Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAlfie: Democratising RGBA Image Generation With No $$$
Designs and artworks are ubiquitous across various creative fields, requiring graphic design skills and dedicated software to create compositions that include many graphical elements, such as logos, icons, symbols, and art scenes, which are integral to visual storytelling. Automating the generation of such visual elements improves graphic designers' productivity, democratizes and innovates the creative industry, and helps generate more realistic synthetic data for related tasks. These illustration elements are mostly RGBA images with irregular shapes and cutouts, facilitating blending and scene composition. However, most image generation models are incapable of generating such images and achieving this capability requires expensive computational resources, specific training recipes, or post-processing solutions. In this work, we propose a fully-automated approach for obtaining RGBA illustrations by modifying the inference-time behavior of a pre-trained Diffusion Transformer model, exploiting the prompt-guided controllability and visual quality offered by such models with no additional computational cost. We force the generation of entire subjects without sharp croppings, whose background is easily removed for seamless integration into design projects or artistic scenes. We show with a user study that, in most cases, users prefer our solution over generating and then matting an image, and we show that our generated illustrations yield good results when used as inputs for composite scene generation pipelines. We release the code at https://github.com/aimagelab/Alfie.
In-Context Learning Strategies Emerge Rationally
Recent work analyzing in-context learning (ICL) has identified a broad set of strategies that describe model behavior in different experimental conditions. We aim to unify these findings by asking why a model learns these disparate strategies in the first place. Specifically, we start with the observation that when trained to learn a mixture of tasks, as is popular in the literature, the strategies learned by a model for performing ICL can be captured by a family of Bayesian predictors: a memorizing predictor, which assumes a discrete prior on the set of seen tasks, and a generalizing predictor, where the prior matches the underlying task distribution. Adopting the normative lens of rational analysis, where a learner's behavior is explained as an optimal adaptation to data given computational constraints, we develop a hierarchical Bayesian framework that almost perfectly predicts Transformer next-token predictions throughout training -- without assuming access to its weights. Under this framework, pretraining is viewed as a process of updating the posterior probability of different strategies, and inference-time behavior as a posterior-weighted average over these strategies' predictions. Our framework draws on common assumptions about neural network learning dynamics, which make explicit a tradeoff between loss and complexity among candidate strategies: beyond how well it explains the data, a model's preference towards implementing a strategy is dictated by its complexity. This helps explain well-known ICL phenomena, while offering novel predictions: e.g., we show a superlinear trend in the timescale for transitioning from generalization to memorization as task diversity increases. Overall, our work advances an explanatory and predictive account of ICL grounded in tradeoffs between strategy loss and complexity.
Feynman-Kac Correctors in Diffusion: Annealing, Guidance, and Product of Experts
While score-based generative models are the model of choice across diverse domains, there are limited tools available for controlling inference-time behavior in a principled manner, e.g. for composing multiple pretrained models. Existing classifier-free guidance methods use a simple heuristic to mix conditional and unconditional scores to approximately sample from conditional distributions. However, such methods do not approximate the intermediate distributions, necessitating additional 'corrector' steps. In this work, we provide an efficient and principled method for sampling from a sequence of annealed, geometric-averaged, or product distributions derived from pretrained score-based models. We derive a weighted simulation scheme which we call Feynman-Kac Correctors (FKCs) based on the celebrated Feynman-Kac formula by carefully accounting for terms in the appropriate partial differential equations (PDEs). To simulate these PDEs, we propose Sequential Monte Carlo (SMC) resampling algorithms that leverage inference-time scaling to improve sampling quality. We empirically demonstrate the utility of our methods by proposing amortized sampling via inference-time temperature annealing, improving multi-objective molecule generation using pretrained models, and improving classifier-free guidance for text-to-image generation. Our code is available at https://github.com/martaskrt/fkc-diffusion.
EtCon: Edit-then-Consolidate for Reliable Knowledge Editing
Knowledge editing aims to update specific facts in large language models (LLMs) without full retraining. Prior efforts sought to tune the knowledge layers of LLMs, proving effective for making selective edits. However, a significant gap exists between their performance in controlled, teacher-forcing evaluations and their real-world effectiveness in lifelong learning scenarios, which greatly limits their practical applicability. This work's empirical analysis reveals two recurring issues associated with this gap: (1) Most traditional methods lead the edited model to overfit to the new fact, thereby degrading pre-trained capabilities; (2) There is a critical absence of a knowledge consolidation stage, leaving new facts insufficiently integrated into LLMs' inference-time behavior under autoregressive generation, thereby leading to a mismatch between parametric knowledge and actual generation behavior. To this end, we propose Edit-then-Consolidate, a novel knowledge editing paradigm that aims to bridge the gap between theoretical knowledge editing methods and their real-world applicability. Specifically, (1) our framework mitigates overfitting via Targeted Proximal Supervised Fine-Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy drift; (2) Then, a consolidation stage using Group Relative Policy Optimization (GRPO) aligns the edited knowledge with CoT-based inference policy by optimizing trajectory-level behavior under comprehensive reward signals. Extensive experiments demonstrate our framework consistently improves editing reliability and generalization under real-world evaluations, while better preserving locality and pre-trained capabilities.
Inference-Time Scaling for Diffusion Models beyond Scaling Denoising Steps
Generative models have made significant impacts across various domains, largely due to their ability to scale during training by increasing data, computational resources, and model size, a phenomenon characterized by the scaling laws. Recent research has begun to explore inference-time scaling behavior in Large Language Models (LLMs), revealing how performance can further improve with additional computation during inference. Unlike LLMs, diffusion models inherently possess the flexibility to adjust inference-time computation via the number of denoising steps, although the performance gains typically flatten after a few dozen. In this work, we explore the inference-time scaling behavior of diffusion models beyond increasing denoising steps and investigate how the generation performance can further improve with increased computation. Specifically, we consider a search problem aimed at identifying better noises for the diffusion sampling process. We structure the design space along two axes: the verifiers used to provide feedback, and the algorithms used to find better noise candidates. Through extensive experiments on class-conditioned and text-conditioned image generation benchmarks, our findings reveal that increasing inference-time compute leads to substantial improvements in the quality of samples generated by diffusion models, and with the complicated nature of images, combinations of the components in the framework can be specifically chosen to conform with different application scenario.
Examining False Positives under Inference Scaling for Mathematical Reasoning
Recent advancements in language models have led to significant improvements in mathematical reasoning across various benchmarks. However, most of these benchmarks rely on automatic evaluation methods that only compare final answers using heuristics, without verifying the underlying reasoning steps. This limitation results in false positive solutions, where models may produce correct final answers but with flawed deduction paths. In this paper, we systematically examine the prevalence of false positive solutions in mathematical problem solving for language models. We analyze the characteristics and extent of this issue across different open-source models, datasets of varying difficulty levels, and decoding strategies. Specifically, we explore how false positives influence the inference time scaling behavior of language models. Our experimental results reveal that: (1) false positive solutions persist across different models, datasets, and decoding methods, (2) sampling-based inference time scaling methods do not alleviate the problem, and (3) the pass@N evaluation metric is more susceptible to false positives, suggesting a significantly lower scaling ceiling than what automatic evaluations indicate. Additionally, we analyze specific instances of false positives and discuss potential limitations in self-improvement techniques and synthetic data generation under such conditions. Our data and code are publicly available at https://github.com/Wloner0809/False-Positives-in-Math.
