroughs in recent years and achieved superhuman performance in various tasks such as object detection, reading comprehension, and video games. Generative Modeling, such as various Generative Adversarial Networks (GAN) models, has been applied to generate paintings and music. Research in Natural Language Processing (NLP) also had a leap forward in 2018 since the release of the pre-trained contextual neural language models such as BERT and recently released GPT3. Despite the exciting AI applications aforementioned, AI is still significantly lagging behind humans in creativity, which is often considered the ultimate moonshot for AI. Our work is inspired by Chinese calligraphy, which is a unique form of visual art where the character itself is an aesthetic painting. We also draw inspirations from paintings of the Abstract Expressionist movement in the 1940s and 1950s, such as the work by American painter Franz Kline. In this paper, we present a creative framework based on Conditional Generative Adversarial Networks and Contextual Neural Language Model to generate abstract artworks that have intrinsic meaning and aesthetic value, which is different from the existing work, such as image captioning and text-to-image generation, where the texts are the descriptions of the images. In addition, we have publicly released a Chinese calligraphy image dataset and demonstrate our framework using a prototype system and a user study.
Predicting Prosodic Prominence from Text with Pre-trained Contextualized Word Representations
In this paper we introduce a new natural language processing dataset and benchmark for predicting prosodic prominence from written text. To our knowledge this will be the largest publicly available dataset with prosodic labels. We describe the dataset construction and the resulting benchmark dataset in detail and train a number of different models ranging from feature-based classifiers to neural network systems for the prediction of discretized prosodic prominence. We show that pre-trained contextualized word representations from BERT outperform the other models even with less than 10% of the training data. Finally we discuss the dataset in light of the results and point to future research and plans for further improving both the dataset and methods of predicting prosodic prominence from text. The dataset and the code for the models are publicly available.
Annotated Dataset Creation through General Purpose Language Models for non-English Medical NLP
Obtaining text datasets with semantic annotations is an effortful process, yet crucial for supervised training in natural language processsing (NLP). In general, developing and applying new NLP pipelines in domain-specific contexts for tasks often requires custom designed datasets to address NLP tasks in supervised machine learning fashion. When operating in non-English languages for medical data processing, this exposes several minor and major, interconnected problems such as lack of task-matching datasets as well as task-specific pre-trained models. In our work we suggest to leverage pretrained language models for training data acquisition in order to retrieve sufficiently large datasets for training smaller and more efficient models for use-case specific tasks. To demonstrate the effectiveness of your approach, we create a custom dataset which we use to train a medical NER model for German texts, GPTNERMED, yet our method remains language-independent in principle. Our obtained dataset as well as our pre-trained models are publicly available at: https://github.com/frankkramer-lab/GPTNERMED
HPLT 3.0: Very Large-Scale Multilingual Resources for LLM and MT. Mono- and Bi-lingual Data, Multilingual Evaluation, and Pre-Trained Models
We present an ongoing initiative to provide open, very large, high-quality, and richly annotated textual datasets for almost 200 languages. At 30 trillion tokens, this is likely the largest generally available multilingual collection of LLM pre-training data. These datasets are derived from web crawls from different sources and accompanied with a complete, open-source pipeline for document selection from web archives, text extraction from HTML, language identification for noisy texts, exact and near-deduplication, annotation with, among others, register labels, text quality estimates, and personally identifiable information; and final selection and filtering. We report on data quality probes through contrastive and analytical statistics, through manual inspection of samples for 24 languages, and through end-to-end evaluation of various language model architectures trained on this data. For multilingual LLM evaluation, we provide a comprehensive collection of benchmarks for nine European languages, with special emphasis on natively created tasks, mechanisms to mitigate prompt sensitivity, and refined normalization and aggregation of scores. Additionally, we train and evaluate a family of 57 monolingual encoder-decoder models, as well as a handful of monolingual GPT-like reference models. Besides the monolingual data and models, we also present a very large collection of parallel texts automatically mined from this data, together with a novel parallel corpus synthesized via machine translation.
Few-Shot Learning for Clinical Natural Language Processing Using Siamese Neural Networks
Clinical Natural Language Processing (NLP) has become an emerging technology in healthcare that leverages a large amount of free-text data in electronic health records (EHRs) to improve patient care, support clinical decisions, and facilitate clinical and translational science research. Recently, deep learning has achieved state-of-the-art performance in many clinical NLP tasks. However, training deep learning models usually requires large annotated datasets, which are normally not publicly available and can be time-consuming to build in clinical domains. Working with smaller annotated datasets is typical in clinical NLP and therefore, ensuring that deep learning models perform well is crucial for the models to be used in real-world applications. A widely adopted approach is fine-tuning existing Pre-trained Language Models (PLMs), but these attempts fall short when the training dataset contains only a few annotated samples. Few-Shot Learning (FSL) has recently been investigated to tackle this problem. Siamese Neural Network (SNN) has been widely utilized as an FSL approach in computer vision, but has not been studied well in NLP. Furthermore, the literature on its applications in clinical domains is scarce. In this paper, we propose two SNN-based FSL approaches for clinical NLP, including Pre-Trained SNN (PT-SNN) and SNN with Second-Order Embeddings (SOE-SNN). We evaluated the proposed approaches on two clinical tasks, namely clinical text classification and clinical named entity recognition. We tested three few-shot settings including 4-shot, 8-shot, and 16-shot learning. Both clinical NLP tasks were benchmarked using three PLMs, including BERT,BioBERT, and BioClinicalBERT. The experimental results verified the effectiveness of the proposed SNN-based FSL approaches in both NLP tasks.
NLEBench+NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian
Recent advancements in Generative Language Models (GLMs) have transformed Natural Language Processing (NLP) by showcasing the effectiveness of the "pre-train, prompt, and predict" paradigm in utilizing pre-trained GLM knowledge for diverse applications. Despite their potential, these capabilities lack adequate quantitative characterization due to the absence of comprehensive benchmarks, particularly for low-resource languages. Existing low-resource benchmarks focus on discriminative language models like BERT, neglecting the evaluation of generative language models. Moreover, current benchmarks often overlook measuring generalization performance across multiple tasks, a crucial metric for GLMs. To bridge these gaps, we introduce NLEBench, a comprehensive benchmark tailored for evaluating natural language generation capabilities in Norwegian, a low-resource language. We use Norwegian as a case study to explore whether current GLMs and benchmarks in mainstream languages like English can reveal the unique characteristics of underrepresented languages. NLEBench encompasses a suite of real-world NLP tasks ranging from news storytelling, summarization, open-domain conversation, natural language understanding, instruction fine-tuning, toxicity and bias evaluation, to self-curated Chain-of-Thought investigation. It features two high-quality, human-annotated datasets: an instruction dataset covering traditional Norwegian cultures, idioms, slang, and special expressions, and a document-grounded multi-label dataset for topic classification, question answering, and summarization. This paper also introduces foundational Norwegian Generative Language Models (NorGLMs) developed with diverse parameter scales and Transformer-based architectures. Systematic evaluations on the proposed benchmark suite provide insights into the capabilities and scalability of NorGLMs across various downstream tasks.
Yuan 1.0: Large-Scale Pre-trained Language Model in Zero-Shot and Few-Shot Learning
Recent work like GPT-3 has demonstrated excellent performance of Zero-Shot and Few-Shot learning on many natural language processing (NLP) tasks by scaling up model size, dataset size and the amount of computation. However, training a model like GPT-3 requires huge amount of computational resources which makes it challengeable to researchers. In this work, we propose a method that incorporates large-scale distributed training performance into model architecture design. With this method, Yuan 1.0, the current largest singleton language model with 245B parameters, achieves excellent performance on thousands GPUs during training, and the state-of-the-art results on NLP tasks. A data processing method is designed to efficiently filter massive amount of raw data. The current largest high-quality Chinese corpus with 5TB high quality texts is built based on this method. In addition, a calibration and label expansion method is proposed to improve the Zero-Shot and Few-Shot performance, and steady improvement is observed on the accuracy of various tasks. Yuan 1.0 presents strong capacity of natural language generation, and the generated articles are difficult to distinguish from the human-written ones.
Satlas: A Large-Scale Dataset for Remote Sensing Image Understanding
Remote sensing images are useful for a wide variety of earth monitoring applications, from tracking deforestation to tackling illegal fishing. The earth is extremely diverse -- the amount of potential tasks in remote sensing images is massive, and the sizes of features range from several kilometers to just tens of centimeters. However, creating generalizable computer vision methods is a challenge in part due to the lack of a large-scale dataset that captures these diverse features for many tasks. In this paper, we present Satlas, a remote sensing dataset and benchmark that is large in both breadth and scale, comprising 302M labels under 137 categories and seven label types. We evaluate eight baselines and a proposed method on Satlas, and find that there is substantial room for improvement in addressing research challenges specific to remote sensing, including processing image time series that consist of images from very different types of sensors, and taking advantage of long-range spatial context. Moreover, we find that pre-training on Satlas substantially improves performance on downstream tasks, increasing average accuracy by 18% over ImageNet and 6% over the next best baseline.
Utilizing Domain Knowledge in End-to-End Audio Processing
End-to-end neural network based approaches to audio modelling are generally outperformed by models trained on high-level data representations. In this paper we present preliminary work that shows the feasibility of training the first layers of a deep convolutional neural network (CNN) model to learn the commonly-used log-scaled mel-spectrogram transformation. Secondly, we demonstrate that upon initializing the first layers of an end-to-end CNN classifier with the learned transformation, convergence and performance on the ESC-50 environmental sound classification dataset are similar to a CNN-based model trained on the highly pre-processed log-scaled mel-spectrogram features.
Wasm: A Pipeline for Constructing Structured Arabic Interleaved Multimodal Corpora
The performance of large language models (LLMs) and large multimodal models (LMMs) depends heavily on the quality and scale of their pre-training datasets. Recent research shows that large multimodal models trained on natural documents where images and text are interleaved outperform those trained only on image-text pairs across a wide range of benchmarks, leveraging advanced pre- trained models to enforce semantic alignment, image-sequence consistency, and textual coherence. For Arabic, however, the lack of high-quality multimodal datasets that preserve document structure has limited progress. In this paper, we present our pipeline Wasm for processing the Common Crawl dataset to create a new Arabic multimodal dataset that uniquely provides markdown output. Unlike existing Arabic corpora that focus solely on text extraction, our approach preserves the structural integrity of web content while maintaining flexibility for both text-only and multimodal pre-training scenarios. We provide a comprehensive comparative analysis of our data processing pipeline against those used for major existing datasets, highlighting the convergences in filtering strategies and justifying our specific design choices. To support future research, we publicly release a representative dataset dump along with the multimodal processing pipeline for Arabic.
