4 RIR-Mega: a large-scale simulated room impulse response dataset for machine learning and room acoustics modeling Room impulse responses are a core resource for dereverberation, robust speech recognition, source localization, and room acoustics estimation. We present RIR-Mega, a large collection of simulated RIRs described by a compact, machine friendly metadata schema and distributed with simple tools for validation and reuse. The dataset ships with a Hugging Face Datasets loader, scripts for metadata checks and checksums, and a reference regression baseline that predicts RT60 like targets from waveforms. On a train and validation split of 36,000 and 4,000 examples, a small Random Forest on lightweight time and spectral features reaches a mean absolute error near 0.013 s and a root mean square error near 0.022 s. We host a subset with 1,000 linear array RIRs and 3,000 circular array RIRs on Hugging Face for streaming and quick tests, and preserve the complete 50,000 RIR archive on Zenodo. The dataset and code are public to support reproducible studies. 1 authors · Oct 21 2
- Structured Labeling Enables Faster Vision-Language Models for End-to-End Autonomous Driving Vision-Language Models (VLMs) offer a promising approach to end-to-end autonomous driving due to their human-like reasoning capabilities. However, troublesome gaps remains between current VLMs and real-world autonomous driving applications. One major limitation is that existing datasets with loosely formatted language descriptions are not machine-friendly and may introduce redundancy. Additionally, high computational cost and massive scale of VLMs hinder the inference speed and real-world deployment. To bridge the gap, this paper introduces a structured and concise benchmark dataset, NuScenes-S, which is derived from the NuScenes dataset and contains machine-friendly structured representations. Moreover, we present FastDrive, a compact VLM baseline with 0.9B parameters. In contrast to existing VLMs with over 7B parameters and unstructured language processing(e.g., LLaVA-1.5), FastDrive understands structured and concise descriptions and generates machine-friendly driving decisions with high efficiency. Extensive experiments show that FastDrive achieves competitive performance on structured dataset, with approximately 20% accuracy improvement on decision-making tasks, while surpassing massive parameter baseline in inference speed with over 10x speedup. Additionally, ablation studies further focus on the impact of scene annotations (e.g., weather, time of day) on decision-making tasks, demonstrating their importance on decision-making tasks in autonomous driving. 7 authors · Jun 5
- Spiking Graph Convolutional Networks Graph Convolutional Networks (GCNs) achieve an impressive performance due to the remarkable representation ability in learning the graph information. However, GCNs, when implemented on a deep network, require expensive computation power, making them difficult to be deployed on battery-powered devices. In contrast, Spiking Neural Networks (SNNs), which perform a bio-fidelity inference process, offer an energy-efficient neural architecture. In this work, we propose SpikingGCN, an end-to-end framework that aims to integrate the embedding of GCNs with the biofidelity characteristics of SNNs. The original graph data are encoded into spike trains based on the incorporation of graph convolution. We further model biological information processing by utilizing a fully connected layer combined with neuron nodes. In a wide range of scenarios (e.g. citation networks, image graph classification, and recommender systems), our experimental results show that the proposed method could gain competitive performance against state-of-the-art approaches. Furthermore, we show that SpikingGCN on a neuromorphic chip can bring a clear advantage of energy efficiency into graph data analysis, which demonstrates its great potential to construct environment-friendly machine learning models. 6 authors · May 5, 2022
1 ChatGPT as your Personal Data Scientist The rise of big data has amplified the need for efficient, user-friendly automated machine learning (AutoML) tools. However, the intricacy of understanding domain-specific data and defining prediction tasks necessitates human intervention making the process time-consuming while preventing full automation. Instead, envision an intelligent agent capable of assisting users in conducting AutoML tasks through intuitive, natural conversations without requiring in-depth knowledge of the underlying machine learning (ML) processes. This agent's key challenge is to accurately comprehend the user's prediction goals and, consequently, formulate precise ML tasks, adjust data sets and model parameters accordingly, and articulate results effectively. In this paper, we take a pioneering step towards this ambitious goal by introducing a ChatGPT-based conversational data-science framework to act as a "personal data scientist". Precisely, we utilize Large Language