Mixture of Tunable Experts -- Behavior Modification of DeepSeek-R1 at Inference Time
We present the Mixture-of-Tunable-Experts (MoTE), a method that extends the Mixture-of-Experts architecture of Large Language Models (LLMs). Without additional training, MoTE enables meaningful and focused behavior changes in LLMs on-the-fly during inference time. By analyzing the digital LLM brain of DeepSeek-R1 using a technique we dub 'functional Token Resonance Imaging' (fTRI) -- inspired by fMRI and using prompts designed to elicit specific behavior (e.g., 'What happened {time}{place}?') -- we empirically identify distinctive experts associated with behaviors like refusal responses. Using MoTE we are able to intervene and control such specific behavior. We switched off the top 10 most refusal-relevant experts (0.07% of R1's 14,848 routed experts), achieving a 52% refusal reduction on sensitive reference prompts without performance degradation on MT-Bench. Random expert deactivation resulted in smaller behavioral shifts with increased noise, whereas forced expert activation led to significantly higher refusal rates. Our approach shares similarities with sparse autoencoders (SAEs) in terms of explainability and steerability. Unlike SAEs, MoTE does not require large training efforts, as within MoEs with a vast number of experts, specialization already emerged naturally during pretraining. Our findings suggest that significant functional mechanisms in Mixture-of-Experts architectures can at least partially be localized in a small number of specific experts, rather than being distributed throughout the model's weights. Expert subgroups can be tuned to trigger significant behavior variations, providing insights into the inner workings of LLMs.
Inference-Time Intervention in Large Language Models for Reliable Requirement Verification
Steering the behavior of Large Language Models (LLMs) remains a challenge, particularly in engineering applications where precision and reliability are critical. While fine-tuning and prompting methods can modify model behavior, they lack the dynamic and exact control necessary for engineering applications. Inference-time intervention techniques provide a promising alternative, allowing targeted adjustments to LLM outputs. In this work, we demonstrate how interventions enable fine-grained control for automating the usually time-intensive requirement verification process in Model-Based Systems Engineering (MBSE). Using two early-stage Capella SysML models of space missions with associated requirements, we apply the intervened LLMs to reason over a graph representation of the model to determine whether a requirement is fulfilled. Our method achieves robust and reliable outputs, significantly improving over both a baseline model and a fine-tuning approach. By identifying and modifying as few as one to three specialised attention heads, we can significantly change the model's behavior. When combined with self-consistency, this allows us to achieve perfect precision on our holdout test set.
Controllable Safety Alignment: Inference-Time Adaptation to Diverse Safety Requirements
The current paradigm for safety alignment of large language models (LLMs) follows a one-size-fits-all approach: the model refuses to interact with any content deemed unsafe by the model provider. This approach lacks flexibility in the face of varying social norms across cultures and regions. In addition, users may have diverse safety needs, making a model with static safety standards too restrictive to be useful, as well as too costly to be re-aligned. We propose Controllable Safety Alignment (CoSA), a framework designed to adapt models to diverse safety requirements without re-training. Instead of aligning a fixed model, we align models to follow safety configs -- free-form natural language descriptions of the desired safety behaviors -- that are provided as part of the system prompt. To adjust model safety behavior, authorized users only need to modify such safety configs at inference time. To enable that, we propose CoSAlign, a data-centric method for aligning LLMs to easily adapt to diverse safety configs. Furthermore, we devise a novel controllability evaluation protocol that considers both helpfulness and configured safety, summarizing them into CoSA-Score, and construct CoSApien, a human-authored benchmark that consists of real-world LLM use cases with diverse safety requirements and corresponding evaluation prompts. We show that CoSAlign leads to substantial gains of controllability over strong baselines including in-context alignment. Our framework encourages better representation and adaptation to pluralistic human values in LLMs, and thereby increasing their practicality.
Nudging: Inference-time Alignment via Model Collaboration
Large language models (LLMs) require alignment, such as instruction-tuning or reinforcement learning from human feedback, to effectively and safely follow user instructions. This process necessitates training aligned versions for every model size in each model family, resulting in significant computational overhead. In this work, we propose nudging, a simple, plug-and-play, and training-free algorithm that aligns any base model at inference time using a small aligned model. Nudging is motivated by recent findings that alignment primarily alters the model's behavior on a small subset of stylistic tokens, such as "Sure" or "Thank". We find that base models are significantly more uncertain when generating these tokens. Leveraging this observation, nudging employs a small aligned model to generate nudging tokens to steer the large base model's output toward desired directions when the base model's uncertainty is high. We evaluate the effectiveness of nudging across 3 model families and 13 tasks, covering reasoning, general knowledge, instruction following, and safety benchmarks. Without any additional training, nudging a large base model with a 7x - 14x smaller aligned model achieves zero-shot performance comparable to, and sometimes surpassing, that of large aligned models. For example, nudging OLMo-7b with OLMo-1b-instruct, affecting less than 9% of tokens, achieves a 10% absolute improvement on GSM8K over OLMo-7b-instruct. Unlike prior inference-time tuning methods, nudging enables off-the-shelf collaboration between model families. For instance, nudging Gemma-2-27b with Llama-2-7b-chat outperforms Llama-2-70b-chat on various tasks. Overall, this work introduces a simple yet powerful approach to token-level model collaboration, offering a modular solution to LLM alignment. Our project website: https://fywalter.github.io/nudging/ .
Inference-Time Scaling for Generalist Reward Modeling
Reinforcement learning (RL) has been widely adopted in post-training for large language models (LLMs) at scale. Recently, the incentivization of reasoning capabilities in LLMs from RL indicates that proper learning methods could enable effective inference-time scalability. A key challenge of RL is to obtain accurate reward signals for LLMs in various domains beyond verifiable questions or artificial rules. In this work, we investigate how to improve reward modeling (RM) with more inference compute for general queries, i.e. the inference-time scalability of generalist RM, and further, how to improve the effectiveness of performance-compute scaling with proper learning methods. For the RM approach, we adopt pointwise generative reward modeling (GRM) to enable flexibility for different input types and potential for inference-time scaling. For the learning method, we propose Self-Principled Critique Tuning (SPCT) to foster scalable reward generation behaviors in GRMs through online RL, to generate principles adaptively and critiques accurately, resulting in DeepSeek-GRM models. Furthermore, for effective inference-time scaling, we use parallel sampling to expand compute usage, and introduce a meta RM to guide voting process for better scaling performance. Empirically, we show that SPCT significantly improves the quality and scalability of GRMs, outperforming existing methods and models in various RM benchmarks without severe biases, and could achieve better performance compared to training-time scaling. DeepSeek-GRM still meets challenges in some tasks, which we believe can be addressed by future efforts in generalist reward systems. The models will be released and open-sourced.
Aha Moment Revisited: Are VLMs Truly Capable of Self Verification in Inference-time Scaling?