Advancing Neural Encoding of Portuguese with Transformer Albertina PT-*
To advance the neural encoding of Portuguese (PT), and a fortiori the technological preparation of this language for the digital age, we developed a Transformer-based foundation model that sets a new state of the art in this respect for two of its variants, namely European Portuguese from Portugal (PT-PT) and American Portuguese from Brazil (PT-BR). To develop this encoder, which we named Albertina PT-*, a strong model was used as a starting point, DeBERTa, and its pre-training was done over data sets of Portuguese, namely over a data set we gathered for PT-PT and over the brWaC corpus for PT-BR. The performance of Albertina and competing models was assessed by evaluating them on prominent downstream language processing tasks adapted for Portuguese. Both Albertina PT-PT and PT-BR versions are distributed free of charge and under the most permissive license possible and can be run on consumer-grade hardware, thus seeking to contribute to the advancement of research and innovation in language technology for Portuguese.
Intelligent Grimm -- Open-ended Visual Storytelling via Latent Diffusion Models
Generative models have recently exhibited exceptional capabilities in various scenarios, for example, image generation based on text description. In this work, we focus on the task of generating a series of coherent image sequence based on a given storyline, denoted as open-ended visual storytelling. We make the following three contributions: (i) to fulfill the task of visual storytelling, we introduce two modules into a pre-trained stable diffusion model, and construct an auto-regressive image generator, termed as StoryGen, that enables to generate the current frame by conditioning on both a text prompt and a preceding frame; (ii) to train our proposed model, we collect paired image and text samples by sourcing from various online sources, such as videos, E-books, and establish a data processing pipeline for constructing a diverse dataset, named StorySalon, with a far larger vocabulary than existing animation-specific datasets; (iii) we adopt a three-stage curriculum training strategy, that enables style transfer, visual context conditioning, and human feedback alignment, respectively. Quantitative experiments and human evaluation have validated the superiority of our proposed model, in terms of image quality, style consistency, content consistency, and visual-language alignment. We will make the code, model, and dataset publicly available to the research community.
Transfer Learning in Biomedical Natural Language Processing: An Evaluation of BERT and ELMo on Ten Benchmarking Datasets
Inspired by the success of the General Language Understanding Evaluation benchmark, we introduce the Biomedical Language Understanding Evaluation (BLUE) benchmark to facilitate research in the development of pre-training language representations in the biomedicine domain. The benchmark consists of five tasks with ten datasets that cover both biomedical and clinical texts with different dataset sizes and difficulties. We also evaluate several baselines based on BERT and ELMo and find that the BERT model pre-trained on PubMed abstracts and MIMIC-III clinical notes achieves the best results. We make the datasets, pre-trained models, and codes publicly available at https://github.com/ncbi-nlp/BLUE_Benchmark.
TorchXRayVision: A library of chest X-ray datasets and models
TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.
A Repository of Conversational Datasets
Progress in Machine Learning is often driven by the availability of large datasets, and consistent evaluation metrics for comparing modeling approaches. To this end, we present a repository of conversational datasets consisting of hundreds of millions of examples, and a standardised evaluation procedure for conversational response selection models using '1-of-100 accuracy'. The repository contains scripts that allow researchers to reproduce the standard datasets, or to adapt the pre-processing and data filtering steps to their needs. We introduce and evaluate several competitive baselines for conversational response selection, whose implementations are shared in the repository, as well as a neural encoder model that is trained on the entire training set.
LidarScout: Direct Out-of-Core Rendering of Massive Point Clouds
Large-scale terrain scans are the basis for many important tasks, such as topographic mapping, forestry, agriculture, and infrastructure planning. The resulting point cloud data sets are so massive in size that even basic tasks like viewing take hours to days of pre-processing in order to create level-of-detail structures that allow inspecting the data set in their entirety in real time. In this paper, we propose a method that is capable of instantly visualizing massive country-sized scans with hundreds of billions of points. Upon opening the data set, we first load a sparse subsample of points and initialize an overview of the entire point cloud, immediately followed by a surface reconstruction process to generate higher-quality, hole-free heightmaps. As users start navigating towards a region of interest, we continue to prioritize the heightmap construction process to the user's viewpoint. Once a user zooms in closely, we load the full-resolution point cloud data for that region and update the corresponding height map textures with the full-resolution data. As users navigate elsewhere, full-resolution point data that is no longer needed is unloaded, but the updated heightmap textures are retained as a form of medium level of detail. Overall, our method constitutes a form of direct out-of-core rendering for massive point cloud data sets (terabytes, compressed) that requires no preprocessing and no additional disk space. Source code, executable, pre-trained model, and dataset are available at: https://github.com/cg-tuwien/lidarscout
Fretting-Transformer: Encoder-Decoder Model for MIDI to Tablature Transcription
Music transcription plays a pivotal role in Music Information Retrieval (MIR), particularly for stringed instruments like the guitar, where symbolic music notations such as MIDI lack crucial playability information. This contribution introduces the Fretting-Transformer, an encoderdecoder model that utilizes a T5 transformer architecture to automate the transcription of MIDI sequences into guitar tablature. By framing the task as a symbolic translation problem, the model addresses key challenges, including string-fret ambiguity and physical playability. The proposed system leverages diverse datasets, including DadaGP, GuitarToday, and Leduc, with novel data pre-processing and tokenization strategies. We have developed metrics for tablature accuracy and playability to quantitatively evaluate the performance. The experimental results demonstrate that the Fretting-Transformer surpasses baseline methods like A* and commercial applications like Guitar Pro. The integration of context-sensitive processing and tuning/capo conditioning further enhances the model's performance, laying a robust foundation for future developments in automated guitar transcription.
Wearable data from subjects playing Super Mario, sitting university exams, or performing physical exercise help detect acute mood episodes via self-supervised learning
Personal sensing, leveraging data passively and near-continuously collected with wearables from patients in their ecological environment, is a promising paradigm to monitor mood disorders (MDs), a major determinant of worldwide disease burden. However, collecting and annotating wearable data is very resource-intensive. Studies of this kind can thus typically afford to recruit only a couple dozens of patients. This constitutes one of the major obstacles to applying modern supervised machine learning techniques to MDs detection. In this paper, we overcome this data bottleneck and advance the detection of MDs acute episode vs stable state from wearables data on the back of recent advances in self-supervised learning (SSL). This leverages unlabelled data to learn representations during pre-training, subsequently exploited for a supervised task. First, we collected open-access datasets recording with an Empatica E4 spanning different, unrelated to MD monitoring, personal sensing tasks -- from emotion recognition in Super Mario players to stress detection in undergraduates -- and devised a pre-processing pipeline performing on-/off-body detection, sleep-wake detection, segmentation, and (optionally) feature extraction. With 161 E4-recorded subjects, we introduce E4SelfLearning, the largest to date open access collection, and its pre-processing pipeline. Second, we show that SSL confidently outperforms fully-supervised pipelines using either our novel E4-tailored Transformer architecture (E4mer) or classical baseline XGBoost: 81.23% against 75.35% (E4mer) and 72.02% (XGBoost) correctly classified recording segments from 64 (half acute, half stable) patients. Lastly, we illustrate that SSL performance is strongly associated with the specific surrogate task employed for pre-training as well as with unlabelled data availability.
Towards scientific discovery with dictionary learning: Extracting biological concepts from microscopy foundation models
Dictionary learning (DL) has emerged as a powerful interpretability tool for large language models. By extracting known concepts (e.g., Golden-Gate Bridge) from human-interpretable data (e.g., text), sparse DL can elucidate a model's inner workings. In this work, we ask if DL can also be used to discover unknown concepts from less human-interpretable scientific data (e.g., cell images), ultimately enabling modern approaches to scientific discovery. As a first step, we use DL algorithms to study microscopy foundation models trained on multi-cell image data, where little prior knowledge exists regarding which high-level concepts should arise. We show that sparse dictionaries indeed extract biologically-meaningful concepts such as cell type and genetic perturbation type. We also propose a new DL algorithm, Iterative Codebook Feature Learning~(ICFL), and combine it with a pre-processing step that uses PCA whitening from a control dataset. In our experiments, we demonstrate that both ICFL and PCA improve the selectivity of extracted features compared to TopK sparse autoencoders.
FlashRAG: A Modular Toolkit for Efficient Retrieval-Augmented Generation Research
With the advent of Large Language Models (LLMs), the potential of Retrieval Augmented Generation (RAG) techniques have garnered considerable research attention. Numerous novel algorithms and models have been introduced to enhance various aspects of RAG systems. However, the absence of a standardized framework for implementation, coupled with the inherently intricate RAG process, makes it challenging and time-consuming for researchers to compare and evaluate these approaches in a consistent environment. Existing RAG toolkits like LangChain and LlamaIndex, while available, are often heavy and unwieldy, failing to meet the personalized needs of researchers. In response to this challenge, we propose FlashRAG, an efficient and modular open-source toolkit designed to assist researchers in reproducing existing RAG methods and in developing their own RAG algorithms within a unified framework. Our toolkit implements 12 advanced RAG methods and has gathered and organized 32 benchmark datasets. Our toolkit has various features, including customizable modular framework, rich collection of pre-implemented RAG works, comprehensive datasets, efficient auxiliary pre-processing scripts, and extensive and standard evaluation metrics. Our toolkit and resources are available at https://github.com/RUC-NLPIR/FlashRAG.
FDGATII : Fast Dynamic Graph Attention with Initial Residual and Identity Mapping
While Graph Neural Networks have gained popularity in multiple domains, graph-structured input remains a major challenge due to (a) over-smoothing, (b) noisy neighbours (heterophily), and (c) the suspended animation problem. To address all these problems simultaneously, we propose a novel graph neural network FDGATII, inspired by attention mechanism's ability to focus on selective information supplemented with two feature preserving mechanisms. FDGATII combines Initial Residuals and Identity Mapping with the more expressive dynamic self-attention to handle noise prevalent from the neighbourhoods in heterophilic data sets. By using sparse dynamic attention, FDGATII is inherently parallelizable in design, whist efficient in operation; thus theoretically able to scale to arbitrary graphs with ease. Our approach has been extensively evaluated on 7 datasets. We show that FDGATII outperforms GAT and GCN based benchmarks in accuracy and performance on fully supervised tasks, obtaining state-of-the-art results on Chameleon and Cornell datasets with zero domain-specific graph pre-processing, and demonstrate its versatility and fairness.
