Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeAutomatic Evaluation Metrics for Artificially Generated Scientific Research
Foundation models are increasingly used in scientific research, but evaluating AI-generated scientific work remains challenging. While expert reviews are costly, large language models (LLMs) as proxy reviewers have proven to be unreliable. To address this, we investigate two automatic evaluation metrics, specifically citation count prediction and review score prediction. We parse all papers of OpenReview and augment each submission with its citation count, reference, and research hypothesis. Our findings reveal that citation count prediction is more viable than review score prediction, and predicting scores is more difficult purely from the research hypothesis than from the full paper. Furthermore, we show that a simple prediction model based solely on title and abstract outperforms LLM-based reviewers, though it still falls short of human-level consistency.
ResearchBench: Benchmarking LLMs in Scientific Discovery via Inspiration-Based Task Decomposition
Large language models (LLMs) have demonstrated potential in assisting scientific research, yet their ability to discover high-quality research hypotheses remains unexamined due to the lack of a dedicated benchmark. To address this gap, we introduce the first large-scale benchmark for evaluating LLMs with a near-sufficient set of sub-tasks of scientific discovery: inspiration retrieval, hypothesis composition, and hypothesis ranking. We develop an automated framework that extracts critical components - research questions, background surveys, inspirations, and hypotheses - from scientific papers across 12 disciplines, with expert validation confirming its accuracy. To prevent data contamination, we focus exclusively on papers published in 2024, ensuring minimal overlap with LLM pretraining data. Our evaluation reveals that LLMs perform well in retrieving inspirations, an out-of-distribution task, suggesting their ability to surface novel knowledge associations. This positions LLMs as "research hypothesis mines", capable of facilitating automated scientific discovery by generating innovative hypotheses at scale with minimal human intervention.
Pico: A Modular Framework for Hypothesis-Driven Small Language Model Research
Building language models (LMs), especially small and medium ones, remains more art than science. While large LMs often improve by sheer scale, it is still unclear why many design choices work. For small LMs, this uncertainty is more limiting: tight parameter budgets make each decision critical, yet researchers still lack systematic, scientific ways to test and refine new ideas. We introduce Pico, a lightweight, modular framework that enables systematic, hypothesis-driven research for small and medium-scale language model development. Pico consists of two libraries that together provide a practical sandbox where researchers can make targeted changes to a model's architecture or training procedures and directly observe their effects on the model's behavior. To support reproducible experimentation, we also release a suite of baseline models, pico-decoder, trained under standardized conditions and open-sourced for the community. Case studies highlight how Pico can support iterative small LM design and analysis.
MLR-Copilot: Autonomous Machine Learning Research based on Large Language Models Agents
Machine learning research, crucial for technological advancements and innovation, often faces significant challenges due to its inherent complexity, slow pace of experimentation, and the necessity for specialized expertise. Motivated by this, we present a new systematic framework, autonomous Machine Learning Research with large language models (MLR-Copilot), designed to enhance machine learning research productivity through the automatic generation and implementation of research ideas using Large Language Model (LLM) agents. The framework consists of three phases: research idea generation, experiment implementation, and implementation execution. First, existing research papers are used to generate hypotheses and experimental plans vis IdeaAgent powered by LLMs. Next, the implementation generation phase translates these plans into executables with ExperimentAgent. This phase leverages retrieved prototype code and optionally retrieves candidate models and data. Finally, the execution phase, also managed by ExperimentAgent, involves running experiments with mechanisms for human feedback and iterative debugging to enhance the likelihood of achieving executable research outcomes. We evaluate our framework on five machine learning research tasks and the experimental results show the framework's potential to facilitate the research progress and innovations.
Reimagining Urban Science: Scaling Causal Inference with Large Language Models
Urban causal research is essential for understanding the complex dynamics of cities and informing evidence-based policies. However, it is challenged by the inefficiency and bias of hypothesis generation, barriers to multimodal data complexity, and the methodological fragility of causal experimentation. Recent advances in large language models (LLMs) present an opportunity to rethink how urban causal analysis is conducted. This Perspective examines current urban causal research by analyzing taxonomies that categorize research topics, data sources, and methodological approaches to identify structural gaps. We then introduce an LLM-driven conceptual framework, AutoUrbanCI, composed of four distinct modular agents responsible for hypothesis generation, data engineering, experiment design and execution, and results interpretation with policy recommendations. We propose evaluation criteria for rigor and transparency and reflect on implications for human-AI collaboration, equity, and accountability. We call for a new research agenda that embraces AI-augmented workflows not as replacements for human expertise but as tools to broaden participation, improve reproducibility, and unlock more inclusive forms of urban causal reasoning.