Recent advances in large language models (LLMs) have demonstrated that inference-time computation techniques, such as decoding-time scaling and self-refinement, can significantly enhance reasoning capabilities without relying on external knowledge. A key driver of this success is the emergence of self-correction and self-verification behaviors, often elicited through reinforcement learning (RL). In this paper, we investigate whether these inference-time techniques extend effectively to vision-language models (VLMs), particularly those trained with RL. We find that while decoding strategies such as majority voting and best-of-N selection with self-verification all improve VLM reasoning performance, generation-reliant methods such as the former achieve significantly higher gains versus verification-reliant methods such as the latter. Additionally, the self-correction behavior often associated with RL-tuned models, such as aha moment, does not lead to measurable gains. We show via extensive experimentation within the inference-time scaling framework to identify a key root cause: RL-trained VLMs still lack robust self-verification capabilities across both visual and textual modalities.
GrAInS: Gradient-based Attribution for Inference-Time Steering of LLMs and VLMs
Inference-time steering methods offer a lightweight alternative to fine-tuning large language models (LLMs) and vision-language models (VLMs) by modifying internal activations at test time without updating model weights. However, most existing approaches rely on fixed, global intervention vectors, overlook the causal influence of individual input tokens, and fail to leverage informative gradients from the model's logits, particularly in multimodal settings where visual and textual inputs contribute unevenly. To address these limitations, we introduce GrAInS, an inference-time steering approach that operates across both language-only and vision-language models and tasks. GrAInS uses contrastive, gradient-based attribution via Integrated Gradients to identify the top-k most influential tokens, both positively and negatively attributed based on their contribution to preferred versus dispreferred outputs. These tokens are then used to construct directional steering vectors that capture semantic shifts from undesirable to desirable behavior. During inference, GrAInS adjusts hidden activations at transformer layers guided by token-level attribution signals, and normalizes activations to preserve representational scale. This enables fine-grained, interpretable, and modular control over model behavior, without retraining or auxiliary supervision. Empirically, GrAInS consistently outperforms both fine-tuning and existing steering baselines: it achieves a 13.22% accuracy gain on TruthfulQA using Llama-3.1-8B, reduces hallucination rates on MMHal-Bench from 0.624 to 0.514 with LLaVA-1.6-7B, and improves alignment win rates on SPA-VL by 8.11%, all while preserving the model's fluency and general capabilities.
Eliciting Fine-Tuned Transformer Capabilities via Inference-Time Techniques
Large language models have transformed natural language processing, yet supervised fine-tuning (SFT) remains computationally intensive. This paper formally proves that capabilities acquired through SFT can be approximated by a base transformer model using inference-time techniques, specifically in-context learning (ICL), without altering model parameters, under idealized assumptions including unbounded computational resources and access to the fine-tuning dataset. We extend these results to practical scenarios with finite context lengths and partial dataset access. For text generation tasks with fixed output length l, datasets of size Oleft( m V{varepsilon^2} log m{delta} right) or, with bounded context, Oleft( l log V{varepsilon^2} log 1{delta} right) suffice to approximate fine-tuned behavior across m contexts within error varepsilon, where V is the vocabulary size and delta is the failure probability. For linear classification, datasets of size Oleft( d{varepsilon} right) or, with fixed context, Oleft( 1{varepsilon^2} log 1{delta} right) are sufficient, where d is the input dimension. Grounded in the Turing completeness of transformers, these results provide a theoretical foundation for resource-efficient deployment of large language models, with practical techniques like retrieval-augmented generation bridging theory to real-world applications.
Speculative Thinking: Enhancing Small-Model Reasoning with Large Model Guidance at Inference Time
Recent advances leverage post-training to enhance model reasoning performance, which typically requires costly training pipelines and still suffers from inefficient, overly lengthy outputs. We introduce Speculative Thinking, a training-free framework that enables large reasoning models to guide smaller ones during inference at the reasoning level, distinct from speculative decoding, which operates at the token level. Our approach is based on two observations: (1) reasoning-supportive tokens such as "wait" frequently appear after structural delimiters like "\n\n", serving as signals for reflection or continuation; and (2) larger models exhibit stronger control over reflective behavior, reducing unnecessary backtracking while improving reasoning quality. By strategically delegating reflective steps to a more capable model, our method significantly boosts the reasoning accuracy of reasoning models while shortening their output. With the assistance of the 32B reasoning model, the 1.5B model's accuracy on MATH500 increases from 83.2% to 89.4%, marking a substantial improvement of 6.2%. Simultaneously, the average output length is reduced from 5439 tokens to 4583 tokens, representing a 15.7% decrease. Moreover, when applied to a non-reasoning model (Qwen-2.5-7B-Instruct), our framework boosts its accuracy from 74.0% to 81.8% on the same benchmark, achieving a relative improvement of 7.8%.
ETA: Evaluating Then Aligning Safety of Vision Language Models at Inference Time
Vision Language Models (VLMs) have become essential backbones for multimodal intelligence, yet significant safety challenges limit their real-world application. While textual inputs are often effectively safeguarded, adversarial visual inputs can easily bypass VLM defense mechanisms. Existing defense methods are either resource-intensive, requiring substantial data and compute, or fail to simultaneously ensure safety and usefulness in responses. To address these limitations, we propose a novel two-phase inference-time alignment framework, Evaluating Then Aligning (ETA): 1) Evaluating input visual contents and output responses to establish a robust safety awareness in multimodal settings, and 2) Aligning unsafe behaviors at both shallow and deep levels by conditioning the VLMs' generative distribution with an interference prefix and performing sentence-level best-of-N to search the most harmless and helpful generation paths. Extensive experiments show that ETA outperforms baseline methods in terms of harmlessness, helpfulness, and efficiency, reducing the unsafe rate by 87.5% in cross-modality attacks and achieving 96.6% win-ties in GPT-4 helpfulness evaluation. The code is publicly available at https://github.com/DripNowhy/ETA.
Would I Lie To You? Inference Time Alignment of Language Models using Direct Preference Heads
Pre-trained Language Models (LMs) exhibit strong zero-shot and in-context learning capabilities; however, their behaviors are often difficult to control. By utilizing Reinforcement Learning from Human Feedback (RLHF), it is possible to fine-tune unsupervised LMs to follow instructions and produce outputs that reflect human preferences. Despite its benefits, RLHF has been shown to potentially harm a language model's reasoning capabilities and introduce artifacts such as hallucinations where the model may fabricate facts. To address this issue we introduce Direct Preference Heads (DPH), a fine-tuning framework that enables LMs to learn human preference signals through an auxiliary reward head without directly affecting the output distribution of the language modeling head. We perform a theoretical analysis of our objective function and find strong ties to Conservative Direct Preference Optimization (cDPO). Finally we evaluate our models on GLUE, RACE, and the GPT4All evaluation suite and demonstrate that our method produces models which achieve higher scores than those fine-tuned with Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO) alone.