On the State of German (Abstractive) Text Summarization
With recent advancements in the area of Natural Language Processing, the focus is slowly shifting from a purely English-centric view towards more language-specific solutions, including German. Especially practical for businesses to analyze their growing amount of textual data are text summarization systems, which transform long input documents into compressed and more digestible summary texts. In this work, we assess the particular landscape of German abstractive text summarization and investigate the reasons why practically useful solutions for abstractive text summarization are still absent in industry. Our focus is two-fold, analyzing a) training resources, and b) publicly available summarization systems. We are able to show that popular existing datasets exhibit crucial flaws in their assumptions about the original sources, which frequently leads to detrimental effects on system generalization and evaluation biases. We confirm that for the most popular training dataset, MLSUM, over 50% of the training set is unsuitable for abstractive summarization purposes. Furthermore, available systems frequently fail to compare to simple baselines, and ignore more effective and efficient extractive summarization approaches. We attribute poor evaluation quality to a variety of different factors, which are investigated in more detail in this work: A lack of qualitative (and diverse) gold data considered for training, understudied (and untreated) positional biases in some of the existing datasets, and the lack of easily accessible and streamlined pre-processing strategies or analysis tools. We provide a comprehensive assessment of available models on the cleaned datasets, and find that this can lead to a reduction of more than 20 ROUGE-1 points during evaluation. The code for dataset filtering and reproducing results can be found online at https://github.com/dennlinger/summaries
PyThaiNLP: Thai Natural Language Processing in Python
We present PyThaiNLP, a free and open-source natural language processing (NLP) library for Thai language implemented in Python. It provides a wide range of software, models, and datasets for Thai language. We first provide a brief historical context of tools for Thai language prior to the development of PyThaiNLP. We then outline the functionalities it provided as well as datasets and pre-trained language models. We later summarize its development milestones and discuss our experience during its development. We conclude by demonstrating how industrial and research communities utilize PyThaiNLP in their work. The library is freely available at https://github.com/pythainlp/pythainlp.
ESB: A Benchmark For Multi-Domain End-to-End Speech Recognition
Speech recognition applications cover a range of different audio and text distributions, with different speaking styles, background noise, transcription punctuation and character casing. However, many speech recognition systems require dataset-specific tuning (audio filtering, punctuation removal and normalisation of casing), therefore assuming a-priori knowledge of both the audio and text distributions. This tuning requirement can lead to systems failing to generalise to other datasets and domains. To promote the development of multi-domain speech systems, we introduce the End-to-end Speech Benchmark (ESB) for evaluating the performance of a single automatic speech recognition (ASR) system across a broad set of speech datasets. Benchmarked systems must use the same data pre- and post-processing algorithm across datasets - assuming the audio and text data distributions are a-priori unknown. We compare a series of state-of-the-art (SoTA) end-to-end (E2E) systems on this benchmark, demonstrating how a single speech system can be applied and evaluated on a wide range of data distributions. We find E2E systems to be effective across datasets: in a fair comparison, E2E systems achieve within 2.6% of SoTA systems tuned to a specific dataset. Our analysis reveals that transcription artefacts, such as punctuation and casing, pose difficulties for ASR systems and should be included in evaluation. We believe E2E benchmarking over a range of datasets promotes the research of multi-domain speech recognition systems. ESB is available at https://huggingface.co/esb.
CNN-generated images are surprisingly easy to spot... for now
In this work we ask whether it is possible to create a "universal" detector for telling apart real images from these generated by a CNN, regardless of architecture or dataset used. To test this, we collect a dataset consisting of fake images generated by 11 different CNN-based image generator models, chosen to span the space of commonly used architectures today (ProGAN, StyleGAN, BigGAN, CycleGAN, StarGAN, GauGAN, DeepFakes, cascaded refinement networks, implicit maximum likelihood estimation, second-order attention super-resolution, seeing-in-the-dark). We demonstrate that, with careful pre- and post-processing and data augmentation, a standard image classifier trained on only one specific CNN generator (ProGAN) is able to generalize surprisingly well to unseen architectures, datasets, and training methods (including the just released StyleGAN2). Our findings suggest the intriguing possibility that today's CNN-generated images share some common systematic flaws, preventing them from achieving realistic image synthesis. Code and pre-trained networks are available at https://peterwang512.github.io/CNNDetection/ .
DataFinder: Scientific Dataset Recommendation from Natural Language Descriptions
Modern machine learning relies on datasets to develop and validate research ideas. Given the growth of publicly available data, finding the right dataset to use is increasingly difficult. Any research question imposes explicit and implicit constraints on how well a given dataset will enable researchers to answer this question, such as dataset size, modality, and domain. We operationalize the task of recommending datasets given a short natural language description of a research idea, to help people find relevant datasets for their needs. Dataset recommendation poses unique challenges as an information retrieval problem; datasets are hard to directly index for search and there are no corpora readily available for this task. To facilitate this task, we build the DataFinder Dataset which consists of a larger automatically-constructed training set (17.5K queries) and a smaller expert-annotated evaluation set (392 queries). Using this data, we compare various information retrieval algorithms on our test set and present a superior bi-encoder retriever for text-based dataset recommendation. This system, trained on the DataFinder Dataset, finds more relevant search results than existing third-party dataset search engines. To encourage progress on dataset recommendation, we release our dataset and models to the public.
Self-Supervised Pre-Training with Contrastive and Masked Autoencoder Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging domain, annotated datasets for specific tasks are often small due to the high complexity of annotations, limited access, or the rarity of diseases. To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning. After pre-training, small annotated datasets are sufficient to fine-tune the models for a specific task. The most popular self-supervised pre-training approaches in medical imaging are based on contrastive learning. However, recent studies in natural image processing indicate a strong potential for masked autoencoder approaches. Our work compares state-of-the-art contrastive learning methods with the recently introduced masked autoencoder approach "SparK" for convolutional neural networks (CNNs) on medical images. Therefore we pre-train on a large unannotated CT image dataset and fine-tune on several CT classification tasks. Due to the challenge of obtaining sufficient annotated training data in medical imaging, it is of particular interest to evaluate how the self-supervised pre-training methods perform when fine-tuning on small datasets. By experimenting with gradually reducing the training dataset size for fine-tuning, we find that the reduction has different effects depending on the type of pre-training chosen. The SparK pre-training method is more robust to the training dataset size than the contrastive methods. Based on our results, we propose the SparK pre-training for medical imaging tasks with only small annotated datasets.
Comparing Self-Supervised Learning Models Pre-Trained on Human Speech and Animal Vocalizations for Bioacoustics Processing
Self-supervised learning (SSL) foundation models have emerged as powerful, domain-agnostic, general-purpose feature extractors applicable to a wide range of tasks. Such models pre-trained on human speech have demonstrated high transferability for bioacoustic processing. This paper investigates (i) whether SSL models pre-trained directly on animal vocalizations offer a significant advantage over those pre-trained on speech, and (ii) whether fine-tuning speech-pretrained models on automatic speech recognition (ASR) tasks can enhance bioacoustic classification. We conduct a comparative analysis using three diverse bioacoustic datasets and two different bioacoustic tasks. Results indicate that pre-training on bioacoustic data provides only marginal improvements over speech-pretrained models, with comparable performance in most scenarios. Fine-tuning on ASR tasks yields mixed outcomes, suggesting that the general-purpose representations learned during SSL pre-training are already well-suited for bioacoustic tasks. These findings highlight the robustness of speech-pretrained SSL models for bioacoustics and imply that extensive fine-tuning may not be necessary for optimal performance.
Pushing the Limits of Pre-training for Time Series Forecasting in the CloudOps Domain
Time series has been left behind in the era of pre-training and transfer learning. While research in the fields of natural language processing and computer vision are enjoying progressively larger datasets to train massive models, the most popular time series datasets consist of only tens of thousands of time steps, limiting our ability to study the effectiveness of pre-training and scaling. Recent studies have also cast doubt on the need for expressive models and scale. To alleviate these issues, we introduce three large-scale time series forecasting datasets from the cloud operations (CloudOps) domain, the largest having billions of observations, enabling further study into pre-training and scaling of time series models. We build the empirical groundwork for studying pre-training and scaling of time series models and pave the way for future research by identifying a promising candidate architecture. We show that it is a strong zero-shot baseline and benefits from further scaling, both in model and dataset size. Accompanying these datasets and results is a suite of comprehensive benchmark results comparing classical and deep learning baselines to our pre-trained method - achieving a 27% reduction in error on the largest dataset. Code and datasets will be released.
A Survey of Pre-trained Language Models for Processing Scientific Text
The number of Language Models (LMs) dedicated to processing scientific text is on the rise. Keeping pace with the rapid growth of scientific LMs (SciLMs) has become a daunting task for researchers. To date, no comprehensive surveys on SciLMs have been undertaken, leaving this issue unaddressed. Given the constant stream of new SciLMs, appraising the state-of-the-art and how they compare to each other remain largely unknown. This work fills that gap and provides a comprehensive review of SciLMs, including an extensive analysis of their effectiveness across different domains, tasks and datasets, and a discussion on the challenges that lie ahead.
Emb-GAM: an Interpretable and Efficient Predictor using Pre-trained Language Models
Deep learning models have achieved impressive prediction performance but often sacrifice interpretability, a critical consideration in high-stakes domains such as healthcare or policymaking. In contrast, generalized additive models (GAMs) can maintain interpretability but often suffer from poor prediction performance due to their inability to effectively capture feature interactions. In this work, we aim to bridge this gap by using pre-trained neural language models to extract embeddings for each input before learning a linear model in the embedding space. The final model (which we call Emb-GAM) is a transparent, linear function of its input features and feature interactions. Leveraging the language model allows Emb-GAM to learn far fewer linear coefficients, model larger interactions, and generalize well to novel inputs (e.g. unseen ngrams in text). Across a variety of natural-language-processing datasets, Emb-GAM achieves strong prediction performance without sacrificing interpretability. All code is made available on Github.
Economy Watchers Survey provides Datasets and Tasks for Japanese Financial Domain
Many natural language processing (NLP) tasks in English or general domains are widely available and are often used to evaluate pre-trained language models. In contrast, there are fewer tasks available for languages other than English and for the financial domain. In particular, tasks in Japanese and the financial domain are limited. We construct two large datasets using materials published by a Japanese central government agency. The datasets provide three Japanese financial NLP tasks, which include a 3-class and 12-class classification for categorizing sentences, as well as a 5-class classification task for sentiment analysis. Our datasets are designed to be comprehensive and up-to-date, leveraging an automatic update framework that ensures the latest task datasets are publicly available anytime.
CCNet: Extracting High Quality Monolingual Datasets from Web Crawl Data
Pre-training text representations have led to significant improvements in many areas of natural language processing. The quality of these models benefits greatly from the size of the pretraining corpora as long as its quality is preserved. In this paper, we describe an automatic pipeline to extract massive high-quality monolingual datasets from Common Crawl for a variety of languages. Our pipeline follows the data processing introduced in fastText (Mikolov et al., 2017; Grave et al., 2018), that deduplicates documents and identifies their language. We augment this pipeline with a filtering step to select documents that are close to high quality corpora like Wikipedia.