Models (ChatGPT) to build a natural interface between the users and the ML models (Scikit-Learn), which in turn, allows us to approach this ambitious problem with a realistic solution. Our model pivots around four dialogue states: Data Visualization, Task Formulation, Prediction Engineering, and Result Summary and Recommendation. Each state marks a unique conversation phase, impacting the overall user-system interaction. Multiple LLM instances, serving as "micro-agents", ensure a cohesive conversation flow, granting us granular control over the conversation's progression. In summary, we developed an end-to-end system that not only proves the viability of the novel concept of conversational data science but also underscores the potency of LLMs in solving complex tasks. Interestingly, its development spotlighted several critical weaknesses in the current LLMs (ChatGPT) and highlighted substantial opportunities for improvement. 3 authors · May 23, 2023
- Defense-friendly Images in Adversarial Attacks: Dataset and Metrics for Perturbation Difficulty Dataset bias is a problem in adversarial machine learning, especially in the evaluation of defenses. An adversarial attack or defense algorithm may show better results on the reported dataset than can be replicated on other datasets. Even when two algorithms are compared, their relative performance can vary depending on the dataset. Deep learning offers state-of-the-art solutions for image recognition, but deep models are vulnerable even to small perturbations. Research in this area focuses primarily on adversarial attacks and defense algorithms. In this paper, we report for the first time, a class of robust images that are both resilient to attacks and that recover better than random images under adversarial attacks using simple defense techniques. Thus, a test dataset with a high proportion of robust images gives a misleading impression about the performance of an adversarial attack or defense. We propose three metrics to determine the proportion of robust images in a dataset and provide scoring to determine the dataset bias. We also provide an ImageNet-R dataset of 15000+ robust images to facilitate further research on this intriguing phenomenon of image strength under attack. Our dataset, combined with the proposed metrics, is valuable for unbiased benchmarking of adversarial attack and defense algorithms. 4 authors · Nov 5, 2020
- TextMachina: Seamless Generation of Machine-Generated Text Datasets Recent advancements in Large Language Models (LLMs) have led to high-quality Machine-Generated Text (MGT), giving rise to countless new use cases and applications. However, easy access to LLMs is posing new challenges due to misuse. To address malicious usage, researchers have released datasets to effectively train models on MGT-related tasks. Similar strategies are used to compile these datasets, but no tool currently unifies them. In this scenario, we introduce TextMachina, a modular and extensible Python framework, designed to aid in the creation of high-quality, unbiased datasets to build robust models for MGT-related tasks such as detection, attribution, or boundary detection. It provides a user-friendly pipeline that abstracts away the inherent intricacies of building MGT datasets, such as LLM integrations, prompt templating, and bias mitigation. The quality of the datasets generated by TextMachina has been assessed in previous works, including shared tasks where more than one hundred teams trained robust MGT detectors. 3 authors · Jan 8, 2024
- Back Home: A Machine Learning Approach to Seashell Classification and Ecosystem Restoration In Costa Rica, an average of 5 tons of seashells are extracted from ecosystems annually. Confiscated seashells, cannot be returned to their ecosystems due to the lack of origin recognition. To address this issue, we developed a convolutional neural network (CNN) specifically for seashell identification. We built a dataset from scratch, consisting of approximately 19000 images from the Pacific and Caribbean coasts. Using this dataset, the model achieved a classification accuracy exceeding 85%. The model has been integrated into a user-friendly application, which has classified over 36,000 seashells to date, delivering real-time results within 3 seconds per image. To further enhance the system's accuracy, an anomaly detection mechanism was incorporated to filter out irrelevant or anomalous inputs, ensuring only valid seashell images are processed. 2 authors · Jan 8