SimBench: Benchmarking the Ability of Large Language Models to Simulate Human Behaviors
Large language model (LLM) simulations of human behavior have the potential to revolutionize the social and behavioral sciences, if and only if they faithfully reflect real human behaviors. Current evaluations are fragmented, based on bespoke tasks and metrics, creating a patchwork of incomparable results. To address this, we introduce SimBench, the first large-scale, standardized benchmark for a robust, reproducible science of LLM simulation. By unifying 20 diverse datasets covering tasks from moral decision-making to economic choice across a large global participant pool, SimBench provides the necessary foundation to ask fundamental questions about when, how, and why LLM simulations succeed or fail. We show that, while even the best LLMs today have limited simulation ability (score: 40.80/100), performance scales log-linearly with model size. Simulation performance is not improved by increased inference-time compute. We demonstrate an alignment-simulation trade-off: instruction-tuning improves performance on low-entropy (consensus) questions but degrades it on high-entropy (diverse) ones. Models particularly struggle when simulating specific demographic groups. Finally, we demonstrate that simulation ability correlates most strongly with deep, knowledge-intensive reasoning (MMLU-Pro, r=0.939). By making progress measurable, we aim to accelerate the development of more faithful LLM simulators.
Specification Self-Correction: Mitigating In-Context Reward Hacking Through Test-Time Refinement
Language models (LMs) are susceptible to in-context reward hacking, where they exploit flaws in tainted or faulty written specifications or rubrics to achieve high scores without fulfilling the user's true intent. We introduce Specification Self-Correction (SSC), a novel, test-time framework that enables an LM to identify and correct flaws within its own guiding specification. SSC employs a multi-step inference process where the model first generates a response based on a potentially tainted specification, critiques its output, and then revises the specification itself to remove the exploitable loophole. A final, more robust response is then generated using this self-corrected specification. Across experiments spanning creative writing and agentic coding tasks with several LMs, we demonstrate that while models initially game tainted specifications in 50-70\% of cases, the SSC process reduces this vulnerability by over 90\%. This dynamic repair occurs at inference time, requires no weight modification, and leads to more robustly aligned model behavior. Code at https://github.com/vicgalle/specification-self-correction .
Self-Control of LLM Behaviors by Compressing Suffix Gradient into Prefix Controller
We propose Self-Control, a novel method utilizing suffix gradients to control the behavior of large language models (LLMs) without explicit human annotations. Given a guideline expressed in suffix string and the model's self-assessment of adherence, Self-Control computes the gradient of this self-judgment concerning the model's hidden states, directly influencing the auto-regressive generation process towards desired behaviors. To enhance efficiency, we introduce Self-Control_{prefix}, a compact module that encapsulates the learned representations from suffix gradients into a Prefix Controller, facilitating inference-time control for various LLM behaviors. Our experiments demonstrate Self-Control's efficacy across multiple domains, including emotional modulation, ensuring harmlessness, and enhancing complex reasoning. Especially, Self-Control_{prefix} enables a plug-and-play control and jointly controls multiple attributes, improving model outputs without altering model parameters or increasing inference-time costs.
Beyond Linear Steering: Unified Multi-Attribute Control for Language Models
Controlling multiple behavioral attributes in large language models (LLMs) at inference time is a challenging problem due to interference between attributes and the limitations of linear steering methods, which assume additive behavior in activation space and require per-attribute tuning. We introduce K-Steering, a unified and flexible approach that trains a single non-linear multi-label classifier on hidden activations and computes intervention directions via gradients at inference time. This avoids linearity assumptions, removes the need for storing and tuning separate attribute vectors, and allows dynamic composition of behaviors without retraining. To evaluate our method, we propose two new benchmarks, ToneBank and DebateMix, targeting compositional behavioral control. Empirical results across 3 model families, validated by both activation-based classifiers and LLM-based judges, demonstrate that K-Steering outperforms strong baselines in accurately steering multiple behaviors.
Mixture of Cognitive Reasoners: Modular Reasoning with Brain-Like Specialization
Human cognitive behavior arises from the interaction of specialized brain networks dedicated to distinct functions, such as language, logic, and social reasoning. Inspired by this organization, we propose Mixture of Cognitive Reasoners (MiCRo): a modular, transformer-based architecture post-trained with a curriculum that induces functional specialization across experts. Concretely, we partition the layers of a pretrained language model into four expert modules aligned with well-studied cognitive networks in the human brain. MiCRo offers three key advantages over standard language models. (1) The specialized experts are interpretable and causally meaningful -- ablating a module causes substantial drops on benchmarks requiring its specialized domain. (2) MiCRo's behavior can be dynamically steered at inference time by routing tokens to particular experts (e.g., favoring social over logical reasoning), enabling fine-grained control over outputs. (3) MiCRo outperforms or matches comparable baselines on both machine-learning reasoning benchmarks (e.g., GSM8K, BBH) and alignment to human behavior (CogBench), while maintaining interpretability. Taken together, cognitively grounded functional specialization yields models that are both more human-like and more human-interpretable.
In-Context Learning for Seismic Data Processing
Seismic processing transforms raw data into subsurface images essential for geophysical applications. Traditional methods face challenges, such as noisy data, and manual parameter tuning, among others. Recently deep learning approaches have proposed alternative solutions to some of these problems. However, important challenges of existing deep learning approaches are spatially inconsistent results across neighboring seismic gathers and lack of user-control. We address these limitations by introducing ContextSeisNet, an in-context learning model, to seismic demultiple processing. Our approach conditions predictions on a support set of spatially related example pairs: neighboring common-depth point gathers from the same seismic line and their corresponding labels. This allows the model to learn task-specific processing behavior at inference time by observing how similar gathers should be processed, without any retraining. This method provides both flexibility through user-defined examples and improved lateral consistency across seismic lines. On synthetic data, ContextSeisNet outperforms a U-Net baseline quantitatively and demonstrates enhanced spatial coherence between neighboring gathers. On field data, our model achieves superior lateral consistency compared to both traditional Radon demultiple and the U-Net baseline. Relative to the U-Net, ContextSeisNet also delivers improved near-offset performance and more complete multiple removal. Notably, ContextSeisNet achieves comparable field data performance despite being trained on 90% less data, demonstrating substantial data efficiency. These results establish ContextSeisNet as a practical approach for spatially consistent seismic demultiple with potential applicability to other seismic processing tasks.
A Baseline Analysis of Reward Models' Ability To Accurately Analyze Foundation Models Under Distribution Shift
Foundation models, specifically Large Language Models (LLMs), have lately gained wide-spread attention and adoption. Reinforcement Learning with Human Feedback (RLHF) involves training a reward model to capture desired behaviors, which is then used to align LLM's. These reward models are additionally used at inference-time to estimate LLM responses' adherence to those desired behaviors. However, there is little work measuring how robust these reward models are to distribution shifts. In this work, we evaluate how reward model performance - measured via accuracy and calibration (i.e. alignment between accuracy and confidence) - is affected by distribution shift. We show novel calibration patterns and accuracy drops due to OOD prompts and responses, and that the reward model is more sensitive to shifts in responses than prompts. Additionally, we adapt an OOD detection technique commonly used in classification to the reward model setting to detect these distribution shifts in prompts and responses.