Quality at a Glance: An Audit of Web-Crawled Multilingual Datasets
With the success of large-scale pre-training and multilingual modeling in Natural Language Processing (NLP), recent years have seen a proliferation of large, web-mined text datasets covering hundreds of languages. We manually audit the quality of 205 language-specific corpora released with five major public datasets (CCAligned, ParaCrawl, WikiMatrix, OSCAR, mC4). Lower-resource corpora have systematic issues: At least 15 corpora have no usable text, and a significant fraction contains less than 50% sentences of acceptable quality. In addition, many are mislabeled or use nonstandard/ambiguous language codes. We demonstrate that these issues are easy to detect even for non-proficient speakers, and supplement the human audit with automatic analyses. Finally, we recommend techniques to evaluate and improve multilingual corpora and discuss potential risks that come with low-quality data releases.
unarXive 2022: All arXiv Publications Pre-Processed for NLP, Including Structured Full-Text and Citation Network
Large-scale data sets on scholarly publications are the basis for a variety of bibliometric analyses and natural language processing (NLP) applications. Especially data sets derived from publication's full-text have recently gained attention. While several such data sets already exist, we see key shortcomings in terms of their domain and time coverage, citation network completeness, and representation of full-text content. To address these points, we propose a new version of the data set unarXive. We base our data processing pipeline and output format on two existing data sets, and improve on each of them. Our resulting data set comprises 1.9 M publications spanning multiple disciplines and 32 years. It furthermore has a more complete citation network than its predecessors and retains a richer representation of document structure as well as non-textual publication content such as mathematical notation. In addition to the data set, we provide ready-to-use training/test data for citation recommendation and IMRaD classification. All data and source code is publicly available at https://github.com/IllDepence/unarXive.
FairLex: A Multilingual Benchmark for Evaluating Fairness in Legal Text Processing
We present a benchmark suite of four datasets for evaluating the fairness of pre-trained language models and the techniques used to fine-tune them for downstream tasks. Our benchmarks cover four jurisdictions (European Council, USA, Switzerland, and China), five languages (English, German, French, Italian and Chinese) and fairness across five attributes (gender, age, region, language, and legal area). In our experiments, we evaluate pre-trained language models using several group-robust fine-tuning techniques and show that performance group disparities are vibrant in many cases, while none of these techniques guarantee fairness, nor consistently mitigate group disparities. Furthermore, we provide a quantitative and qualitative analysis of our results, highlighting open challenges in the development of robustness methods in legal NLP.
Self-Distillation for Further Pre-training of Transformers
Pre-training a large transformer model on a massive amount of unlabeled data and fine-tuning it on labeled datasets for diverse downstream tasks has proven to be a successful strategy, for a variety of vision and natural language processing tasks. However, direct fine-tuning of the pre-trained model may be suboptimal if there exist large discrepancies across data domains for pre-training and fine-tuning. To tackle this issue, several previous studies have proposed further pre-training strategies, where we continue to pre-train the model on the target unlabeled dataset before fine-tuning. However, all of them solely focus on language models and we empirically find that a Vision Transformer is vulnerable to overfitting as we continue to pretrain the model on target unlabeled data. In order to tackle this limitation, we propose self-distillation as a regularization for a further pre-training stage. Specifically, we first further pre-train the initial pre-trained model on the target unlabeled data and then consider it as a teacher for self-distillation. Then we take the same initial pre-trained model as a student and enforce its hidden representations to be close to those of the teacher while optimizing the student with a masked auto-encoding objective. We empirically validate the efficacy of self-distillation on a variety of benchmark datasets for image and text classification tasks. Experimentally, we show that our proposed method outperforms all the relevant baselines. Theoretically, we analyze the proposed method with a simplified model to understand how self-distillation for further pre-training can potentially help improve the performance of the downstream tasks.
FastPacket: Towards Pre-trained Packets Embedding based on FastText for next-generation NIDS
New Attacks are increasingly used by attackers everyday but many of them are not detected by Intrusion Detection Systems as most IDS ignore raw packet information and only care about some basic statistical information extracted from PCAP files. Using networking programs to extract fixed statistical features from packets is good, but may not enough to detect nowadays challenges. We think that it is time to utilize big data and deep learning for automatic dynamic feature extraction from packets. It is time to get inspired by deep learning pre-trained models in computer vision and natural language processing, so security deep learning solutions will have its pre-trained models on big datasets to be used in future researches. In this paper, we proposed a new approach for embedding packets based on character-level embeddings, inspired by FastText success on text data. We called this approach FastPacket. Results are measured on subsets of CIC-IDS-2017 dataset, but we expect promising results on big data pre-trained models. We suggest building pre-trained FastPacket on MAWI big dataset and make it available to community, similar to FastText. To be able to outperform currently used NIDS, to start a new era of packet-level NIDS that can better detect complex attacks.
Leveraging recent advances in Pre-Trained Language Models forEye-Tracking Prediction
Cognitively inspired Natural Language Pro-cessing uses human-derived behavioral datalike eye-tracking data, which reflect the seman-tic representations of language in the humanbrain to augment the neural nets to solve arange of tasks spanning syntax and semanticswith the aim of teaching machines about lan-guage processing mechanisms. In this paper,we use the ZuCo 1.0 and ZuCo 2.0 dataset con-taining the eye-gaze features to explore differ-ent linguistic models to directly predict thesegaze features for each word with respect to itssentence. We tried different neural networkmodels with the words as inputs to predict thetargets. And after lots of experimentation andfeature engineering finally devised a novel ar-chitecture consisting of RoBERTa Token Clas-sifier with a dense layer on top for languagemodeling and a stand-alone model consistingof dense layers followed by a transformer layerfor the extra features we engineered. Finally,we took the mean of the outputs of both thesemodels to make the final predictions. We eval-uated the models using mean absolute error(MAE) and the R2 score for each target.
Datasets for Large Language Models: A Comprehensive Survey
This paper embarks on an exploration into the Large Language Model (LLM) datasets, which play a crucial role in the remarkable advancements of LLMs. The datasets serve as the foundational infrastructure analogous to a root system that sustains and nurtures the development of LLMs. Consequently, examination of these datasets emerges as a critical topic in research. In order to address the current lack of a comprehensive overview and thorough analysis of LLM datasets, and to gain insights into their current status and future trends, this survey consolidates and categorizes the fundamental aspects of LLM datasets from five perspectives: (1) Pre-training Corpora; (2) Instruction Fine-tuning Datasets; (3) Preference Datasets; (4) Evaluation Datasets; (5) Traditional Natural Language Processing (NLP) Datasets. The survey sheds light on the prevailing challenges and points out potential avenues for future investigation. Additionally, a comprehensive review of the existing available dataset resources is also provided, including statistics from 444 datasets, covering 8 language categories and spanning 32 domains. Information from 20 dimensions is incorporated into the dataset statistics. The total data size surveyed surpasses 774.5 TB for pre-training corpora and 700M instances for other datasets. We aim to present the entire landscape of LLM text datasets, serving as a comprehensive reference for researchers in this field and contributing to future studies. Related resources are available at: https://github.com/lmmlzn/Awesome-LLMs-Datasets.
POINTS: Improving Your Vision-language Model with Affordable Strategies
In recent years, vision-language models have made significant strides, excelling in tasks like optical character recognition and geometric problem-solving. However, several critical issues remain: 1) Proprietary models often lack transparency about their architectures, while open-source models need more detailed ablations of their training strategies. 2) Pre-training data in open-source works is under-explored, with datasets added empirically, making the process cumbersome. 3) Fine-tuning often focuses on adding datasets, leading to diminishing returns. To address these issues, we propose the following contributions: 1) We trained a robust baseline model using the latest advancements in vision-language models, introducing effective improvements and conducting comprehensive ablation and validation for each technique. 2) Inspired by recent work on large language models, we filtered pre-training data using perplexity, selecting the lowest perplexity data for training. This approach allowed us to train on a curated 1M dataset, achieving competitive performance. 3) During visual instruction tuning, we used model soup on different datasets when adding more datasets yielded marginal improvements. These innovations resulted in a 9B parameter model that performs competitively with state-of-the-art models. Our strategies are efficient and lightweight, making them easily adoptable by the community.
Prefix Conditioning Unifies Language and Label Supervision
Image-classification datasets have been used to pretrain image recognition models. Recently, web-scale image-caption datasets have emerged as a source of powerful pretraining alternative. Image-caption datasets are more ``open-domain'', containing a wider variety of scene types and vocabulary words than traditional classification datasets, and models trained on these datasets have demonstrated strong performance on few- and zero-shot recognition tasks. When naively unifying image-classification and -caption dataset, we show that such dataset biases negatively affect pre-training by reducing the generalizability of learned representations and thus jeopardizing zero-shot performance since the unification can tailor the model for the classification dataset, making it vulnerable to the distribution shift from the dataset. In this work, we address the problem by disentangling the dataset bias using prefix tokens that inform a language encoder of the type of the input dataset (e.g., image-classification or caption) at training time. This approach allows the language encoder to share the knowledge from two datasets as well as switch the mode of feature extraction, i.e., image-classification dataset or image-caption dataset tailored mode, where we use image-caption mode in the zero-shot evaluation. Our method is generic and can be easily integrated into existing VL pre-training objectives such as CLIP or UniCL. In experiments, we show that this simple technique improves the performance in zero-shot image recognition accuracy and robustness to the image-level distribution shift.
Open Challenge for Correcting Errors of Speech Recognition Systems
The paper announces the new long-term challenge for improving the performance of automatic speech recognition systems. The goal of the challenge is to investigate methods of correcting the recognition results on the basis of previously made errors by the speech processing system. The dataset prepared for the task is described and evaluation criteria are presented.
Software Testing with Large Language Model: Survey, Landscape, and Vision
Pre-trained large language models (LLMs) have recently emerged as a breakthrough technology in natural language processing and artificial intelligence, with the ability to handle large-scale datasets and exhibit remarkable performance across a wide range of tasks. Meanwhile, software testing is a crucial undertaking that serves as a cornerstone for ensuring the quality and reliability of software products. As the scope and complexity of software systems continue to grow, the need for more effective software testing techniques becomes increasingly urgent, and making it an area ripe for innovative approaches such as the use of LLMs. This paper provides a comprehensive review of the utilization of LLMs in software testing. It analyzes 52 relevant studies that have used LLMs for software testing, from both the software testing and LLMs perspectives. The paper presents a detailed discussion of the software testing tasks for which LLMs are commonly used, among which test case preparation and program repair are the most representative ones. It also analyzes the commonly used LLMs, the types of prompt engineering that are employed, as well as the accompanied techniques with these LLMs. It also summarizes the key challenges and potential opportunities in this direction. This work can serve as a roadmap for future research in this area, highlighting potential avenues for exploration, and identifying gaps in our current understanding of the use of LLMs in software testing.
