new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Feb 9

Build AI Assistants using Large Language Models and Agents to Enhance the Engineering Education of Biomechanics

While large language models (LLMs) have demonstrated remarkable versatility across a wide range of general tasks, their effectiveness often diminishes in domain-specific applications due to inherent knowledge gaps. Moreover, their performance typically declines when addressing complex problems that require multi-step reasoning and analysis. In response to these challenges, we propose leveraging both LLMs and AI agents to develop education assistants aimed at enhancing undergraduate learning in biomechanics courses that focus on analyzing the force and moment in the musculoskeletal system of the human body. To achieve our goal, we construct a dual-module framework to enhance LLM performance in biomechanics educational tasks: 1) we apply Retrieval-Augmented Generation (RAG) to improve the specificity and logical consistency of LLM's responses to the conceptual true/false questions; 2) we build a Multi-Agent System (MAS) to solve calculation-oriented problems involving multi-step reasoning and code execution. Specifically, we evaluate the performance of several LLMs, i.e., Qwen-1.0-32B, Qwen-2.5-32B, and Llama-70B, on a biomechanics dataset comprising 100 true/false conceptual questions and problems requiring equation derivation and calculation. Our results demonstrate that RAG significantly enhances the performance and stability of LLMs in answering conceptual questions, surpassing those of vanilla models. On the other hand, the MAS constructed using multiple LLMs demonstrates its ability to perform multi-step reasoning, derive equations, execute code, and generate explainable solutions for tasks that require calculation. These findings demonstrate the potential of applying RAG and MAS to enhance LLM performance for specialized courses in engineering curricula, providing a promising direction for developing intelligent tutoring in engineering education.

  • 6 authors
·
Nov 19, 2025

Harnessing Multi-Agent LLMs for Complex Engineering Problem-Solving: A Framework for Senior Design Projects

Multi-Agent Large Language Models (LLMs) are gaining significant attention for their ability to harness collective intelligence in complex problem-solving, decision-making, and planning tasks. This aligns with the concept of the wisdom of crowds, where diverse agents contribute collectively to generating effective solutions, making it particularly suitable for educational settings. Senior design projects, also known as capstone or final year projects, are pivotal in engineering education as they integrate theoretical knowledge with practical application, fostering critical thinking, teamwork, and real-world problem-solving skills. In this paper, we explore the use of Multi-Agent LLMs in supporting these senior design projects undertaken by engineering students, which often involve multidisciplinary considerations and conflicting objectives, such as optimizing technical performance while addressing ethical, social, and environmental concerns. We propose a framework where distinct LLM agents represent different expert perspectives, such as problem formulation agents, system complexity agents, societal and ethical agents, or project managers, thus facilitating a holistic problem-solving approach. This implementation leverages standard multi-agent system (MAS) concepts such as coordination, cooperation, and negotiation, incorporating prompt engineering to develop diverse personas for each agent. These agents engage in rich, collaborative dialogues to simulate human engineering teams, guided by principles from swarm AI to efficiently balance individual contributions towards a unified solution. We adapt these techniques to create a collaboration structure for LLM agents, encouraging interdisciplinary reasoning and negotiation similar to real-world senior design projects. To assess the efficacy of this framework, we collected six proposals of engineering and computer science of...

  • 6 authors
·
Jan 2, 2025

AITEE -- Agentic Tutor for Electrical Engineering

Intelligent tutoring systems combined with large language models offer a promising approach to address students' diverse needs and promote self-efficacious learning. While large language models possess good foundational knowledge of electrical engineering basics, they remain insufficiently capable of addressing specific questions about electrical circuits. In this paper, we present AITEE, an agent-based tutoring system for electrical engineering designed to accompany students throughout their learning process, offer individualized support, and promote self-directed learning. AITEE supports both hand-drawn and digital circuits through an adapted circuit reconstruction process, enabling natural interaction with students. Our novel graph-based similarity measure identifies relevant context from lecture materials through a retrieval augmented generation approach, while parallel Spice simulation further enhances accuracy in applying solution methodologies. The system implements a Socratic dialogue to foster learner autonomy through guided questioning. Experimental evaluations demonstrate that AITEE significantly outperforms baseline approaches in domain-specific knowledge application, with even medium-sized LLM models showing acceptable performance. Our results highlight the potential of agentic tutors to deliver scalable, personalized, and effective learning environments for electrical engineering education.