Activation Addition: Steering Language Models Without Optimization
Reliably controlling the behavior of large language models is a pressing open problem. Existing methods include supervised finetuning, reinforcement learning from human feedback, prompt engineering and guided decoding. We instead investigate activation engineering: modifying activations at inference-time to predictably alter model behavior. We bias the forward pass with a 'steering vector' implicitly specified through natural language. Past work learned these steering vectors; our Activation Addition (ActAdd) method instead computes them by taking the activation differences which result from pairs of prompts. We demonstrate ActAdd on GPT-2 on OpenWebText and ConceptNet, and replicate the effect on Llama-13B and GPT-J-6B. Our approach yields inference-time control over high-level properties of output & preserves performance on off-target topics. The method requires far less compute and implementation effort than finetuning and RLHF, allows for natural language specification by users, and its overhead scales naturally with model size.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
Review, Refine, Repeat: Understanding Iterative Decoding of AI Agents with Dynamic Evaluation and Selection
While AI agents have shown remarkable performance at various tasks, they still struggle with complex multi-modal applications, structured generation and strategic planning. Improvements via standard fine-tuning is often impractical, as solving agentic tasks usually relies on black box API access without control over model parameters. Inference-time methods such as Best-of-N (BON) sampling offer a simple yet effective alternative to improve performance. However, BON lacks iterative feedback integration mechanism. Hence, we propose Iterative Agent Decoding (IAD) which combines iterative refinement with dynamic candidate evaluation and selection guided by a verifier. IAD differs in how feedback is designed and integrated, specifically optimized to extract maximal signal from reward scores. We conduct a detailed comparison of baselines across key metrics on Sketch2Code, Text2SQL, and Webshop where IAD consistently outperforms baselines, achieving 3--6% absolute gains on Sketch2Code and Text2SQL (with and without LLM judges) and 8--10% gains on Webshop across multiple metrics. To better understand the source of IAD's gains, we perform controlled experiments to disentangle the effect of adaptive feedback from stochastic sampling, and find that IAD's improvements are primarily driven by verifier-guided refinement, not merely sampling diversity. We also show that both IAD and BON exhibit inference-time scaling with increased compute when guided by an optimal verifier. Our analysis highlights the critical role of verifier quality in effective inference-time optimization and examines the impact of noisy and sparse rewards on scaling behavior. Together, these findings offer key insights into the trade-offs and principles of effective inference-time optimization.
Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation
We primarily focus on the field of large language models (LLMs) for recommendation, which has been actively explored recently and poses a significant challenge in effectively enhancing recommender systems with logical reasoning abilities and open-world knowledge. Current mainstream efforts mainly center around injecting personalized information from recommendation models into LLMs by customizing input templates or aligning representations between semantic and recommendation spaces at the prediction layer. However, they face three significant limitations: (1) LoRA is mostly used as a core component in existing works, but personalization is not well established in LoRA parameters as the LoRA matrix shared by every user may not cater to different users' characteristics, leading to suboptimal performance. (2) Although lifelong personalized behavior sequences are ideal for personalization, their use raises effectiveness and efficiency issues since LLMs require escalating training and inference time to extend text lengths. (3) Existing approaches aren't scalable for large datasets due to training efficiency constraints. Thus, LLMs only see a small fraction of the datasets (e.g., less than 10%) instead of the whole datasets, limiting their exposure to the full training space. To address these problems, we propose RecLoRA. This model incorporates a Personalized LoRA module that maintains independent LoRAs for different users and a Long-Short Modality Retriever that retrieves different history lengths for different modalities, significantly improving performance while adding minimal time cost. Furthermore, we design a Few2Many Learning Strategy, using a conventional recommendation model as a lens to magnify small training spaces to full spaces. Extensive experiments on public datasets demonstrate the efficacy of our RecLoRA compared to existing baseline models.
EasySteer: A Unified Framework for High-Performance and Extensible LLM Steering
Large language model (LLM) steering has emerged as a promising paradigm for controlling model behavior at inference time through targeted manipulation of hidden states, offering a lightweight alternative to expensive retraining. However, existing steering frameworks suffer from critical limitations: computational inefficiency, limited extensibility, and restricted functionality that hinder both research progress and practical deployment. We present EasySteer, a unified framework for high-performance, extensible LLM steering built on vLLM. Our system features modular architecture with pluggable interfaces for both analysis-based and learning-based methods, fine-grained parameter control, pre-computed steering vectors for eight application domains, and an interactive demonstration system. Through deep integration with vLLM's optimized inference engine, EasySteer achieves 5.5-11.4times speedup over existing frameworks. Extensive experiments demonstrate its effectiveness in overthinking mitigation, hallucination reduction, and other key applications. EasySteer transforms steering from research technique to production-ready capability, establishing critical infrastructure for deployable, controllable language models.
Defending Large Language Models Against Jailbreak Exploits with Responsible AI Considerations
Large Language Models (LLMs) remain susceptible to jailbreak exploits that bypass safety filters and induce harmful or unethical behavior. This work presents a systematic taxonomy of existing jailbreak defenses across prompt-level, model-level, and training-time interventions, followed by three proposed defense strategies. First, a Prompt-Level Defense Framework detects and neutralizes adversarial inputs through sanitization, paraphrasing, and adaptive system guarding. Second, a Logit-Based Steering Defense reinforces refusal behavior through inference-time vector steering in safety-sensitive layers. Third, a Domain-Specific Agent Defense employs the MetaGPT framework to enforce structured, role-based collaboration and domain adherence. Experiments on benchmark datasets show substantial reductions in attack success rate, achieving full mitigation under the agent-based defense. Overall, this study highlights how jailbreaks pose a significant security threat to LLMs and identifies key intervention points for prevention, while noting that defense strategies often involve trade-offs between safety, performance, and scalability. Code is available at: https://github.com/Kuro0911/CS5446-Project
Configurable Preference Tuning with Rubric-Guided Synthetic Data
Models of human feedback for AI alignment, such as those underpinning Direct Preference Optimization (DPO), often bake in a singular, static set of preferences, limiting adaptability. This paper challenges the assumption of monolithic preferences by introducing Configurable Preference Tuning (CPT), a novel framework for endowing language models with the ability to dynamically adjust their behavior based on explicit, human-interpretable directives. CPT leverages synthetically generated preference data, conditioned on system prompts derived from structured, fine-grained rubrics that define desired attributes like writing style. By fine-tuning with these rubric-guided preferences, the LLM learns to modulate its outputs at inference time in response to the system prompt, without retraining. This approach not only offers fine-grained control but also provides a mechanism for modeling more nuanced and context-dependent human feedback. Several experimental artifacts, such as training code, generated datasets and fine-tuned models are released at https://github.com/vicgalle/configurable-preference-tuning
Flattery in Motion: Benchmarking and Analyzing Sycophancy in Video-LLMs
As video large language models (Video-LLMs) become increasingly integrated into real-world applications that demand grounded multimodal reasoning, ensuring their factual consistency and reliability is of critical importance. However, sycophancy, the tendency of these models to align with user input even when it contradicts the visual evidence, undermines their trustworthiness in such contexts. Current sycophancy research has largely overlooked its specific manifestations in the video-language domain, resulting in a notable absence of systematic benchmarks and targeted evaluations to understand how Video-LLMs respond under misleading user input. To fill this gap, we propose VISE (Video-LLM Sycophancy Benchmarking and Evaluation), the first benchmark designed to evaluate sycophantic behavior in state-of-the-art Video-LLMs across diverse question formats, prompt biases, and visual reasoning tasks. Specifically, VISE pioneeringly brings linguistic perspectives on sycophancy into the video domain, enabling fine-grained analysis across multiple sycophancy types and interaction patterns. Furthermore, we propose two potential training-free mitigation strategies, revealing potential paths for reducing sycophantic bias: (i) enhancing visual grounding through interpretable key-frame selection and (ii) steering model behavior away from sycophancy via targeted, inference-time intervention on its internal neural representations. Our code is available at https://github.com/William030422/Video-Sycophancy.