The More You Automate, the Less You See: Hidden Pitfalls of AI Scientist Systems
AI scientist systems, capable of autonomously executing the full research workflow from hypothesis generation and experimentation to paper writing, hold significant potential for accelerating scientific discovery. However, the internal workflow of these systems have not been closely examined. This lack of scrutiny poses a risk of introducing flaws that could undermine the integrity, reliability, and trustworthiness of their research outputs. In this paper, we identify four potential failure modes in contemporary AI scientist systems: inappropriate benchmark selection, data leakage, metric misuse, and post-hoc selection bias. To examine these risks, we design controlled experiments that isolate each failure mode while addressing challenges unique to evaluating AI scientist systems. Our assessment of two prominent open-source AI scientist systems reveals the presence of several failures, across a spectrum of severity, which can be easily overlooked in practice. Finally, we demonstrate that access to trace logs and code from the full automated workflow enables far more effective detection of such failures than examining the final paper alone. We thus recommend journals and conferences evaluating AI-generated research to mandate submission of these artifacts alongside the paper to ensure transparency, accountability, and reproducibility.
From Hypothesis to Publication: A Comprehensive Survey of AI-Driven Research Support Systems
Research is a fundamental process driving the advancement of human civilization, yet it demands substantial time and effort from researchers. In recent years, the rapid development of artificial intelligence (AI) technologies has inspired researchers to explore how AI can accelerate and enhance research. To monitor relevant advancements, this paper presents a systematic review of the progress in this domain. Specifically, we organize the relevant studies into three main categories: hypothesis formulation, hypothesis validation, and manuscript publication. Hypothesis formulation involves knowledge synthesis and hypothesis generation. Hypothesis validation includes the verification of scientific claims, theorem proving, and experiment validation. Manuscript publication encompasses manuscript writing and the peer review process. Furthermore, we identify and discuss the current challenges faced in these areas, as well as potential future directions for research. Finally, we also offer a comprehensive overview of existing benchmarks and tools across various domains that support the integration of AI into the research process. We hope this paper serves as an introduction for beginners and fosters future research. Resources have been made publicly available at https://github.com/zkzhou126/AI-for-Research.
Frame Representation Hypothesis: Multi-Token LLM Interpretability and Concept-Guided Text Generation
Interpretability is a key challenge in fostering trust for Large Language Models (LLMs), which stems from the complexity of extracting reasoning from model's parameters. We present the Frame Representation Hypothesis, a theoretically robust framework grounded in the Linear Representation Hypothesis (LRH) to interpret and control LLMs by modeling multi-token words. Prior research explored LRH to connect LLM representations with linguistic concepts, but was limited to single token analysis. As most words are composed of several tokens, we extend LRH to multi-token words, thereby enabling usage on any textual data with thousands of concepts. To this end, we propose words can be interpreted as frames, ordered sequences of vectors that better capture token-word relationships. Then, concepts can be represented as the average of word frames sharing a common concept. We showcase these tools through Top-k Concept-Guided Decoding, which can intuitively steer text generation using concepts of choice. We verify said ideas on Llama 3.1, Gemma 2, and Phi 3 families, demonstrating gender and language biases, exposing harmful content, but also potential to remediate them, leading to safer and more transparent LLMs. Code is available at https://github.com/phvv-me/frame-representation-hypothesis.git
The Translation Barrier Hypothesis: Multilingual Generation with Large Language Models Suffers from Implicit Translation Failure
Multilingual generation with large language models (LLMs) is often of poor quality for mid- to low-resource languages. Building on insights from interpretability, we demonstrate the existence of an implicit task-solving-->translation pipeline for generation, whereby the model first solves the required task in a largely target-language-agnostic manner, and subsequently translates answer concepts into the intended target language. We hypothesize that the failure of the translation stage is an important culprit for the observed low quality of final outputs, and formalize this as the translation barrier hypothesis. We test this hypothesis for a word translation task across 108 language pairs, using logit lens to observe model processing in intermediate layers. We find that a significant portion of overall failures indeed stems from translation failure, or the model's inability to translate correctly solved intermediate concepts into the target language. This is especially true for low-resource target languages. Our results highlight an important hurdle for end-to-end multilingual generation, and lend guiding insights for future work seeking to improve multilinguality in LLMs.