Few-shot learning for automated content analysis: Efficient coding of arguments and claims in the debate on arms deliveries to Ukraine
Pre-trained language models (PLM) based on transformer neural networks developed in the field of natural language processing (NLP) offer great opportunities to improve automatic content analysis in communication science, especially for the coding of complex semantic categories in large datasets via supervised machine learning. However, three characteristics so far impeded the widespread adoption of the methods in the applying disciplines: the dominance of English language models in NLP research, the necessary computing resources, and the effort required to produce training data to fine-tune PLMs. In this study, we address these challenges by using a multilingual transformer model in combination with the adapter extension to transformers, and few-shot learning methods. We test our approach on a realistic use case from communication science to automatically detect claims and arguments together with their stance in the German news debate on arms deliveries to Ukraine. In three experiments, we evaluate (1) data preprocessing strategies and model variants for this task, (2) the performance of different few-shot learning methods, and (3) how well the best setup performs on varying training set sizes in terms of validity, reliability, replicability and reproducibility of the results. We find that our proposed combination of transformer adapters with pattern exploiting training provides a parameter-efficient and easily shareable alternative to fully fine-tuning PLMs. It performs on par in terms of validity, while overall, provides better properties for application in communication studies. The results also show that pre-fine-tuning for a task on a near-domain dataset leads to substantial improvement, in particular in the few-shot setting. Further, the results indicate that it is useful to bias the dataset away from the viewpoints of specific prominent individuals.
FairTTTS: A Tree Test Time Simulation Method for Fairness-Aware Classification
Algorithmic decision-making has become deeply ingrained in many domains, yet biases in machine learning models can still produce discriminatory outcomes, often harming unprivileged groups. Achieving fair classification is inherently challenging, requiring a careful balance between predictive performance and ethical considerations. We present FairTTTS, a novel post-processing bias mitigation method inspired by the Tree Test Time Simulation (TTTS) method. Originally developed to enhance accuracy and robustness against adversarial inputs through probabilistic decision-path adjustments, TTTS serves as the foundation for FairTTTS. By building on this accuracy-enhancing technique, FairTTTS mitigates bias and improves predictive performance. FairTTTS uses a distance-based heuristic to adjust decisions at protected attribute nodes, ensuring fairness for unprivileged samples. This fairness-oriented adjustment occurs as a post-processing step, allowing FairTTTS to be applied to pre-trained models, diverse datasets, and various fairness metrics without retraining. Extensive evaluation on seven benchmark datasets shows that FairTTTS outperforms traditional methods in fairness improvement, achieving a 20.96% average increase over the baseline compared to 18.78% for related work, and further enhances accuracy by 0.55%. In contrast, competing methods typically reduce accuracy by 0.42%. These results confirm that FairTTTS effectively promotes more equitable decision-making while simultaneously improving predictive performance.
Learned Lightweight Smartphone ISP with Unpaired Data
The Image Signal Processor (ISP) is a fundamental component in modern smartphone cameras responsible for conversion of RAW sensor image data to RGB images with a strong focus on perceptual quality. Recent work highlights the potential of deep learning approaches and their ability to capture details with a quality increasingly close to that of professional cameras. A difficult and costly step when developing a learned ISP is the acquisition of pixel-wise aligned paired data that maps the raw captured by a smartphone camera sensor to high-quality reference images. In this work, we address this challenge by proposing a novel training method for a learnable ISP that eliminates the need for direct correspondences between raw images and ground-truth data with matching content. Our unpaired approach employs a multi-term loss function guided by adversarial training with multiple discriminators processing feature maps from pre-trained networks to maintain content structure while learning color and texture characteristics from the target RGB dataset. Using lightweight neural network architectures suitable for mobile devices as backbones, we evaluated our method on the Zurich RAW to RGB and Fujifilm UltraISP datasets. Compared to paired training methods, our unpaired learning strategy shows strong potential and achieves high fidelity across multiple evaluation metrics. The code and pre-trained models are available at https://github.com/AndreiiArhire/Learned-Lightweight-Smartphone-ISP-with-Unpaired-Data .
ADCNet: Learning from Raw Radar Data via Distillation
As autonomous vehicles and advanced driving assistance systems have entered wider deployment, there is an increased interest in building robust perception systems using radars. Radar-based systems are lower cost and more robust to adverse weather conditions than their LiDAR-based counterparts; however the point clouds produced are typically noisy and sparse by comparison. In order to combat these challenges, recent research has focused on consuming the raw radar data, instead of the final radar point cloud. We build on this line of work and demonstrate that by bringing elements of the signal processing pipeline into our network and then pre-training on the signal processing task, we are able to achieve state of the art detection performance on the RADIal dataset. Our method uses expensive offline signal processing algorithms to pseudo-label data and trains a network to distill this information into a fast convolutional backbone, which can then be finetuned for perception tasks. Extensive experiment results corroborate the effectiveness of the proposed techniques.
Language Modeling on Tabular Data: A Survey of Foundations, Techniques and Evolution
Tabular data, a prevalent data type across various domains, presents unique challenges due to its heterogeneous nature and complex structural relationships. Achieving high predictive performance and robustness in tabular data analysis holds significant promise for numerous applications. Influenced by recent advancements in natural language processing, particularly transformer architectures, new methods for tabular data modeling have emerged. Early techniques concentrated on pre-training transformers from scratch, often encountering scalability issues. Subsequently, methods leveraging pre-trained language models like BERT have been developed, which require less data and yield enhanced performance. The recent advent of large language models, such as GPT and LLaMA, has further revolutionized the field, facilitating more advanced and diverse applications with minimal fine-tuning. Despite the growing interest, a comprehensive survey of language modeling techniques for tabular data remains absent. This paper fills this gap by providing a systematic review of the development of language modeling for tabular data, encompassing: (1) a categorization of different tabular data structures and data types; (2) a review of key datasets used in model training and tasks used for evaluation; (3) a summary of modeling techniques including widely-adopted data processing methods, popular architectures, and training objectives; (4) the evolution from adapting traditional Pre-training/Pre-trained language models to the utilization of large language models; (5) an identification of persistent challenges and potential future research directions in language modeling for tabular data analysis. GitHub page associated with this survey is available at: https://github.com/lanxiang1017/Language-Modeling-on-Tabular-Data-Survey.git.
Can Machines Help Us Answering Question 16 in Datasheets, and In Turn Reflecting on Inappropriate Content?
Large datasets underlying much of current machine learning raise serious issues concerning inappropriate content such as offensive, insulting, threatening, or might otherwise cause anxiety. This calls for increased dataset documentation, e.g., using datasheets. They, among other topics, encourage to reflect on the composition of the datasets. So far, this documentation, however, is done manually and therefore can be tedious and error-prone, especially for large image datasets. Here we ask the arguably "circular" question of whether a machine can help us reflect on inappropriate content, answering Question 16 in Datasheets. To this end, we propose to use the information stored in pre-trained transformer models to assist us in the documentation process. Specifically, prompt-tuning based on a dataset of socio-moral values steers CLIP to identify potentially inappropriate content, therefore reducing human labor. We then document the inappropriate images found using word clouds, based on captions generated using a vision-language model. The documentations of two popular, large-scale computer vision datasets -- ImageNet and OpenImages -- produced this way suggest that machines can indeed help dataset creators to answer Question 16 on inappropriate image content.
DINOv2: Learning Robust Visual Features without Supervision
The recent breakthroughs in natural language processing for model pretraining on large quantities of data have opened the way for similar foundation models in computer vision. These models could greatly simplify the use of images in any system by producing all-purpose visual features, i.e., features that work across image distributions and tasks without finetuning. This work shows that existing pretraining methods, especially self-supervised methods, can produce such features if trained on enough curated data from diverse sources. We revisit existing approaches and combine different techniques to scale our pretraining in terms of data and model size. Most of the technical contributions aim at accelerating and stabilizing the training at scale. In terms of data, we propose an automatic pipeline to build a dedicated, diverse, and curated image dataset instead of uncurated data, as typically done in the self-supervised literature. In terms of models, we train a ViT model (Dosovitskiy et al., 2020) with 1B parameters and distill it into a series of smaller models that surpass the best available all-purpose features, OpenCLIP (Ilharco et al., 2021) on most of the benchmarks at image and pixel levels.
Data Filtering Networks
Large training sets have become a cornerstone of machine learning and are the foundation for recent advances in language modeling and multimodal learning. While data curation for pre-training is often still ad-hoc, one common paradigm is to first collect a massive pool of data from the Web and then filter this candidate pool down to an actual training set via various heuristics. In this work, we study the problem of learning a data filtering network (DFN) for this second step of filtering a large uncurated dataset. Our key finding is that the quality of a network for filtering is distinct from its performance on downstream tasks: for instance, a model that performs well on ImageNet can yield worse training sets than a model with low ImageNet accuracy that is trained on a small amount of high-quality data. Based on our insights, we construct new data filtering networks that induce state-of-the-art image-text datasets. Specifically, our best performing dataset DFN-5B enables us to train state-of-the-art models for their compute budgets: among other improvements on a variety of tasks, a ViT-H trained on our dataset achieves 83.0% zero-shot transfer accuracy on ImageNet, out-performing models trained on other datasets such as LAION-2B, DataComp-1B, or OpenAI's WIT. In order to facilitate further research in dataset design, we also release a new 2 billion example dataset DFN-2B and show that high performance data filtering networks can be trained from scratch using only publicly available data.
Automatic Data Curation for Self-Supervised Learning: A Clustering-Based Approach
Self-supervised features are the cornerstone of modern machine learning systems. They are typically pre-trained on data collections whose construction and curation typically require extensive human effort. This manual process has some limitations similar to those encountered in supervised learning, e.g., the crowd-sourced selection of data is costly and time-consuming, preventing scaling the dataset size. In this work, we consider the problem of automatic curation of high-quality datasets for self-supervised pre-training. We posit that such datasets should be large, diverse and balanced, and propose a clustering-based approach for building ones satisfying all these criteria. Our method involves successive and hierarchical applications of k-means on a large and diverse data repository to obtain clusters that distribute uniformly among data concepts, followed by a hierarchical, balanced sampling step from these clusters. Extensive experiments on three different data domains including web-based images, satellite images and text show that features trained on our automatically curated datasets outperform those trained on uncurated data while being on par or better than ones trained on manually curated data.
Data, Data Everywhere: A Guide for Pretraining Dataset Construction
The impressive capabilities of recent language models can be largely attributed to the multi-trillion token pretraining datasets that they are trained on. However, model developers fail to disclose their construction methodology which has lead to a lack of open information on how to develop effective pretraining sets. To address this issue, we perform the first systematic study across the entire pipeline of pretraining set construction. First, we run ablations on existing techniques for pretraining set development to identify which methods translate to the largest gains in model accuracy on downstream evaluations. Then, we categorize the most widely used data source, web crawl snapshots, across the attributes of toxicity, quality, type of speech, and domain. Finally, we show how such attribute information can be used to further refine and improve the quality of a pretraining set. These findings constitute an actionable set of steps that practitioners can use to develop high quality pretraining sets.