Explain Less, Understand More: Jargon Detection via Personalized Parameter-Efficient Fine-tuning
Personalizing jargon detection and explanation is essential for making technical documents accessible to readers with diverse disciplinary backgrounds. However, tailoring models to individual users typically requires substantial annotation efforts and computational resources due to user-specific finetuning. To address this, we present a systematic study of personalized jargon detection, focusing on methods that are both efficient and scalable for real-world deployment. We explore two personalization strategies: (1) lightweight finetuning using Low-Rank Adaptation (LoRA) on open-source models, and (2) personalized prompting, which tailors model behavior at inference time without retaining. To reflect realistic constraints, we also investigate semi-supervised approaches that combine limited annotated data with self-supervised learning from users' publications. Our personalized LoRA model outperforms GPT-4 with contextual prompting by 21.4% in F1 score and exceeds the best performing oracle baseline by 8.3%. Remarkably, our method achieves comparable performance using only 10% of the annotated training data, demonstrating its practicality for resource-constrained settings. Our study offers the first work to systematically explore efficient, low-resource personalization of jargon detection using open-source language models, offering a practical path toward scalable, user-adaptive NLP system.
RAR-b: Reasoning as Retrieval Benchmark
Semantic textual similartiy (STS) and information retrieval tasks (IR) tasks have been the two major avenues to record the progress of embedding models in the past few years. Under the emerging Retrieval-augmented Generation (RAG) paradigm, we envision the need to evaluate next-level language understanding abilities of embedding models, and take a conscious look at the reasoning abilities stored in them. Addressing this, we pose the question: Can retrievers solve reasoning problems? By transforming reasoning tasks into retrieval tasks, we find that without specifically trained for reasoning-level language understanding, current state-of-the-art retriever models may still be far from being competent for playing the role of assisting LLMs, especially in reasoning-intensive tasks. Moreover, albeit trained to be aware of instructions, instruction-aware IR models are often better off without instructions in inference time for reasoning tasks, posing an overlooked retriever-LLM behavioral gap for the research community to align. However, recent decoder-based embedding models show great promise in narrowing the gap, highlighting the pathway for embedding models to achieve reasoning-level language understanding. We also show that, although current off-the-shelf re-ranker models fail on these tasks, injecting reasoning abilities into them through fine-tuning still appears easier than doing so to bi-encoders, and we are able to achieve state-of-the-art performance across all tasks by fine-tuning a reranking model. We release Reasoning as Retrieval Benchmark (RAR-b), a holistic suite of tasks and settings to evaluate the reasoning abilities stored in retriever models. RAR-b is available at https://github.com/gowitheflow-1998/RAR-b.
ActivationReasoning: Logical Reasoning in Latent Activation Spaces
Large language models (LLMs) excel at generating fluent text, but their internal reasoning remains opaque and difficult to control. Sparse autoencoders (SAEs) make hidden activations more interpretable by exposing latent features that often align with human concepts. Yet, these features are fragile and passive, offering no mechanism for systematic reasoning or model control. To address this, we introduce ActivationReasoning (AR), a framework that embeds explicit logical reasoning into the latent space of LLMs. It proceeds in three stages: (1) Finding latent representations, first latent concept representations are identified (e.g., via SAEs) and organized into a dictionary; (2) Activating propositions, at inference time AR detects activating concepts and maps them to logical propositions; and (3)Logical reasoning, applying logical rules over these propositions to infer higher-order structures, compose new concepts, and steer model behavior. We evaluate AR on multi-hop reasoning (PrOntoQA), abstraction and robustness to indirect concept cues (Rail2Country), reasoning over natural and diverse language (ProverQA), and context-sensitive safety (BeaverTails). Across all tasks, AR scales robustly with reasoning complexity, generalizes to abstract and context-sensitive tasks, and transfers across model backbones. These results demonstrate that grounding logical structure in latent activations not only improves transparency but also enables structured reasoning, reliable control, and alignment with desired behaviors, providing a path toward more reliable and auditable AI.
Cognitive Behaviors that Enable Self-Improving Reasoners, or, Four Habits of Highly Effective STaRs
Test-time inference has emerged as a powerful paradigm for enabling language models to ``think'' longer and more carefully about complex challenges, much like skilled human experts. While reinforcement learning (RL) can drive self-improvement in language models on verifiable tasks, some models exhibit substantial gains while others quickly plateau. For instance, we find that Qwen-2.5-3B far exceeds Llama-3.2-3B under identical RL training for the game of Countdown. This discrepancy raises a critical question: what intrinsic properties enable effective self-improvement? We introduce a framework to investigate this question by analyzing four key cognitive behaviors -- verification, backtracking, subgoal setting, and backward chaining -- that both expert human problem solvers and successful language models employ. Our study reveals that Qwen naturally exhibits these reasoning behaviors, whereas Llama initially lacks them. In systematic experimentation with controlled behavioral datasets, we find that priming Llama with examples containing these reasoning behaviors enables substantial improvements during RL, matching or exceeding Qwen's performance. Importantly, the presence of reasoning behaviors, rather than correctness of answers, proves to be the critical factor -- models primed with incorrect solutions containing proper reasoning patterns achieve comparable performance to those trained on correct solutions. Finally, leveraging continued pretraining with OpenWebMath data, filtered to amplify reasoning behaviors, enables the Llama model to match Qwen's self-improvement trajectory. Our findings establish a fundamental relationship between initial reasoning behaviors and the capacity for improvement, explaining why some language models effectively utilize additional computation while others plateau.
Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters
Enabling LLMs to improve their outputs by using more test-time computation is a critical step towards building generally self-improving agents that can operate on open-ended natural language. In this paper, we study the scaling of inference-time computation in LLMs, with a focus on answering the question: if an LLM is allowed to use a fixed but non-trivial amount of inference-time compute, how much can it improve its performance on a challenging prompt? Answering this question has implications not only on the achievable performance of LLMs, but also on the future of LLM pretraining and how one should tradeoff inference-time and pre-training compute. Despite its importance, little research attempted to understand the scaling behaviors of various test-time inference methods. Moreover, current work largely provides negative results for a number of these strategies. In this work, we analyze two primary mechanisms to scale test-time computation: (1) searching against dense, process-based verifier reward models; and (2) updating the model's distribution over a response adaptively, given the prompt at test time. We find that in both cases, the effectiveness of different approaches to scaling test-time compute critically varies depending on the difficulty of the prompt. This observation motivates applying a "compute-optimal" scaling strategy, which acts to most effectively allocate test-time compute adaptively per prompt. Using this compute-optimal strategy, we can improve the efficiency of test-time compute scaling by more than 4x compared to a best-of-N baseline. Additionally, in a FLOPs-matched evaluation, we find that on problems where a smaller base model attains somewhat non-trivial success rates, test-time compute can be used to outperform a 14x larger model.