Hypothesis Generation for Materials Discovery and Design Using Goal-Driven and Constraint-Guided LLM Agents
Materials discovery and design are essential for advancing technology across various industries by enabling the development of application-specific materials. Recent research has leveraged Large Language Models (LLMs) to accelerate this process. We explore the potential of LLMs to generate viable hypotheses that, once validated, can expedite materials discovery. Collaborating with materials science experts, we curated a novel dataset from recent journal publications, featuring real-world goals, constraints, and methods for designing real-world applications. Using this dataset, we test LLM-based agents that generate hypotheses for achieving given goals under specific constraints. To assess the relevance and quality of these hypotheses, we propose a novel scalable evaluation metric that emulates the process a materials scientist would use to evaluate a hypothesis critically. Our curated dataset, proposed method, and evaluation framework aim to advance future research in accelerating materials discovery and design with LLMs.
Platypose: Calibrated Zero-Shot Multi-Hypothesis 3D Human Motion Estimation
Single camera 3D pose estimation is an ill-defined problem due to inherent ambiguities from depth, occlusion or keypoint noise. Multi-hypothesis pose estimation accounts for this uncertainty by providing multiple 3D poses consistent with the 2D measurements. Current research has predominantly concentrated on generating multiple hypotheses for single frame static pose estimation. In this study we focus on the new task of multi-hypothesis motion estimation. Motion estimation is not simply pose estimation applied to multiple frames, which would ignore temporal correlation across frames. Instead, it requires distributions which are capable of generating temporally consistent samples, which is significantly more challenging. To this end, we introduce Platypose, a framework that uses a diffusion model pretrained on 3D human motion sequences for zero-shot 3D pose sequence estimation. Platypose outperforms baseline methods on multiple hypotheses for motion estimation. Additionally, Platypose also achieves state-of-the-art calibration and competitive joint error when tested on static poses from Human3.6M, MPI-INF-3DHP and 3DPW. Finally, because it is zero-shot, our method generalizes flexibly to different settings such as multi-camera inference.
IRIS: Interactive Research Ideation System for Accelerating Scientific Discovery
The rapid advancement in capabilities of large language models (LLMs) raises a pivotal question: How can LLMs accelerate scientific discovery? This work tackles the crucial first stage of research, generating novel hypotheses. While recent work on automated hypothesis generation focuses on multi-agent frameworks and extending test-time compute, none of the approaches effectively incorporate transparency and steerability through a synergistic Human-in-the-loop (HITL) approach. To address this gap, we introduce IRIS: Interactive Research Ideation System, an open-source platform designed for researchers to leverage LLM-assisted scientific ideation. IRIS incorporates innovative features to enhance ideation, including adaptive test-time compute expansion via Monte Carlo Tree Search (MCTS), fine-grained feedback mechanism, and query-based literature synthesis. Designed to empower researchers with greater control and insight throughout the ideation process. We additionally conduct a user study with researchers across diverse disciplines, validating the effectiveness of our system in enhancing ideation. We open-source our code at https://github.com/Anikethh/IRIS-Interactive-Research-Ideation-System
Breaking Bias, Building Bridges: Evaluation and Mitigation of Social Biases in LLMs via Contact Hypothesis
Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model's biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy. Our code and data are available at https://github.com/chahatraj/breakingbias.
Addendum to Research MMMCV; A Man/Microbio/Megabio/Computer Vision
In October 2007, a Research Proposal for the University of Sydney, Australia, the author suggested that biovie-physical phenomenon as `electrodynamic dependant biological vision', is governed by relativistic quantum laws and biovision. The phenomenon on the basis of `biovielectroluminescence', satisfies man/microbio/megabio/computer vision (MMMCV), as a robust candidate for physical and visual sciences. The general aim of this addendum is to present a refined text of Sections 1-3 of that proposal and highlighting the contents of its Appendix in form of a `Mechanisms' Section. We then briefly remind in an article aimed for December 2007, by appending two more equations into Section 3, a theoretical II-time scenario as a time model well-proposed for the phenomenon. The time model within the core of the proposal, plays a significant role in emphasizing the principle points on Objectives no. 1-8, Sub-hypothesis 3.1.2, mentioned in Article [arXiv:0710.0410]. It also expresses the time concept in terms of causing quantized energy f(|E|) of time |t|, emit in regard to shortening the probability of particle loci as predictable patterns of particle's un-occurred motion, a solution to Heisenberg's uncertainty principle (HUP) into a simplistic manner. We conclude that, practical frames via a time algorithm to this model, fixates such predictable patterns of motion of scenery bodies onto recordable observation points of a MMMCV system. It even suppresses/predicts superposition phenomena coming from a human subject and/or other bio-subjects for any decision making event, e.g., brainwave quantum patterns based on vision. Maintaining the existential probability of Riemann surfaces of II-time scenarios in the context of biovielectroluminescence, makes motion-prediction a possibility.