A Framework for Deprecating Datasets: Standardizing Documentation, Identification, and Communication
Datasets are central to training machine learning (ML) models. The ML community has recently made significant improvements to data stewardship and documentation practices across the model development life cycle. However, the act of deprecating, or deleting, datasets has been largely overlooked, and there are currently no standardized approaches for structuring this stage of the dataset life cycle. In this paper, we study the practice of dataset deprecation in ML, identify several cases of datasets that continued to circulate despite having been deprecated, and describe the different technical, legal, ethical, and organizational issues raised by such continuations. We then propose a Dataset Deprecation Framework that includes considerations of risk, mitigation of impact, appeal mechanisms, timeline, post-deprecation protocols, and publication checks that can be adapted and implemented by the ML community. Finally, we propose creating a centralized, sustainable repository system for archiving datasets, tracking dataset modifications or deprecations, and facilitating practices of care and stewardship that can be integrated into research and publication processes.
Improving Classifier Training Efficiency for Automatic Cyberbullying Detection with Feature Density
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods in order to estimate dataset complexity, which in turn is used to comparatively estimate the potential performance of machine learning (ML) classifiers prior to any training. We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments iterations. This way we can optimize the resource-intensive training of ML models which is becoming a serious issue due to the increases in available dataset sizes and the ever rising popularity of models based on Deep Neural Networks (DNN). The problem of constantly increasing needs for more powerful computational resources is also affecting the environment due to alarmingly-growing amount of CO2 emissions caused by training of large-scale ML models. The research was conducted on multiple datasets, including popular datasets, such as Yelp business review dataset used for training typical sentiment analysis models, as well as more recent datasets trying to tackle the problem of cyberbullying, which, being a serious social problem, is also a much more sophisticated problem form the point of view of linguistic representation. We use cyberbullying datasets collected for multiple languages, namely English, Japanese and Polish. The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
BaichuanSEED: Sharing the Potential of ExtensivE Data Collection and Deduplication by Introducing a Competitive Large Language Model Baseline
The general capabilities of Large Language Models (LLM) highly rely on the composition and selection on extensive pretraining datasets, treated as commercial secrets by several institutions. To mitigate this issue, we open-source the details of a universally applicable data processing pipeline and validate its effectiveness and potential by introducing a competitive LLM baseline. Specifically, the data processing pipeline consists of broad collection to scale up and reweighting to improve quality. We then pretrain a 7B model BaichuanSEED with 3T tokens processed by our pipeline without any deliberate downstream task-related optimization, followed by an easy but effective supervised fine-tuning stage. BaichuanSEED demonstrates consistency and predictability throughout training and achieves comparable performance on comprehensive benchmarks with several commercial advanced large language models, such as Qwen1.5 and Llama3. We also conduct several heuristic experiments to discuss the potential for further optimization of downstream tasks, such as mathematics and coding.
Prototype-based Dataset Comparison
Dataset summarisation is a fruitful approach to dataset inspection. However, when applied to a single dataset the discovery of visual concepts is restricted to those most prominent. We argue that a comparative approach can expand upon this paradigm to enable richer forms of dataset inspection that go beyond the most prominent concepts. To enable dataset comparison we present a module that learns concept-level prototypes across datasets. We leverage self-supervised learning to discover these prototypes without supervision, and we demonstrate the benefits of our approach in two case-studies. Our findings show that dataset comparison extends dataset inspection and we hope to encourage more works in this direction. Code and usage instructions available at https://github.com/Nanne/ProtoSim
AI Competitions and Benchmarks: Dataset Development
Machine learning is now used in many applications thanks to its ability to predict, generate, or discover patterns from large quantities of data. However, the process of collecting and transforming data for practical use is intricate. Even in today's digital era, where substantial data is generated daily, it is uncommon for it to be readily usable; most often, it necessitates meticulous manual data preparation. The haste in developing new models can frequently result in various shortcomings, potentially posing risks when deployed in real-world scenarios (eg social discrimination, critical failures), leading to the failure or substantial escalation of costs in AI-based projects. This chapter provides a comprehensive overview of established methodological tools, enriched by our practical experience, in the development of datasets for machine learning. Initially, we develop the tasks involved in dataset development and offer insights into their effective management (including requirements, design, implementation, evaluation, distribution, and maintenance). Then, we provide more details about the implementation process which includes data collection, transformation, and quality evaluation. Finally, we address practical considerations regarding dataset distribution and maintenance.
Question-Answering Model for Schizophrenia Symptoms and Their Impact on Daily Life using Mental Health Forums Data
In recent years, there is strong emphasis on mining medical data using machine learning techniques. A common problem is to obtain a noiseless set of textual documents, with a relevant content for the research question, and developing a Question Answering (QA) model for a specific medical field. The purpose of this paper is to present a new methodology for building a medical dataset and obtain a QA model for analysis of symptoms and impact on daily life for a specific disease domain. The ``Mental Health'' forum was used, a forum dedicated to people suffering from schizophrenia and different mental disorders. Relevant posts of active users, who regularly participate, were extrapolated providing a new method of obtaining low-bias content and without privacy issues. Furthermore, it is shown how to pre-process the dataset to convert it into a QA dataset. The Bidirectional Encoder Representations from Transformers (BERT), DistilBERT, RoBERTa, and BioBERT models were fine-tuned and evaluated via F1-Score, Exact Match, Precision and Recall. Accurate empirical experiments demonstrated the effectiveness of the proposed method for obtaining an accurate dataset for QA model implementation. By fine-tuning the BioBERT QA model, we achieved an F1 score of 0.885, showing a considerable improvement and outperforming the state-of-the-art model for mental disorders domain.
Efficient Tabular Data Preprocessing of ML Pipelines
Data preprocessing pipelines, which includes data decoding, cleaning, and transforming, are a crucial component of Machine Learning (ML) training. Thy are computationally intensive and often become a major bottleneck, due to the increasing performance gap between the CPUs used for preprocessing and the GPUs used for model training. Recent studies show that a significant number of CPUs across several machines are required to achieve sufficient throughput to saturate the GPUs, leading to increased resource and energy consumption. When the pipeline involves vocabulary generation, the preprocessing performance scales poorly due to significant row-wise synchronization overhead between different CPU cores and servers. To address this limitation, in this paper we present the design of Piper, a hardware accelerator for tabular data preprocessing, prototype it on FPGAs, and demonstrate its potential for training pipelines of commercial recommender systems. Piper achieves 4.7 sim 71.3times speedup in latency over a 128-core CPU server and outperforms a data-center GPU by 4.8sim 20.3times when using binary input. The impressive performance showcases Piper's potential to increase the efficiency of data preprocessing pipelines and significantly reduce their resource consumption.
Quality Not Quantity: On the Interaction between Dataset Design and Robustness of CLIP
Web-crawled datasets have enabled remarkable generalization capabilities in recent image-text models such as CLIP (Contrastive Language-Image pre-training) or Flamingo, but little is known about the dataset creation processes. In this work, we introduce a testbed of six publicly available data sources - YFCC, LAION, Conceptual Captions, WIT, RedCaps, Shutterstock - to investigate how pre-training distributions induce robustness in CLIP. We find that the performance of the pre-training data varies substantially across distribution shifts, with no single data source dominating. Moreover, we systematically study the interactions between these data sources and find that combining multiple sources does not necessarily yield better models, but rather dilutes the robustness of the best individual data source. We complement our empirical findings with theoretical insights from a simple setting, where combining the training data also results in diluted robustness. In addition, our theoretical model provides a candidate explanation for the success of the CLIP-based data filtering technique recently employed in the LAION dataset. Overall our results demonstrate that simply gathering a large amount of data from the web is not the most effective way to build a pre-training dataset for robust generalization, necessitating further study into dataset design. Code is available at https://github.com/mlfoundations/clip_quality_not_quantity.
Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition
Describes an audio dataset of spoken words designed to help train and evaluate keyword spotting systems. Discusses why this task is an interesting challenge, and why it requires a specialized dataset that is different from conventional datasets used for automatic speech recognition of full sentences. Suggests a methodology for reproducible and comparable accuracy metrics for this task. Describes how the data was collected and verified, what it contains, previous versions and properties. Concludes by reporting baseline results of models trained on this dataset.
Predictive Data Selection: The Data That Predicts Is the Data That Teaches
Language model pretraining involves training on extensive corpora, where data quality plays a pivotal role. In this work, we aim to directly estimate the contribution of data during pretraining and select pretraining data in an efficient manner. Specifically, we draw inspiration from recent findings showing that compression efficiency (i.e., the normalized loss) of diverse models on certain text correlates strongly with their downstream performance, when the text domain aligns with the downstream benchmark (Huang et al., 2024). Building on this observation, we hypothesize that data on which model losses are predictive of downstream abilities also contribute effectively to learning. To leverage this insight, we introduce data selection based on data's Predictive strength (Preselect), a lightweight and efficient data selection method that requires training and deploying only a fastText-based scorer. Through comprehensive experiments with 1B and 3B parameter models, we demonstrate that models trained on 30B tokens selected with PreSelect surpasses the performance of a vanilla baseline trained on 300B tokens, achieving a 10x reduction in compute requirements. Furthermore, PreSelect significantly outperforms other competitive data selection baselines, such as DCLM and FineWeb-Edu on a scale of 3B models trained on 100B tokens. We open-source our trained data selection scorer along with the curated datasets at https://github.com/hkust-nlp/PreSelect.
Improving Pretraining Data Using Perplexity Correlations
Quality pretraining data is often seen as the key to high-performance language models. However, progress in understanding pretraining data has been slow due to the costly pretraining runs required for data selection experiments. We present a framework that avoids these costs and selects high-quality pretraining data without any LLM training of our own. Our work is based on a simple observation: LLM losses on many pretraining texts are correlated with downstream benchmark performance, and selecting high-correlation documents is an effective pretraining data selection method. We build a new statistical framework for data selection centered around estimates of perplexity-benchmark correlations and perform data selection using a sample of 90 LLMs taken from the Open LLM Leaderboard on texts from tens of thousands of web domains. In controlled pretraining experiments at the 160M parameter scale on 8 benchmarks, our approach outperforms DSIR on every benchmark, while matching the best data selector found in DataComp-LM, a hand-engineered bigram classifier.