Harnessing the Reasoning Economy: A Survey of Efficient Reasoning for Large Language Models
Recent advancements in Large Language Models (LLMs) have significantly enhanced their ability to perform complex reasoning tasks, transitioning from fast and intuitive thinking (System 1) to slow and deep reasoning (System 2). While System 2 reasoning improves task accuracy, it often incurs substantial computational costs due to its slow thinking nature and inefficient or unnecessary reasoning behaviors. In contrast, System 1 reasoning is computationally efficient but leads to suboptimal performance. Consequently, it is critical to balance the trade-off between performance (benefits) and computational costs (budgets), giving rise to the concept of reasoning economy. In this survey, we provide a comprehensive analysis of reasoning economy in both the post-training and test-time inference stages of LLMs, encompassing i) the cause of reasoning inefficiency, ii) behavior analysis of different reasoning patterns, and iii) potential solutions to achieve reasoning economy. By offering actionable insights and highlighting open challenges, we aim to shed light on strategies for improving the reasoning economy of LLMs, thereby serving as a valuable resource for advancing research in this evolving area. We also provide a public repository to continually track developments in this fast-evolving field.
SoMi-ToM: Evaluating Multi-Perspective Theory of Mind in Embodied Social Interactions
Humans continuously infer the states, goals, and behaviors of others by perceiving their surroundings in dynamic, real-world social interactions. However, most Theory of Mind (ToM) benchmarks only evaluate static, text-based scenarios, which have a significant gap compared to real interactions. We propose the SoMi-ToM benchmark, designed to evaluate multi-perspective ToM in embodied multi-agent complex social interactions. This benchmark is based on rich multimodal interaction data generated by the interaction environment SoMi, covering diverse crafting goals and social relationships. Our framework supports multi-level evaluation: (1) first-person evaluation provides multimodal (visual, dialogue, action, etc.) input from a first-person perspective during a task for real-time state inference, (2) third-person evaluation provides complete third-person perspective video and text records after a task for goal and behavior inference. This evaluation method allows for a more comprehensive examination of a model's ToM capabilities from both the subjective immediate experience and the objective global observation. We constructed a challenging dataset containing 35 third-person perspective videos, 363 first-person perspective images, and 1225 expert-annotated multiple-choice questions (three options). On this dataset, we systematically evaluated the performance of human subjects and several state-of-the-art large vision-language models (LVLMs). The results show that LVLMs perform significantly worse than humans on SoMi-ToM: the average accuracy gap between humans and models is 40.1% in first-person evaluation and 26.4% in third-person evaluation. This indicates that future LVLMs need to further improve their ToM capabilities in embodied, complex social interactions.
Who's a Good Boy? Reinforcing Canine Behavior in Real-Time using Machine Learning
In this paper we outline the development methodology for an automatic dog treat dispenser which combines machine learning and embedded hardware to identify and reward dog behaviors in real-time. Using machine learning techniques for training an image classification model we identify three behaviors of our canine companions: "sit", "stand", and "lie down" with up to 92% test accuracy and 39 frames per second. We evaluate a variety of neural network architectures, interpretability methods, model quantization and optimization techniques to develop a model specifically for an NVIDIA Jetson Nano. We detect the aforementioned behaviors in real-time and reinforce positive actions by making inference on the Jetson Nano and transmitting a signal to a servo motor to release rewards from a treat delivery apparatus.
Metacognitive Reuse: Turning Recurring LLM Reasoning Into Concise Behaviors
Large language models (LLMs) now solve multi-step problems by emitting extended chains of thought. During the process, they often re-derive the same intermediate steps across problems, inflating token usage and latency. This saturation of the context window leaves less capacity for exploration. We study a simple mechanism that converts recurring reasoning fragments into concise, reusable "behaviors" (name + instruction) via the model's own metacognitive analysis of prior traces. These behaviors are stored in a "behavior handbook" which supplies them to the model in-context at inference or distills them into parameters via supervised fine-tuning. This approach achieves improved test-time reasoning across three different settings - 1) Behavior-conditioned inference: Providing the LLM relevant behaviors in-context during reasoning reduces number of reasoning tokens by up to 46% while matching or improving baseline accuracy; 2) Behavior-guided self-improvement: Without any parameter updates, the model improves its own future reasoning by leveraging behaviors from its own past problem solving attempts. This yields up to 10% higher accuracy than a naive critique-and-revise baseline; and 3) Behavior-conditioned SFT: SFT on behavior-conditioned reasoning traces is more effective at converting non-reasoning models into reasoning models as compared to vanilla SFT. Together, these results indicate that turning slow derivations into fast procedural hints enables LLMs to remember how to reason, not just what to conclude.
Causal discovery from conditionally stationary time-series
Causal discovery, i.e., inferring underlying cause-effect relationships from observations of a scene or system, is an inherent mechanism in human cognition, but has been shown to be highly challenging to automate. The majority of approaches in the literature aiming for this task consider constrained scenarios with fully observed variables or data from stationary time-series. In this work we aim for causal discovery in a more general class of scenarios, scenes with non-stationary behavior over time. For our purposes we here regard a scene as a composition objects interacting with each other over time. Non-stationarity is modeled as stationarity conditioned on an underlying variable, a state, which can be of varying dimension, more or less hidden given observations of the scene, and also depend more or less directly on these observations. We propose a probabilistic deep learning approach called State-Dependent Causal Inference (SDCI) for causal discovery in such conditionally stationary time-series data. Results in two different synthetic scenarios show that this method is able to recover the underlying causal dependencies with high accuracy even in cases with hidden states.
Reasoning Language Model Inference Serving Unveiled: An Empirical Study
The reasoning large language model (RLLM) has been proven competitive in solving complex reasoning tasks such as mathematics, coding, compared to general LLM. However, the serving performance and behavior of RLLM remains unexplored, which may undermine the deployment and utilization of RLLM in real-world scenario. To close this gap, in this paper, we conduct a comprehensive study of RLLM service. We first perform a pilot study on comparing the serving performance between RLLM and traditional LLM and reveal that there are several distinct differences regarding serving behavior: (1) significant memory usage and fluctuations; (2) straggler requests; (3) adaptive running time; (4) domain preference. Then we further investigate whether existing inference optimization techniques are valid for RLLM. Our main takeaways are that model quantization methods and speculative decoding can improve service system efficiency with small compromise to RLLM accuracy, while prefix caching, KV cache quantization may even degrade accuracy or serving performance for small RLLM. Lastly, we conduct evaluation under real world workload modeled by Gamma distribution to verify our findings. Empirical results of real world workload evaluation across different dataset are aligned with our main findings regarding RLLM serving. We hope our work can provide the research community and industry with insights to advance RLLM inference serving.