A Survey of Lottery Ticket Hypothesis
The Lottery Ticket Hypothesis (LTH) states that a dense neural network model contains a highly sparse subnetwork (i.e., winning tickets) that can achieve even better performance than the original model when trained in isolation. While LTH has been proved both empirically and theoretically in many works, there still are some open issues, such as efficiency and scalability, to be addressed. Also, the lack of open-source frameworks and consensual experimental setting poses a challenge to future research on LTH. We, for the first time, examine previous research and studies on LTH from different perspectives. We also discuss issues in existing works and list potential directions for further exploration. This survey aims to provide an in-depth look at the state of LTH and develop a duly maintained platform to conduct experiments and compare with the most updated baselines.
NovelSeek: When Agent Becomes the Scientist -- Building Closed-Loop System from Hypothesis to Verification
Artificial Intelligence (AI) is accelerating the transformation of scientific research paradigms, not only enhancing research efficiency but also driving innovation. We introduce NovelSeek, a unified closed-loop multi-agent framework to conduct Autonomous Scientific Research (ASR) across various scientific research fields, enabling researchers to tackle complicated problems in these fields with unprecedented speed and precision. NovelSeek highlights three key advantages: 1) Scalability: NovelSeek has demonstrated its versatility across 12 scientific research tasks, capable of generating innovative ideas to enhance the performance of baseline code. 2) Interactivity: NovelSeek provides an interface for human expert feedback and multi-agent interaction in automated end-to-end processes, allowing for the seamless integration of domain expert knowledge. 3) Efficiency: NovelSeek has achieved promising performance gains in several scientific fields with significantly less time cost compared to human efforts. For instance, in reaction yield prediction, it increased from 27.6% to 35.4% in just 12 hours; in enhancer activity prediction, accuracy rose from 0.52 to 0.79 with only 4 hours of processing; and in 2D semantic segmentation, precision advanced from 78.8% to 81.0% in a mere 30 hours.
GUIDE: Towards Scalable Advising for Research Ideas
The field of AI research is advancing at an unprecedented pace, enabling automated hypothesis generation and experimental design across diverse domains such as biology, mathematics, and artificial intelligence. Despite these advancements, there remains a significant gap in the availability of scalable advising systems capable of providing high-quality, well-reasoned feedback to refine proposed hypotheses and experimental designs. To address this challenge, we explore key factors that underlie the development of robust advising systems, including model size, context length, confidence estimation, and structured reasoning processes. Our findings reveal that a relatively small model, when equipped with a well-compressed literature database and a structured reasoning framework, can outperform powerful general-purpose language models such as Deepseek-R1 in terms of acceptance rates for self-ranked top-30% submissions to ICLR 2025. Moreover, when limited to high-confidence predictions, our system achieves an acceptance rate exceeding 90% on the ICLR 2025 test set, underscoring its potential to significantly enhance the quality and efficiency of hypothesis generation and experimental design. The code is released at https://github.com/HowardLiu0830/GUIDE-Research-Idea-Evaluation.