1 Cheetah: Bridging the Gap Between Machine Learning and Particle Accelerator Physics with High-Speed, Differentiable Simulations Machine learning has emerged as a powerful solution to the modern challenges in accelerator physics. However, the limited availability of beam time, the computational cost of simulations, and the high-dimensionality of optimisation problems pose significant challenges in generating the required data for training state-of-the-art machine learning models. In this work, we introduce Cheetah, a PyTorch-based high-speed differentiable linear-beam dynamics code. Cheetah enables the fast collection of large data sets by reducing computation times by multiple orders of magnitude and facilitates efficient gradient-based optimisation for accelerator tuning and system identification. This positions Cheetah as a user-friendly, readily extensible tool that integrates seamlessly with widely adopted machine learning tools. We showcase the utility of Cheetah through five examples, including reinforcement learning training, gradient-based beamline tuning, gradient-based system identification, physics-informed Bayesian optimisation priors, and modular neural network surrogate modelling of space charge effects. The use of such a high-speed differentiable simulation code will simplify the development of machine learning-based methods for particle accelerators and fast-track their integration into everyday operations of accelerator facilities. 4 authors · Jan 11, 2024
- Machine Learning Interatomic Potentials: library for efficient training, model development and simulation of molecular systems Machine Learning Interatomic Potentials (MLIP) are a novel in silico approach for molecular property prediction, creating an alternative to disrupt the accuracy/speed trade-off of empirical force fields and density functional theory (DFT). In this white paper, we present our MLIP library which was created with two core aims: (1) provide to industry experts without machine learning background a user-friendly and computationally efficient set of tools to experiment with MLIP models, (2) provide machine learning developers a framework to develop novel approaches fully integrated with molecular dynamics tools. The library includes in this release three model architectures (MACE, NequIP, and ViSNet), and two molecular dynamics (MD) wrappers (ASE, and JAX-MD), along with a set of pre-trained organics models. The seamless integration with JAX-MD, in particular, facilitates highly efficient MD simulations, bringing MLIP models significantly closer to industrial application. The library is available on GitHub and on PyPI under the Apache license 2.0. 14 authors · May 28
- Marian: Fast Neural Machine Translation in C++ We present Marian, an efficient and self-contained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed. 12 authors · Apr 1, 2018 3
- Qiskit Machine Learning: an open-source library for quantum machine learning tasks at scale on quantum hardware and classical simulators We present Qiskit Machine Learning (ML), a high-level Python library that combines elements of quantum computing with traditional machine learning. The API abstracts Qiskit's primitives to facilitate interactions with classical simulators and quantum hardware. Qiskit ML started as a proof-of-concept code in 2019 and has since been developed to be a modular, intuitive tool for non-specialist users while allowing extensibility and fine-tuning controls for quantum computational scientists and developers. The library is available as a public, open-source tool and is distributed under the Apache version 2.0 license. 9 authors · May 23
- CleanComedy: Creating Friendly Humor through Generative Techniques Humor generation is a challenging task in natural language processing due to limited resources and the quality of existing datasets. Available humor language resources often suffer from toxicity and duplication, limiting their effectiveness for training robust models. This paper proposes CleanComedy, a specialized, partially annotated toxicity-filtered corpus of English and Russian jokes collected from various sources. We study the effectiveness of our data filtering approach through a survey on humor and toxicity levels in various joke groups. In addition, we study advances in computer humor generation by comparing jokes written by humans with various groups of generative jokes, including our baseline models trained on the CleanComedy datasets. 5 authors · Dec 12, 2024
- PFLlib: A Beginner-Friendly and Comprehensive Personalized Federated Learning Library and Benchmark Amid the ongoing advancements in Federated Learning (FL), a machine learning paradigm that allows collaborative learning with data privacy protection, personalized FL (pFL)has gained significant prominence as a research direction within the FL domain. Whereas traditional FL (tFL) focuses on jointly learning a global model, pFL aims to balance each client's global and personalized goals in FL settings. To foster the pFL research community, we started and built PFLlib, a comprehensive pFL library with an integrated benchmark platform. In PFLlib, we implemented 37 state-of-the-art FL algorithms (8 tFL algorithms and 29 pFL algorithms) and provided various evaluation environments with three statistically heterogeneous scenarios and 24 datasets. At present, PFLlib has gained more than 1600 stars and 300 forks on GitHub. 8 authors · Dec 8, 2023