  • 3 authors
·
May 27, 2025 2

From Concept to Manufacturing: Evaluating Vision-Language Models for Engineering Design

Engineering Design is undergoing a transformative shift with the advent of AI, marking a new era in how we approach product, system, and service planning. Large language models have demonstrated impressive capabilities in enabling this shift. Yet, with text as their only input modality, they cannot leverage the large body of visual artifacts that engineers have used for centuries and are accustomed to. This gap is addressed with the release of multimodal vision language models, such as GPT-4V, enabling AI to impact many more types of tasks. In light of these advancements, this paper presents a comprehensive evaluation of GPT-4V, a vision language model, across a wide spectrum of engineering design tasks, categorized into four main areas: Conceptual Design, System-Level and Detailed Design, Manufacturing and Inspection, and Engineering Education Tasks. Our study assesses GPT-4V's capabilities in design tasks such as sketch similarity analysis, concept selection using Pugh Charts, material selection, engineering drawing analysis, CAD generation, topology optimization, design for additive and subtractive manufacturing, spatial reasoning challenges, and textbook problems. Through this structured evaluation, we not only explore GPT-4V's proficiency in handling complex design and manufacturing challenges but also identify its limitations in complex engineering design applications. Our research establishes a foundation for future assessments of vision language models, emphasizing their immense potential for innovating and enhancing the engineering design and manufacturing landscape. It also contributes a set of benchmark testing datasets, with more than 1000 queries, for ongoing advancements and applications in this field.

  • 7 authors
·
Nov 21, 2023

LLM Prompt Evaluation for Educational Applications

As large language models (LLMs) become increasingly common in educational applications, there is a growing need for evidence-based methods to design and evaluate LLM prompts that produce personalized and pedagogically aligned out-puts. This study presents a generalizable, systematic approach for evaluating prompts, demonstrated through an analysis of LLM-generated follow-up questions in a structured dialogue activity. Six prompt templates were designed and tested. The templates incorporated established prompt engineering patterns, with each prompt emphasizing distinct pedagogical strategies. The prompt templates were compared through a tournament-style evaluation framework that can be adapted for other educational applications. The tournament employed the Glicko2 rating system with eight judges evaluating question pairs across three dimensions: format, dialogue support, and appropriateness for learners. Data was sourced from 120 authentic user interactions across three distinct educational deployments. Results showed that a single prompt related to strategic reading out-performed other templates with win probabilities ranging from 81% to 100% in pairwise comparisons. This prompt combined persona and context manager pat-terns and was designed to support metacognitive learning strategies such as self-directed learning. The methodology showcases how educational technology re- searchers can systematically evaluate and improve prompt designs, moving beyond ad-hoc prompt engineering toward evidence-based prompt development for educational applications.

The AI Companion in Education: Analyzing the Pedagogical Potential of ChatGPT in Computer Science and Engineering

Artificial Intelligence (AI), with ChatGPT as a prominent example, has recently taken center stage in various domains including higher education, particularly in Computer Science and Engineering (CSE). The AI revolution brings both convenience and controversy, offering substantial benefits while lacking formal guidance on their application. The primary objective of this work is to comprehensively analyze the pedagogical potential of ChatGPT in CSE education, understanding its strengths and limitations from the perspectives of educators and learners. We employ a systematic approach, creating a diverse range of educational practice problems within CSE field, focusing on various subjects such as data science, programming, AI, machine learning, networks, and more. According to our examinations, certain question types, like conceptual knowledge queries, typically do not pose significant challenges to ChatGPT, and thus, are excluded from our analysis. Alternatively, we focus our efforts on developing more in-depth and personalized questions and project-based tasks. These questions are presented to ChatGPT, followed by interactions to assess its effectiveness in delivering complete and meaningful responses. To this end, we propose a comprehensive five-factor reliability analysis framework to evaluate the responses. This assessment aims to identify when ChatGPT excels and when it faces challenges. Our study concludes with a correlation analysis, delving into the relationships among subjects, task types, and limiting factors. This analysis offers valuable insights to enhance ChatGPT's utility in CSE education, providing guidance to educators and students regarding its reliability and efficacy.

  • 6 authors
·
Apr 23, 2024

Agentic Software Engineering: Foundational Pillars and a Research Roadmap

Agentic Software Engineering (SE 3.0) represents a new era where intelligent agents are tasked not with simple code generation, but with achieving complex, goal-oriented SE objectives. To harness these new capabilities while ensuring trustworthiness, we must recognize a fundamental duality within the SE field in the Agentic SE era, comprising two symbiotic modalities: SE for Humans and SE for Agents. This duality demands a radical reimagining of the foundational pillars of SE (actors, processes, tools, and artifacts) which manifest differently across each modality. We propose two purpose-built workbenches to support this vision. The Agent Command Environment (ACE) serves as a command center where humans orchestrate and mentor agent teams, handling outputs such as Merge-Readiness Packs (MRPs) and Consultation Request Packs (CRPs). The Agent Execution Environment (AEE) is a digital workspace where agents perform tasks while invoking human expertise when facing ambiguity or complex trade-offs. This bi-directional partnership, which supports agent-initiated human callbacks and handovers, gives rise to new, structured engineering activities (i.e., processes) that redefine human-AI collaboration, elevating the practice from agentic coding to true agentic software engineering. This paper presents the Structured Agentic Software Engineering (SASE) vision, outlining several of the foundational pillars for the future of SE. The paper culminates in a research roadmap that identifies a few key challenges and opportunities while briefly discussing the resulting impact of this future on SE education. Our goal is not to offer a definitive solution, but to provide a conceptual scaffold with structured vocabulary to catalyze a community-wide dialogue, pushing the SE community to think beyond its classic, human-centric tenets toward a disciplined, scalable, and trustworthy agentic future.