Large Language Models as Biomedical Hypothesis Generators: A Comprehensive Evaluation
The rapid growth of biomedical knowledge has outpaced our ability to efficiently extract insights and generate novel hypotheses. Large language models (LLMs) have emerged as a promising tool to revolutionize knowledge interaction and potentially accelerate biomedical discovery. In this paper, we present a comprehensive evaluation of LLMs as biomedical hypothesis generators. We construct a dataset of background-hypothesis pairs from biomedical literature, carefully partitioned into training, seen, and unseen test sets based on publication date to mitigate data contamination. Using this dataset, we assess the hypothesis generation capabilities of top-tier instructed models in zero-shot, few-shot, and fine-tuning settings. To enhance the exploration of uncertainty, a crucial aspect of scientific discovery, we incorporate tool use and multi-agent interactions in our evaluation framework. Furthermore, we propose four novel metrics grounded in extensive literature review to evaluate the quality of generated hypotheses, considering both LLM-based and human assessments. Our experiments yield two key findings: 1) LLMs can generate novel and validated hypotheses, even when tested on literature unseen during training, and 2) Increasing uncertainty through multi-agent interactions and tool use can facilitate diverse candidate generation and improve zero-shot hypothesis generation performance. However, we also observe that the integration of additional knowledge through few-shot learning and tool use may not always lead to performance gains, highlighting the need for careful consideration of the type and scope of external knowledge incorporated. These findings underscore the potential of LLMs as powerful aids in biomedical hypothesis generation and provide valuable insights to guide further research in this area.
Toward Reliable Biomedical Hypothesis Generation: Evaluating Truthfulness and Hallucination in Large Language Models
Large language models (LLMs) have shown significant potential in scientific disciplines such as biomedicine, particularly in hypothesis generation, where they can analyze vast literature, identify patterns, and suggest research directions. However, a key challenge lies in evaluating the truthfulness of generated hypotheses, as verifying their accuracy often requires substantial time and resources. Additionally, the hallucination problem in LLMs can lead to the generation of hypotheses that appear plausible but are ultimately incorrect, undermining their reliability. To facilitate the systematic study of these challenges, we introduce TruthHypo, a benchmark for assessing the capabilities of LLMs in generating truthful biomedical hypotheses, and KnowHD, a knowledge-based hallucination detector to evaluate how well hypotheses are grounded in existing knowledge. Our results show that LLMs struggle to generate truthful hypotheses. By analyzing hallucinations in reasoning steps, we demonstrate that the groundedness scores provided by KnowHD serve as an effective metric for filtering truthful hypotheses from the diverse outputs of LLMs. Human evaluations further validate the utility of KnowHD in identifying truthful hypotheses and accelerating scientific discovery. Our data and source code are available at https://github.com/Teddy-XiongGZ/TruthHypo.
From Task Executors to Research Partners: Evaluating AI Co-Pilots Through Workflow Integration in Biomedical Research
Artificial intelligence systems are increasingly deployed in biomedical research. However, current evaluation frameworks may inadequately assess their effectiveness as research collaborators. This rapid review examines benchmarking practices for AI systems in preclinical biomedical research. Three major databases and two preprint servers were searched from January 1, 2018 to October 31, 2025, identifying 14 benchmarks that assess AI capabilities in literature understanding, experimental design, and hypothesis generation. The results revealed that all current benchmarks assess isolated component capabilities, including data analysis quality, hypothesis validity, and experimental protocol design. However, authentic research collaboration requires integrated workflows spanning multiple sessions, with contextual memory, adaptive dialogue, and constraint propagation. This gap implies that systems excelling on component benchmarks may fail as practical research co-pilots. A process-oriented evaluation framework is proposed that addresses four critical dimensions absent from current benchmarks: dialogue quality, workflow orchestration, session continuity, and researcher experience. These dimensions are essential for evaluating AI systems as research co-pilots rather than as isolated task executors.
Brain-Language Model Alignment: Insights into the Platonic Hypothesis and Intermediate-Layer Advantage
Do brains and language models converge toward the same internal representations of the world? Recent years have seen a rise in studies of neural activations and model alignment. In this work, we review 25 fMRI-based studies published between 2023 and 2025 and explicitly confront their findings with two key hypotheses: (i) the Platonic Representation Hypothesis -- that as models scale and improve, they converge to a representation of the real world, and (ii) the Intermediate-Layer Advantage -- that intermediate (mid-depth) layers often encode richer, more generalizable features. Our findings provide converging evidence that models and brains may share abstract representational structures, supporting both hypotheses and motivating further research on brain-model alignment.