Deep Learning, Machine Learning, Advancing Big Data Analytics and Management
Advancements in artificial intelligence, machine learning, and deep learning have catalyzed the transformation of big data analytics and management into pivotal domains for research and application. This work explores the theoretical foundations, methodological advancements, and practical implementations of these technologies, emphasizing their role in uncovering actionable insights from massive, high-dimensional datasets. The study presents a systematic overview of data preprocessing techniques, including data cleaning, normalization, integration, and dimensionality reduction, to prepare raw data for analysis. Core analytics methodologies such as classification, clustering, regression, and anomaly detection are examined, with a focus on algorithmic innovation and scalability. Furthermore, the text delves into state-of-the-art frameworks for data mining and predictive modeling, highlighting the role of neural networks, support vector machines, and ensemble methods in tackling complex analytical challenges. Special emphasis is placed on the convergence of big data with distributed computing paradigms, including cloud and edge computing, to address challenges in storage, computation, and real-time analytics. The integration of ethical considerations, including data privacy and compliance with global standards, ensures a holistic perspective on data management. Practical applications across healthcare, finance, marketing, and policy-making illustrate the real-world impact of these technologies. Through comprehensive case studies and Python-based implementations, this work equips researchers, practitioners, and data enthusiasts with the tools to navigate the complexities of modern data analytics. It bridges the gap between theory and practice, fostering the development of innovative solutions for managing and leveraging data in the era of artificial intelligence.
Thinking Like an Annotator: Generation of Dataset Labeling Instructions
Large-scale datasets are essential to modern day deep learning. Advocates argue that understanding these methods requires dataset transparency (e.g. "dataset curation, motivation, composition, collection process, etc..."). However, almost no one has suggested the release of the detailed definitions and visual category examples provided to annotators - information critical to understanding the structure of the annotations present in each dataset. These labels are at the heart of public datasets, yet few datasets include the instructions that were used to generate them. We introduce a new task, Labeling Instruction Generation, to address missing publicly available labeling instructions. In Labeling Instruction Generation, we take a reasonably annotated dataset and: 1) generate a set of examples that are visually representative of each category in the dataset; 2) provide a text label that corresponds to each of the examples. We introduce a framework that requires no model training to solve this task and includes a newly created rapid retrieval system that leverages a large, pre-trained vision and language model. This framework acts as a proxy to human annotators that can help to both generate a final labeling instruction set and evaluate its quality. Our framework generates multiple diverse visual and text representations of dataset categories. The optimized instruction set outperforms our strongest baseline across 5 folds by 7.06 mAP for NuImages and 12.9 mAP for COCO.
Data Processing for the OpenGPT-X Model Family
This paper presents a comprehensive overview of the data preparation pipeline developed for the OpenGPT-X project, a large-scale initiative aimed at creating open and high-performance multilingual large language models (LLMs). The project goal is to deliver models that cover all major European languages, with a particular focus on real-world applications within the European Union. We explain all data processing steps, starting with the data selection and requirement definition to the preparation of the final datasets for model training. We distinguish between curated data and web data, as each of these categories is handled by distinct pipelines, with curated data undergoing minimal filtering and web data requiring extensive filtering and deduplication. This distinction guided the development of specialized algorithmic solutions for both pipelines. In addition to describing the processing methodologies, we provide an in-depth analysis of the datasets, increasing transparency and alignment with European data regulations. Finally, we share key insights and challenges faced during the project, offering recommendations for future endeavors in large-scale multilingual data preparation for LLMs.
Huatuo-26M, a Large-scale Chinese Medical QA Dataset
In this paper, we release a largest ever medical Question Answering (QA) dataset with 26 million QA pairs. We benchmark many existing approaches in our dataset in terms of both retrieval and generation. Experimental results show that the existing models perform far lower than expected and the released dataset is still challenging in the pre-trained language model era. Moreover, we also experimentally show the benefit of the proposed dataset in many aspects: (i) trained models for other QA datasets in a zero-shot fashion; and (ii) as external knowledge for retrieval-augmented generation (RAG); and (iii) improving existing pre-trained language models by using the QA pairs as a pre-training corpus in continued training manner. We believe that this dataset will not only contribute to medical research but also facilitate both the patients and clinical doctors. See https://github.com/FreedomIntelligence/Huatuo-26M.
PrediTree: A Multi-Temporal Sub-meter Dataset of Multi-Spectral Imagery Aligned With Canopy Height Maps
We present PrediTree, the first comprehensive open-source dataset designed for training and evaluating tree height prediction models at sub-meter resolution. This dataset combines very high-resolution (0.5m) LiDAR-derived canopy height maps, spatially aligned with multi-temporal and multi-spectral imagery, across diverse forest ecosystems in France, totaling 3,141,568 images. PrediTree addresses a critical gap in forest monitoring capabilities by enabling the training of deep learning methods that can predict tree growth based on multiple past observations. %Initially focused on French forests, PrediTree is designed as an expanding resource with ongoing efforts to incorporate data from other countries. To make use of this PrediTree dataset, we propose an encoder-decoder framework that requires the multi-temporal multi-spectral imagery and the relative time differences in years between the canopy height map timestamp (target) and each image acquisition date for which this framework predicts the canopy height. The conducted experiments demonstrate that a U-Net architecture trained on the PrediTree dataset provides the highest masked mean squared error of 11.78%, outperforming the next-best architecture, ResNet-50, by around 12%, and cutting the error of the same experiments but on fewer bands (red, green, blue only), by around 30%. This dataset is publicly available on URL{HuggingFace}, and both processing and training codebases are available on URL{GitHub}.
Common Corpus: The Largest Collection of Ethical Data for LLM Pre-Training
Large Language Models (LLMs) are pre-trained on large amounts of data from different sources and domains. These data most often contain trillions of tokens with large portions of copyrighted or proprietary content, which hinders the usage of such models under AI legislation. This raises the need for truly open pre-training data that is compliant with the data security regulations. In this paper, we introduce Common Corpus, the largest open dataset for language model pre-training. The data assembled in Common Corpus are either uncopyrighted or under permissible licenses and amount to about two trillion tokens. The dataset contains a wide variety of languages, ranging from the main European languages to low-resource ones rarely present in pre-training datasets; in addition, it includes a large portion of code data. The diversity of data sources in terms of covered domains and time periods opens up the paths for both research and entrepreneurial needs in diverse areas of knowledge. In this technical report, we present the detailed provenance of data assembling and the details of dataset filtering and curation. Being already used by such industry leaders as Anthropic and multiple LLM training projects, we believe that Common Corpus will become a critical infrastructure for open science research in LLMs.
UniTabE: A Universal Pretraining Protocol for Tabular Foundation Model in Data Science
Recent advancements in NLP have witnessed the groundbreaking impact of pretrained models, yielding impressive outcomes across various tasks. This study seeks to extend the power of pretraining methodologies to facilitating the prediction over tables in data science, a domain traditionally overlooked, yet inherently challenging due to the plethora of table schemas intrinsic to different tasks. The primary research questions underpinning this work revolve around the establishment of a universal pretraining protocol for tables with varied structures, the generalizability and transferability of learned knowledge across tasks, the adaptation to diverse downstream applications, and the incorporation of incremental columns over time. In response to these challenges, we introduce UniTabE, a straightforward yet effective method designed to process tables in a uniform manner, devoid of constraints imposed by specific table structures. UniTabE's core concept relies on representing each basic table element with a module, termed TabUnit. This is subsequently followed by a Transformer encoder to refine the representation. Moreover, our model is designed to facilitate pretraining and finetuning through the utilization of free-form prompts. In order to implement the pretraining phase, we curated an expansive tabular dataset comprising approximately 13B samples, meticulously gathered from the Kaggle platform. This research primarily centers on classification and regression tasks involving tabular data, and conducts rigorous experimental testing and analyses to validate the effectiveness of our methodology. The experimental results demonstrate UniTabE's superior performance against several baselines across massive benchmarks. This, therefore, underscores UniTabE's potential to significantly enhance the semantic representation of tabular data, thereby marking a significant stride for tabular data analysis.
PILArNet: Public Dataset for Particle Imaging Liquid Argon Detectors in High Energy Physics
Rapid advancement of machine learning solutions has often coincided with the production of a test public data set. Such datasets reduce the largest barrier to entry for tackling a problem -- procuring data -- while also providing a benchmark to compare different solutions. Furthermore, large datasets have been used to train high-performing feature finders which are then used in new approaches to problems beyond that initially defined. In order to encourage the rapid development in the analysis of data collected using liquid argon time projection chambers, a class of particle detectors used in high energy physics experiments, we have produced the PILArNet, first 2D and 3D open dataset to be used for a couple of key analysis tasks. The initial dataset presented in this paper contains 300,000 samples simulated and recorded in three different volume sizes. The dataset is stored efficiently in sparse 2D and 3D matrix format with auxiliary information about simulated particles in the volume, and is made available for public research use. In this paper we describe the dataset, tasks, and the method used to procure the sample.
The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale
The performance of a large language model (LLM) depends heavily on the quality and size of its pretraining dataset. However, the pretraining datasets for state-of-the-art open LLMs like Llama 3 and Mixtral are not publicly available and very little is known about how they were created. In this work, we introduce FineWeb, a 15-trillion token dataset derived from 96 Common Crawl snapshots that produces better-performing LLMs than other open pretraining datasets. To advance the understanding of how best to curate high-quality pretraining datasets, we carefully document and ablate all of the design choices used in FineWeb, including in-depth investigations of deduplication and filtering strategies. In addition, we introduce FineWeb-Edu, a 1.3-trillion token collection of educational text filtered from FineWeb. LLMs pretrained on FineWeb-Edu exhibit dramatically better performance on knowledge- and reasoning-intensive benchmarks like MMLU and ARC. Along with our datasets, we publicly release our data curation codebase and all of the models trained during our ablation experiments.
Datasheets for Datasets
The machine learning community currently has no standardized process for documenting datasets, which can lead to severe consequences in high-stakes domains. To address this gap, we propose datasheets for datasets. In the electronics industry, every component, no matter how simple or complex, is accompanied with a datasheet that describes its operating characteristics, test results, recommended uses, and other information. By analogy, we propose that every dataset be accompanied with a datasheet that documents its motivation, composition, collection process, recommended uses, and so on. Datasheets for datasets will facilitate better communication between dataset creators and dataset consumers, and encourage the machine learning community to prioritize transparency and accountability.