  • 7 authors
·
Sep 7, 2025 2

CREF: An LLM-based Conversational Software Repair Framework for Programming Tutors

Program repair techniques offer cost-saving benefits for debugging within software development and programming education scenarios. With the proven effectiveness of Large Language Models (LLMs) in code-related tasks, researchers have explored their potential for program repair. However, it is crucial to recognize that existing repair benchmarks may have influenced LLM training data, potentially causing data leakage. To evaluate LLMs' realistic repair capabilities, (1) we introduce an extensive, non-crawled benchmark, referred to as TutorCode, comprising 1,239 C++ defect codes and associated information such as tutor guidance, solution description, failing test cases, and the corrected code. Our work assesses the repair performance of 12 LLMs on TutorCode, measuring repair correctness (TOP-5 and AVG-5) and patch precision (RPSR). (2) We then provide a comprehensive investigation into which types of extra information can help LLMs improve their performance in repairing defects. Among these types, tutor guidance was found to be the most effective information in enhancing LLM repair capabilities. To fully harness LLMs' conversational capabilities and the benefits of augmented information, (3) we introduce a novel conversational semi-automatic repair framework CREF assisting human tutor. It demonstrates a remarkable AVG-5 improvement of 17.2%-24.6% compared to the baseline, achieving an impressive AVG-5 of 76.6% when utilizing GPT-4. These results highlight the potential for enhancing LLMs' repair capabilities through interactions with tutors and historical conversations involving incorrect responses. The successful application of CREF in a real-world educational setting demonstrates its effectiveness in reducing tutors' workload and improving students' learning experience, while also showcasing its promise for facilitating other software engineering tasks, such as code review.

  • 8 authors
·
Jun 19, 2024

SketchAgent: Generating Structured Diagrams from Hand-Drawn Sketches

Hand-drawn sketches are a natural and efficient medium for capturing and conveying ideas. Despite significant advancements in controllable natural image generation, translating freehand sketches into structured, machine-readable diagrams remains a labor-intensive and predominantly manual task. The primary challenge stems from the inherent ambiguity of sketches, which lack the structural constraints and semantic precision required for automated diagram generation. To address this challenge, we introduce SketchAgent, a multi-agent system designed to automate the transformation of hand-drawn sketches into structured diagrams. SketchAgent integrates sketch recognition, symbolic reasoning, and iterative validation to produce semantically coherent and structurally accurate diagrams, significantly reducing the need for manual effort. To evaluate the effectiveness of our approach, we propose the Sketch2Diagram Benchmark, a comprehensive dataset and evaluation framework encompassing eight diverse diagram categories, such as flowcharts, directed graphs, and model architectures. The dataset comprises over 6,000 high-quality examples with token-level annotations, standardized preprocessing, and rigorous quality control. By streamlining the diagram generation process, SketchAgent holds great promise for applications in design, education, and engineering, while offering a significant step toward bridging the gap between intuitive sketching and machine-readable diagram generation. The benchmark is released at https://huggingface.co/datasets/DiagramAgent/Sketch2Diagram-Benchmark.

  • 9 authors
·
Aug 2, 2025

AI-University: An LLM-based platform for instructional alignment to scientific classrooms

We introduce AI University (AI-U), a flexible framework for AI-driven course content delivery that adapts to instructors' teaching styles. At its core, AI-U fine-tunes a large language model (LLM) with retrieval-augmented generation (RAG) to generate instructor-aligned responses from lecture videos, notes, and textbooks. Using a graduate-level finite-element-method (FEM) course as a case study, we present a scalable pipeline to systematically construct training data, fine-tune an open-source LLM with Low-Rank Adaptation (LoRA), and optimize its responses through RAG-based synthesis. Our evaluation - combining cosine similarity, LLM-based assessment, and expert review - demonstrates strong alignment with course materials. We also have developed a prototype web application, available at https://my-ai-university.com, that enhances traceability by linking AI-generated responses to specific sections of the relevant course material and time-stamped instances of the open-access video lectures. Our expert model is found to have greater cosine similarity with a reference on 86% of test cases. An LLM judge also found our expert model to outperform the base Llama 3.2 model approximately four times out of five. AI-U offers a scalable approach to AI-assisted education, paving the way for broader adoption in higher education. Here, our framework has been presented in the setting of a class on FEM - a subject that is central to training PhD and Master students in engineering science. However, this setting is a particular instance of a broader context: fine-tuning LLMs to research content in science.

  • 8 authors
·
Apr 10, 2025 2