MOOSE-Chem2: Exploring LLM Limits in Fine-Grained Scientific Hypothesis Discovery via Hierarchical Search
Large language models (LLMs) have shown promise in automating scientific hypothesis generation, yet existing approaches primarily yield coarse-grained hypotheses lacking critical methodological and experimental details. We introduce and formally define the novel task of fine-grained scientific hypothesis discovery, which entails generating detailed, experimentally actionable hypotheses from coarse initial research directions. We frame this as a combinatorial optimization problem and investigate the upper limits of LLMs' capacity to solve it when maximally leveraged. Specifically, we explore four foundational questions: (1) how to best harness an LLM's internal heuristics to formulate the fine-grained hypothesis it itself would judge as the most promising among all the possible hypotheses it might generate, based on its own internal scoring-thus defining a latent reward landscape over the hypothesis space; (2) whether such LLM-judged better hypotheses exhibit stronger alignment with ground-truth hypotheses; (3) whether shaping the reward landscape using an ensemble of diverse LLMs of similar capacity yields better outcomes than defining it with repeated instances of the strongest LLM among them; and (4) whether an ensemble of identical LLMs provides a more reliable reward landscape than a single LLM. To address these questions, we propose a hierarchical search method that incrementally proposes and integrates details into the hypothesis, progressing from general concepts to specific experimental configurations. We show that this hierarchical process smooths the reward landscape and enables more effective optimization. Empirical evaluations on a new benchmark of expert-annotated fine-grained hypotheses from recent chemistry literature show that our method consistently outperforms strong baselines.
MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based Scientific Research
Scientific research demands sophisticated reasoning over multimodal data, a challenge especially prevalent in biology. Despite recent advances in multimodal large language models (MLLMs) for AI-assisted research, existing multimodal reasoning benchmarks only target up to college-level difficulty, while research-level benchmarks emphasize lower-level perception, falling short of the complex multimodal reasoning needed for scientific discovery. To bridge this gap, we introduce MicroVQA, a visual-question answering (VQA) benchmark designed to assess three reasoning capabilities vital in research workflows: expert image understanding, hypothesis generation, and experiment proposal. MicroVQA consists of 1,042 multiple-choice questions (MCQs) curated by biology experts across diverse microscopy modalities, ensuring VQA samples represent real scientific practice. In constructing the benchmark, we find that standard MCQ generation methods induce language shortcuts, motivating a new two-stage pipeline: an optimized LLM prompt structures question-answer pairs into MCQs; then, an agent-based `RefineBot' updates them to remove shortcuts. Benchmarking on state-of-the-art MLLMs reveal a peak performance of 53\%; models with smaller LLMs only slightly underperform top models, suggesting that language-based reasoning is less challenging than multimodal reasoning; and tuning with scientific articles enhances performance. Expert analysis of chain-of-thought responses shows that perception errors are the most frequent, followed by knowledge errors and then overgeneralization errors. These insights highlight the challenges in multimodal scientific reasoning, showing MicroVQA is a valuable resource advancing AI-driven biomedical research. MicroVQA is available at https://huggingface.co/datasets/jmhb/microvqa, and project page at https://jmhb0.github.io/microvqa.
Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement
The ability to derive underlying principles from a handful of observations and then generalize to novel situations -- known as inductive reasoning -- is central to human intelligence. Prior work suggests that language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks. In this work, we conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement, a technique that more closely mirrors the human inductive process than standard input-output prompting. Iterative hypothesis refinement employs a three-step process: proposing, selecting, and refining hypotheses in the form of textual rules. By examining the intermediate rules, we observe that LMs are phenomenal hypothesis proposers (i.e., generating candidate rules), and when coupled with a (task-specific) symbolic interpreter that is able to systematically filter the proposed set of rules, this hybrid approach achieves strong results across inductive reasoning benchmarks that require inducing causal relations, language-like instructions, and symbolic concepts. However, they also behave as puzzling inductive reasoners, showing notable performance gaps between rule induction (i.e., identifying plausible rules) and rule application (i.e., applying proposed rules to instances), suggesting that LMs are proposing hypotheses without being able to actually apply the rules. Through empirical and human analyses, we further reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
PhysMaster: Building an Autonomous AI Physicist for Theoretical and Computational Physics Research
Advances in LLMs have produced agents with knowledge and operational capabilities comparable to human scientists, suggesting potential to assist, accelerate, and automate research. However, existing studies mainly evaluate such systems on well-defined benchmarks or general tasks like literature retrieval, limiting their end-to-end problem-solving ability in open scientific scenarios. This is particularly true in physics, which is abstract, mathematically intensive, and requires integrating analytical reasoning with code-based computation. To address this, we propose PhysMaster, an LLM-based agent functioning as an autonomous theoretical and computational physicist. PhysMaster couples absract reasoning with numerical computation and leverages LANDAU, the Layered Academic Data Universe, which preserves retrieved literature, curated prior knowledge, and validated methodological traces, enhancing decision reliability and stability. It also employs an adaptive exploration strategy balancing efficiency and open-ended exploration, enabling robust performance in ultra-long-horizon tasks. We evaluate PhysMaster on problems from high-energy theory, condensed matter theory to astrophysics, including: (i) acceleration, compressing labor-intensive research from months to hours; (ii) automation, autonomously executing hypothesis-driven loops ; and (iii) autonomous discovery, independently exploring open problems.