- Flower: A Friendly Federated Learning Research Framework Federated Learning (FL) has emerged as a promising technique for edge devices to collaboratively learn a shared prediction model, while keeping their training data on the device, thereby decoupling the ability to do machine learning from the need to store the data in the cloud. However, FL is difficult to implement realistically, both in terms of scale and systems heterogeneity. Although there are a number of research frameworks available to simulate FL algorithms, they do not support the study of scalable FL workloads on heterogeneous edge devices. In this paper, we present Flower -- a comprehensive FL framework that distinguishes itself from existing platforms by offering new facilities to execute large-scale FL experiments and consider richly heterogeneous FL device scenarios. Our experiments show Flower can perform FL experiments up to 15M in client size using only a pair of high-end GPUs. Researchers can then seamlessly migrate experiments to real devices to examine other parts of the design space. We believe Flower provides the community with a critical new tool for FL study and development. 11 authors · Jul 28, 2020
- Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products. 3 authors · Dec 13, 2018
- Enhancing Intent Understanding for Ambiguous prompt: A Human-Machine Co-Adaption Strategy Today's image generation systems are capable of producing realistic and high-quality images. However, user prompts often contain ambiguities, making it difficult for these systems to interpret users' actual intentions. Consequently, many users must modify their prompts several times to ensure the generated images meet their expectations. While some methods focus on enhancing prompts to make the generated images fit user needs, the model is still hard to understand users' real needs, especially for non-expert users. In this research, we aim to enhance the visual parameter-tuning process, making the model user-friendly for individuals without specialized knowledge and better understand user needs. We propose a human-machine co-adaption strategy using mutual information between the user's prompts and the pictures under modification as the optimizing target to make the system better adapt to user needs. We find that an improved model can reduce the necessity for multiple rounds of adjustments. We also collect multi-round dialogue datasets with prompts and images pairs and user intent. Various experiments demonstrate the effectiveness of the proposed method in our proposed dataset. Our annotation tools and several examples of our dataset are available at https://zenodo.org/records/14876029 for easier review. We will make open source our full dataset and code. 14 authors · Jan 25
- Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments Federated learning (FL) is a privacy-friendly type of machine learning where devices locally train a model on their private data and typically communicate model updates with a server. In decentralized FL (DFL), peers communicate model updates with each other instead. However, DFL is challenging since (1) the training data possessed by different peers is often non-i.i.d. (i.e., distributed differently between the peers) and (2) malicious, or Byzantine, attackers can share arbitrary model updates with other peers to subvert the training process. We address these two challenges and present Bristle, middleware between the learning application and the decentralized network layer. Bristle leverages transfer learning to predetermine and freeze the non-output layers of a neural network, significantly speeding up model training and lowering communication costs. To securely update the output layer with model updates from other peers, we design a fast distance-based prioritizer and a novel performance-based integrator. Their combined effect results in high resilience to Byzantine attackers and the ability to handle non-i.i.d. classes. We empirically show that Bristle converges to a consistent 95% accuracy in Byzantine environments, outperforming all evaluated baselines. In non-Byzantine environments, Bristle requires 83% fewer iterations to achieve 90% accuracy compared to state-of-the-art methods. We show that when the training classes are non-i.i.d., Bristle significantly outperforms the accuracy of the most Byzantine-resilient baselines by 2.3x while reducing communication costs by 90%. 3 authors · Oct 21, 2021