Glia: A Human-Inspired AI for Automated Systems Design and Optimization
Can an AI autonomously design mechanisms for computer systems on par with the creativity and reasoning of human experts? We present Glia, an AI architecture for networked systems design that uses large language models (LLMs) in a human-inspired, multi-agent workflow. Each agent specializes in reasoning, experimentation, and analysis, collaborating through an evaluation framework that grounds abstract reasoning in empirical feedback. Unlike prior ML-for-systems methods that optimize black-box policies, Glia generates interpretable designs and exposes its reasoning process. When applied to a distributed GPU cluster for LLM inference, it produces new algorithms for request routing, scheduling, and auto-scaling that perform at human-expert levels in significantly less time, while yielding novel insights into workload behavior. Our results suggest that by combining reasoning LLMs with structured experimentation, an AI can produce creative and understandable designs for complex systems problems.
Steering Knowledge Selection Behaviours in LLMs via SAE-Based Representation Engineering
Large language models (LLMs) can store a significant amount of factual knowledge in their parameters. However, their parametric knowledge may conflict with the information provided in the context -- this phenomenon, known as context-memory knowledge conflicts, can lead to undesirable model behaviour, such as reliance on outdated or incorrect information. Analysing the internal activations of LLMs, we find that they can internally register the signals of knowledge conflict at mid-layers. Such signals allow us to detect whether a knowledge conflict occurs and use inference-time intervention strategies to resolve it. In this work, we propose SpARE, a training-free representation engineering method that uses pre-trained sparse auto-encoders (SAEs) to control the knowledge selection behaviour of LLMs. SpARE identifies the functional features that control the knowledge selection behaviours and applies them to edit the internal activations of LLMs at inference time. Our experimental results show that SpARE can effectively control the usage of either knowledge source to resolve knowledge conflict in open-domain question-answering tasks, surpassing existing representation engineering methods (+10%) as well as contrastive decoding methods (+15%).
Refusal Steering: Fine-grained Control over LLM Refusal Behaviour for Sensitive Topics
We introduce Refusal Steering, an inference-time method to exercise fine-grained control over Large Language Models refusal behaviour on politically sensitive topics without retraining. We replace fragile pattern-based refusal detection with an LLM-as-a-judge that assigns refusal confidence scores and we propose a ridge-regularized variant to compute steering vectors that better isolate the refusal--compliance direction. On Qwen3-Next-80B-A3B-Thinking, our method removes the refusal behaviour of the model around politically sensitive topics while maintaining safety on JailbreakBench and near-baseline performance on general benchmarks. The approach generalizes across 4B and 80B models and can also induce targeted refusals when desired. We analize the steering vectors and show that refusal signals concentrate in deeper layers of the transformer and are distributed across many dimensions. Together, these results demonstrate that activation steering can remove political refusal behaviour while retaining safety alignment for harmful content, offering a practical path to controllable, transparent moderation at inference time.
LF-Steering: Latent Feature Activation Steering for Enhancing Semantic Consistency in Large Language Models
Large Language Models (LLMs) often generate inconsistent responses when prompted with semantically equivalent paraphrased inputs. Recently, activation steering, a technique that modulates LLMs' behaviours by adjusting their latent representations during inference time, has been explored to improve the semantic consistency of LLMs. However, these methods typically operate at the model component level, such as layer hidden states or attention head outputs. They face a challenge due to the ``polysemanticity issue'', where the model components of LLMs typically encode multiple entangled features, making precise steering difficult. To address this challenge, we drill down to feature-level representations and propose LF-Steering, a novel activation steering approach to precisely identify latent feature representations responsible for semantic inconsistency. More specifically, our method maps the hidden states of the relevant transformer layer into a sparsely activated, high-dimensional feature space based on a sparse autoencoder (SAE), ensuring model steering based on decoupled feature representations with minimal interference. Comprehensive experiments on NLU and NLG datasets demonstrate the effectiveness of our method in enhancing semantic consistency, resulting in significant performance gains for various NLU and NLG tasks.
Towards Neural Scaling Laws for Time Series Foundation Models
Scaling laws offer valuable insights into the design of time series foundation models (TSFMs). However, previous research has largely focused on the scaling laws of TSFMs for in-distribution (ID) data, leaving their out-of-distribution (OOD) scaling behavior and the influence of model architectures less explored. In this work, we examine two common TSFM architectures, encoder-only and decoder-only Transformers, and investigate their scaling behavior on both ID and OOD data. These models are trained and evaluated across varying parameter counts, compute budgets, and dataset sizes. Our experiments reveal that the log-likelihood loss of TSFMs exhibits similar scaling behavior in both OOD and ID settings. We further compare the scaling properties across different architectures, incorporating two state-of-the-art TSFMs as case studies, showing that model architecture plays a significant role in scaling. The encoder-only Transformers demonstrate better scalability than the decoder-only Transformers, while the architectural enhancements in the two advanced TSFMs primarily improve ID performance but reduce OOD scalability. While scaling up TSFMs is expected to drive performance breakthroughs, the lack of a comprehensive understanding of TSFM scaling laws has hindered the development of a robust framework to guide model scaling. We fill this gap in this work by synthesizing our findings and providing practical guidelines for designing and scaling larger TSFMs with enhanced model capabilities.
Think Again! The Effect of Test-Time Compute on Preferences, Opinions, and Beliefs of Large Language Models
As Large Language Models (LLMs) become deeply integrated into human life and increasingly influence decision-making, it's crucial to evaluate whether and to what extent they exhibit subjective preferences, opinions, and beliefs. These tendencies may stem from biases within the models, which may shape their behavior, influence the advice and recommendations they offer to users, and potentially reinforce certain viewpoints. This paper presents the Preference, Opinion, and Belief survey (POBs), a benchmark developed to assess LLMs' subjective inclinations across societal, cultural, ethical, and personal domains. We applied our benchmark to evaluate leading open- and closed-source LLMs, measuring desired properties such as reliability, neutrality, and consistency. In addition, we investigated the effect of increasing the test-time compute, through reasoning and self-reflection mechanisms, on those metrics. While effective in other tasks, our results show that these mechanisms offer only limited gains in our domain. Furthermore, we reveal that newer model versions are becoming less consistent and more biased toward specific viewpoints, highlighting a blind spot and a concerning trend. POBS: https://ibm.github.io/POBS
Interactive Recommendation Agent with Active User Commands
Traditional recommender systems rely on passive feedback mechanisms that limit users to simple choices such as like and dislike. However, these coarse-grained signals fail to capture users' nuanced behavior motivations and intentions. In turn, current systems cannot also distinguish which specific item attributes drive user satisfaction or dissatisfaction, resulting in inaccurate preference modeling. These fundamental limitations create a persistent gap between user intentions and system interpretations, ultimately undermining user satisfaction and harming system effectiveness. To address these limitations, we introduce the Interactive Recommendation Feed (IRF), a pioneering paradigm that enables natural language commands within mainstream recommendation feeds. Unlike traditional systems that confine users to passive implicit behavioral influence, IRF empowers active explicit control over recommendation policies through real-time linguistic commands. To support this paradigm, we develop RecBot, a dual-agent architecture where a Parser Agent transforms linguistic expressions into structured preferences and a Planner Agent dynamically orchestrates adaptive tool chains for on-the-fly policy adjustment. To enable practical deployment, we employ simulation-augmented knowledge distillation to achieve efficient performance while maintaining strong reasoning capabilities. Through extensive offline and long-term online experiments, RecBot shows significant improvements in both user satisfaction and business outcomes.