Revisiting Entropy Rate Constancy in Text
The uniform information density (UID) hypothesis states that humans tend to distribute information roughly evenly across an utterance or discourse. Early evidence in support of the UID hypothesis came from Genzel & Charniak (2002), which proposed an entropy rate constancy principle based on the probability of English text under n-gram language models. We re-evaluate the claims of Genzel & Charniak (2002) with neural language models, failing to find clear evidence in support of entropy rate constancy. We conduct a range of experiments across datasets, model sizes, and languages and discuss implications for the uniform information density hypothesis and linguistic theories of efficient communication more broadly.
The Rise and Down of Babel Tower: Investigating the Evolution Process of Multilingual Code Large Language Model
Large language models (LLMs) have shown significant multilingual capabilities. However, the mechanisms underlying the development of these capabilities during pre-training are not well understood. In this paper, we use code LLMs as an experimental platform to explore the evolution of multilingual capabilities in LLMs during the pre-training process. Based on our observations, we propose the Babel Tower Hypothesis, which describes the entire process of LLMs acquiring new language capabilities. During the learning process, multiple languages initially share a single knowledge system dominated by the primary language and gradually develop language-specific knowledge systems. We then validate the above hypothesis by tracking the internal states of the LLMs through identifying working languages and language transferring neurons. Experimental results show that the internal state changes of the LLM are consistent with our Babel Tower Hypothesis. Building on these insights, we propose a novel method to construct an optimized pre-training corpus for multilingual code LLMs, which significantly outperforms LLMs trained on the original corpus. The proposed Babel Tower Hypothesis provides new insights into designing pre-training data distributions to achieve optimal multilingual capabilities in LLMs.
Blending Is All You Need: Cheaper, Better Alternative to Trillion-Parameters LLM
In conversational AI research, there's a noticeable trend towards developing models with a larger number of parameters, exemplified by models like ChatGPT. While these expansive models tend to generate increasingly better chat responses, they demand significant computational resources and memory. This study explores a pertinent question: Can a combination of smaller models collaboratively achieve comparable or enhanced performance relative to a singular large model? We introduce an approach termed "blending", a straightforward yet effective method of integrating multiple chat AIs. Our empirical evidence suggests that when specific smaller models are synergistically blended, they can potentially outperform or match the capabilities of much larger counterparts. For instance, integrating just three models of moderate size (6B/13B paramaeters) can rival or even surpass the performance metrics of a substantially larger model like ChatGPT (175B+ paramaters). This hypothesis is rigorously tested using A/B testing methodologies with a large user base on the Chai research platform over a span of thirty days. The findings underscore the potential of the "blending" strategy as a viable approach for enhancing chat AI efficacy without a corresponding surge in computational demands.
Don't Trust Generative Agents to Mimic Communication on Social Networks Unless You Benchmarked their Empirical Realism
The ability of Large Language Models (LLMs) to mimic human behavior triggered a plethora of computational social science research, assuming that empirical studies of humans can be conducted with AI agents instead. Since there have been conflicting research findings on whether and when this hypothesis holds, there is a need to better understand the differences in their experimental designs. We focus on replicating the behavior of social network users with the use of LLMs for the analysis of communication on social networks. First, we provide a formal framework for the simulation of social networks, before focusing on the sub-task of imitating user communication. We empirically test different approaches to imitate user behavior on X in English and German. Our findings suggest that social simulations should be validated by their empirical realism measured in the setting in which the simulation components were fitted. With this paper, we argue for more rigor when applying generative-agent-based modeling for social simulation.