2 ComProScanner: A multi-agent based framework for composition-property structured data extraction from scientific literature Since the advent of various pre-trained large language models, extracting structured knowledge from scientific text has experienced a revolutionary change compared with traditional machine learning or natural language processing techniques. Despite these advances, accessible automated tools that allow users to construct, validate, and visualise datasets from scientific literature extraction remain scarce. We therefore developed ComProScanner, an autonomous multi-agent platform that facilitates the extraction, validation, classification, and visualisation of machine-readable chemical compositions and properties, integrated with synthesis data from journal articles for comprehensive database creation. We evaluated our framework using 100 journal articles against 10 different LLMs, including both open-source and proprietary models, to extract highly complex compositions associated with ceramic piezoelectric materials and corresponding piezoelectric strain coefficients (d33), motivated by the lack of a large dataset for such materials. DeepSeek-V3-0324 outperformed all models with a significant overall accuracy of 0.82. This framework provides a simple, user-friendly, readily-usable package for extracting highly complex experimental data buried in the literature to build machine learning or deep learning datasets. South London Innovative Materials Evaluation Squad (SLIMES) Lab · Oct 23 2
1 SimplyRetrieve: A Private and Lightweight Retrieval-Centric Generative AI Tool Large Language Model (LLM) based Generative AI systems have seen significant progress in recent years. Integrating a knowledge retrieval architecture allows for seamless integration of private data into publicly available Generative AI systems using pre-trained LLM without requiring additional model fine-tuning. Moreover, Retrieval-Centric Generation (RCG) approach, a promising future research direction that explicitly separates roles of LLMs and retrievers in context interpretation and knowledge memorization, potentially leads to more efficient implementation. SimplyRetrieve is an open-source tool with the goal of providing a localized, lightweight, and user-friendly interface to these sophisticated advancements to the machine learning community. SimplyRetrieve features a GUI and API based RCG platform, assisted by a Private Knowledge Base Constructor and a Retrieval Tuning Module. By leveraging these capabilities, users can explore the potential of RCG for improving generative AI performance while maintaining privacy standards. The tool is available at https://github.com/RCGAI/SimplyRetrieve with an MIT license. 7 authors · Aug 7, 2023
- TrueChain: Highly Performant Decentralized Public Ledger In this paper we present the initial design of Minerva consensus protocol for Truechain and other technical details. Currently, it is widely believed in the blockchain community that a public chain cannot simultaneously achieve high performance, decentralization and security. This is true in the case of a Nakamoto chain (low performance) or a delegated proof of stake chain (partially centralized), which are the most popular block chain solutions at time of writing. Our consensus design enjoys the same consistency, liveness, transaction finality and security guarantee, a de-facto with the Hybrid Consensus. We go on to propose the idea of a new virtual machine on top of Ethereum which adds permissioned-chain based transaction processing capabilities in a permissionless setting. We also use the idea of data sharding and speculative transactions, and evaluation of smart contracts in a sharding friendly virtual machine. Finally, we will briefly discuss our fundamentally ASIC resistant mining algorithm, Truehash. 5 authors · May 3, 2018
1 FastPathology: An open-source platform for deep learning-based research and decision support in digital pathology Deep convolutional neural networks (CNNs) are the current state-of-the-art for digital analysis of histopathological images. The large size of whole-slide microscopy images (WSIs) requires advanced memory handling to read, display and process these images. There are several open-source platforms for working with WSIs, but few support deployment of CNN models. These applications use third-party solutions for inference, making them less user-friendly and unsuitable for high-performance image analysis. To make deployment of CNNs user-friendly and feasible on low-end machines, we have developed a new platform, FastPathology, using the FAST framework and C++. It minimizes memory usage for reading and processing WSIs, deployment of CNN models, and real-time interactive visualization of results. Runtime experiments were conducted on four different use cases, using different architectures, inference engines, hardware configurations and operating systems. Memory usage for reading, visualizing, zooming and panning a WSI were measured, using FastPathology and three existing platforms. FastPathology performed similarly in terms of memory to the other C++ based application, while using considerably less than the two Java-based platforms. The choice of neural network model, inference engine, hardware and processors influenced runtime considerably. Thus, FastPathology includes all steps needed for efficient visualization and processing of WSIs in a single application, including inference of CNNs with real-time display of the results. Source code, binary releases and test data can be found online on GitHub at https://github.com/SINTEFMedtek/FAST-Pathology/. 6 authors · Nov 11, 2020