Improving Fractal Pre-training
The deep neural networks used in modern computer vision systems require enormous image datasets to train them. These carefully-curated datasets typically have a million or more images, across a thousand or more distinct categories. The process of creating and curating such a dataset is a monumental undertaking, demanding extensive effort and labelling expense and necessitating careful navigation of technical and social issues such as label accuracy, copyright ownership, and content bias. What if we had a way to harness the power of large image datasets but with few or none of the major issues and concerns currently faced? This paper extends the recent work of Kataoka et. al. (2020), proposing an improved pre-training dataset based on dynamically-generated fractal images. Challenging issues with large-scale image datasets become points of elegance for fractal pre-training: perfect label accuracy at zero cost; no need to store/transmit large image archives; no privacy/demographic bias/concerns of inappropriate content, as no humans are pictured; limitless supply and diversity of images; and the images are free/open-source. Perhaps surprisingly, avoiding these difficulties imposes only a small penalty in performance. Leveraging a newly-proposed pre-training task -- multi-instance prediction -- our experiments demonstrate that fine-tuning a network pre-trained using fractals attains 92.7-98.1% of the accuracy of an ImageNet pre-trained network.
tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation
The HuggingFace Datasets Hub hosts thousands of datasets. This provides exciting opportunities for language model training and evaluation. However, the datasets for a given type of task are stored with different schemas, and harmonization is harder than it seems (https://xkcd.com/927/). Multi-task training or evaluation requires manual work to fit data into task templates. Various initiatives independently address this problem by releasing the harmonized datasets or harmonization codes to preprocess datasets to the same format. We identify patterns across previous preprocessings, e.g. mapping of column names, and extraction of a specific sub-field from structured data in a column, and propose a structured annotation framework that makes our annotations fully exposed and not buried in unstructured code. We release a dataset annotation framework and dataset annotations for more than 400 English tasks (https://github.com/sileod/tasksource). These annotations provide metadata, like the name of the columns that should be used as input or labels for all datasets, and can save time for future dataset preprocessings, even if they do not use our framework. We fine-tune a multi-task text encoder on all tasksource tasks, outperforming every publicly available text encoder of comparable size on an external evaluation https://hf.co/sileod/deberta-v3-base-tasksource-nli.
Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs
This work focuses on leveraging and selecting from vast, unlabeled, open data to pre-fine-tune a pre-trained language model. The goal is to minimize the need for costly domain-specific data for subsequent fine-tuning while achieving desired performance levels. While many data selection algorithms have been designed for small-scale applications, rendering them unsuitable for our context, some emerging methods do cater to language data scales. However, they often prioritize data that aligns with the target distribution. While this strategy may be effective when training a model from scratch, it can yield limited results when the model has already been pre-trained on a different distribution. Differing from prior work, our key idea is to select data that nudges the pre-training distribution closer to the target distribution. We show the optimality of this approach for fine-tuning tasks under certain conditions. We demonstrate the efficacy of our methodology across a diverse array of tasks (NLU, NLG, zero-shot) with models up to 2.7B, showing that it consistently surpasses other selection methods. Moreover, our proposed method is significantly faster than existing techniques, scaling to millions of samples within a single GPU hour. Our code is open-sourced (Code repository: https://anonymous.4open.science/r/DV4LLM-D761/ ). While fine-tuning offers significant potential for enhancing performance across diverse tasks, its associated costs often limit its widespread adoption; with this work, we hope to lay the groundwork for cost-effective fine-tuning, making its benefits more accessible.
DataViz3D: An Novel Method Leveraging Online Holographic Modeling for Extensive Dataset Preprocessing and Visualization
DataViz3D is an innovative online software that transforms complex datasets into interactive 3D spatial models using holographic technology. This tool enables users to generate scatter plot within a 3D space, accurately mapped to the XYZ coordinates of the dataset, providing a vivid and intuitive understanding of the spatial relationships inherent in the data. DataViz3D's user friendly interface makes advanced 3D modeling and holographic visualization accessible to a wide range of users, fostering new opportunities for collaborative research and education across various disciplines.
Southern Newswire Corpus: A Large-Scale Dataset of Mid-Century Wire Articles Beyond the Front Page
I introduce a new large-scale dataset of historical wire articles from U.S. Southern newspapers, spanning 1960-1975 and covering multiple wire services: The Associated Press, United Press International, Newspaper Enterprise Association. Unlike prior work focusing on front-page content, this dataset captures articles across the entire newspaper, offering broader insight into mid-century Southern coverage. The dataset includes a version that has undergone an LLM-based text cleanup pipeline to reduce OCR noise, enhancing its suitability for quantitative text analysis. Additionally, duplicate versions of articles are retained to enable analysis of editorial differences in language and framing across newspapers. Each article is tagged by wire service, facilitating comparative studies of editorial patterns across agencies. This resource opens new avenues for research in computational social science, digital humanities, and historical linguistics, providing a detailed perspective on how Southern newspapers relayed national and international news during a transformative period in American history. The dataset will be made available upon publication or request for research purposes.
KINNEWS and KIRNEWS: Benchmarking Cross-Lingual Text Classification for Kinyarwanda and Kirundi
Recent progress in text classification has been focused on high-resource languages such as English and Chinese. For low-resource languages, amongst them most African languages, the lack of well-annotated data and effective preprocessing, is hindering the progress and the transfer of successful methods. In this paper, we introduce two news datasets (KINNEWS and KIRNEWS) for multi-class classification of news articles in Kinyarwanda and Kirundi, two low-resource African languages. The two languages are mutually intelligible, but while Kinyarwanda has been studied in Natural Language Processing (NLP) to some extent, this work constitutes the first study on Kirundi. Along with the datasets, we provide statistics, guidelines for preprocessing, and monolingual and cross-lingual baseline models. Our experiments show that training embeddings on the relatively higher-resourced Kinyarwanda yields successful cross-lingual transfer to Kirundi. In addition, the design of the created datasets allows for a wider use in NLP beyond text classification in future studies, such as representation learning, cross-lingual learning with more distant languages, or as base for new annotations for tasks such as parsing, POS tagging, and NER. The datasets, stopwords, and pre-trained embeddings are publicly available at https://github.com/Andrews2017/KINNEWS-and-KIRNEWS-Corpus .
Do Datasets Have Politics? Disciplinary Values in Computer Vision Dataset Development
Data is a crucial component of machine learning. The field is reliant on data to train, validate, and test models. With increased technical capabilities, machine learning research has boomed in both academic and industry settings, and one major focus has been on computer vision. Computer vision is a popular domain of machine learning increasingly pertinent to real-world applications, from facial recognition in policing to object detection for autonomous vehicles. Given computer vision's propensity to shape machine learning research and impact human life, we seek to understand disciplinary practices around dataset documentation - how data is collected, curated, annotated, and packaged into datasets for computer vision researchers and practitioners to use for model tuning and development. Specifically, we examine what dataset documentation communicates about the underlying values of vision data and the larger practices and goals of computer vision as a field. To conduct this study, we collected a corpus of about 500 computer vision datasets, from which we sampled 114 dataset publications across different vision tasks. Through both a structured and thematic content analysis, we document a number of values around accepted data practices, what makes desirable data, and the treatment of humans in the dataset construction process. We discuss how computer vision datasets authors value efficiency at the expense of care; universality at the expense of contextuality; impartiality at the expense of positionality; and model work at the expense of data work. Many of the silenced values we identify sit in opposition with social computing practices. We conclude with suggestions on how to better incorporate silenced values into the dataset creation and curation process.
TabRepo: A Large Scale Repository of Tabular Model Evaluations and its AutoML Applications
We introduce TabRepo, a new dataset of tabular model evaluations and predictions. TabRepo contains the predictions and metrics of 1310 models evaluated on 200 classification and regression datasets. We illustrate the benefit of our dataset in multiple ways. First, we show that it allows to perform analysis such as comparing Hyperparameter Optimization against current AutoML systems while also considering ensembling at marginal cost by using precomputed model predictions. Second, we show that our dataset can be readily leveraged to perform transfer-learning. In particular, we show that applying standard transfer-learning techniques allows to outperform current state-of-the-art tabular systems in accuracy, runtime and latency.
RS5M and GeoRSCLIP: A Large Scale Vision-Language Dataset and A Large Vision-Language Model for Remote Sensing
Pre-trained Vision-Language Models (VLMs) utilizing extensive image-text paired data have demonstrated unprecedented image-text association capabilities, achieving remarkable results across various downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. A critical challenge is how to make use of existing large-scale pre-trained VLMs, which are trained on common objects, to perform the domain-specific transfer for accomplishing domain-related downstream tasks. In this paper, we propose a new framework that includes the Domain pre-trained Vision-Language Model (DVLM), bridging the gap between the General Vision-Language Model (GVLM) and domain-specific downstream tasks. Moreover, we present an image-text paired dataset in the field of remote sensing (RS), RS5M, which has 5 million RS images with English descriptions. The dataset is obtained from filtering publicly available image-text paired datasets and captioning label-only RS datasets with pre-trained VLM. These constitute the first large-scale RS image-text paired dataset. Additionally, we fine-tuned the CLIP model and tried several Parameter-Efficient Fine-Tuning methods on RS5M to implement the DVLM. Experimental results show that our proposed dataset is highly effective for various tasks, and our model GeoRSCLIP improves upon the baseline or previous state-of-the-art model by 3%sim20% in Zero-shot Classification (ZSC), 3%sim6% in Remote Sensing Cross-Modal Text-Image Retrieval (RSCTIR) and 4%sim5% in Semantic Localization (SeLo) tasks. Dataset and models have been released in: https://github.com/om-ai-lab/RS5M.
A large-scale heterogeneous 3D magnetic resonance brain imaging dataset for self-supervised learning
We present FOMO60K, a large-scale, heterogeneous dataset of 60,529 brain Magnetic Resonance Imaging (MRI) scans from 13,900 sessions and 11,187 subjects, aggregated from 16 publicly available sources. The dataset includes both clinical- and research-grade images, multiple MRI sequences, and a wide range of anatomical and pathological variability, including scans with large brain anomalies. Minimal preprocessing was applied to preserve the original image characteristics while reducing barriers to entry for new users. Accompanying code for self-supervised pretraining and finetuning is provided. FOMO60K is intended to support the development and benchmarking of self-supervised learning methods in medical imaging at scale.
Celeb-FBI: A Benchmark Dataset on Human Full Body Images and Age, Gender, Height and Weight Estimation using Deep Learning Approach
The scarcity of comprehensive datasets in surveillance, identification, image retrieval systems, and healthcare poses a significant challenge for researchers in exploring new methodologies and advancing knowledge in these respective fields. Furthermore, the need for full-body image datasets with detailed attributes like height, weight, age, and gender is particularly significant in areas such as fashion industry analytics, ergonomic design assessment, virtual reality avatar creation, and sports performance analysis. To address this gap, we have created the 'Celeb-FBI' dataset which contains 7,211 full-body images of individuals accompanied by detailed information on their height, age, weight, and gender. Following the dataset creation, we proceed with the preprocessing stages, including image cleaning, scaling, and the application of Synthetic Minority Oversampling Technique (SMOTE). Subsequently, utilizing this prepared dataset, we employed three deep learning approaches: Convolutional Neural Network (CNN), 50-layer ResNet, and 16-layer VGG, which are used for estimating height, weight, age, and gender from human full-body images. From the results obtained, ResNet-50 performed best for the system with an accuracy rate of 79.18% for age, 95.43% for gender, 85.60% for height and 81.91% for weight.