AI-Researcher: Autonomous Scientific Innovation
The powerful reasoning capabilities of Large Language Models (LLMs) in mathematics and coding, combined with their ability to automate complex tasks through agentic frameworks, present unprecedented opportunities for accelerating scientific innovation. In this paper, we introduce AI-Researcher, a fully autonomous research system that transforms how AI-driven scientific discovery is conducted and evaluated. Our framework seamlessly orchestrates the complete research pipeline--from literature review and hypothesis generation to algorithm implementation and publication-ready manuscript preparation--with minimal human intervention. To rigorously assess autonomous research capabilities, we develop Scientist-Bench, a comprehensive benchmark comprising state-of-the-art papers across diverse AI research domains, featuring both guided innovation and open-ended exploration tasks. Through extensive experiments, we demonstrate that AI-Researcher achieves remarkable implementation success rates and produces research papers that approach human-level quality. This work establishes new foundations for autonomous scientific innovation that can complement human researchers by systematically exploring solution spaces beyond cognitive limitations.
Local Topology Measures of Contextual Language Model Latent Spaces With Applications to Dialogue Term Extraction
A common approach for sequence tagging tasks based on contextual word representations is to train a machine learning classifier directly on these embedding vectors. This approach has two shortcomings. First, such methods consider single input sequences in isolation and are unable to put an individual embedding vector in relation to vectors outside the current local context of use. Second, the high performance of these models relies on fine-tuning the embedding model in conjunction with the classifier, which may not always be feasible due to the size or inaccessibility of the underlying feature-generation model. It is thus desirable, given a collection of embedding vectors of a corpus, i.e., a datastore, to find features of each vector that describe its relation to other, similar vectors in the datastore. With this in mind, we introduce complexity measures of the local topology of the latent space of a contextual language model with respect to a given datastore. The effectiveness of our features is demonstrated through their application to dialogue term extraction. Our work continues a line of research that explores the manifold hypothesis for word embeddings, demonstrating that local structure in the space carved out by word embeddings can be exploited to infer semantic properties.
AIssistant: An Agentic Approach for Human--AI Collaborative Scientific Work on Reviews and Perspectives in Machine Learning
Advances in AI-assisted research have introduced powerful tools for literature retrieval, hypothesis generation, experimentation, and manuscript preparation. However, systems remain fragmented and lack human-centred workflows. To address these gaps, we introduce AIssistant, an agentic, open-source Human-AI collaborative framework designed to simplify the end-to-end creation of scientific workflows. Since our development is still in an early stage, we present here the first experiments with AIssistant for perspective and review research papers in machine learning. Our system integrates modular tools and agents for literature synthesis, section-wise experimentation, citation management, and automatic LaTeX paper text generation, while maintaining human oversight at every stage to ensure accuracy, coherence, and scholarly rigour. We conducted a comprehensive evaluation across three layers: (1) Independent Human Review, following NeurIPS double-blind standards; (2) Automated LLM Review, using GPT-5 as a scalable human review proxy; and (3) Program Chair Oversight, where the chair monitors the entire review process and makes final validation and acceptance decisions. The results demonstrate that AIssistant improves drafting efficiency and thematic consistency. Nonetheless, Human-AI collaboration remains essential for maintaining factual correctness, methodological soundness, and ethical compliance. Despite its effectiveness, we identify key limitations, including hallucinated citations, difficulty adapting to dynamic paper structures, and incomplete integration of multimodal content.
Scaling Laws in Scientific Discovery with AI and Robot Scientists
Scientific discovery is poised for rapid advancement through advanced robotics and artificial intelligence. Current scientific practices face substantial limitations as manual experimentation remains time-consuming and resource-intensive, while multidisciplinary research demands knowledge integration beyond individual researchers' expertise boundaries. Here, we envision an autonomous generalist scientist (AGS) concept combines agentic AI and embodied robotics to automate the entire research lifecycle. This system could dynamically interact with both physical and virtual environments while facilitating the integration of knowledge across diverse scientific disciplines. By deploying these technologies throughout every research stage -- spanning literature review, hypothesis generation, experimentation, and manuscript writing -- and incorporating internal reflection alongside external feedback, this system aims to significantly reduce the time and resources needed for scientific discovery. Building on the evolution from virtual AI scientists to versatile generalist AI-based robot scientists, AGS promises groundbreaking potential. As these autonomous systems become increasingly integrated into the research process, we hypothesize that scientific discovery might adhere to new scaling laws, potentially shaped by the number and capabilities of these autonomous systems, offering novel perspectives on how knowledge is generated and evolves. The adaptability of embodied robots to extreme environments, paired with the flywheel effect of accumulating scientific knowledge, holds the promise of continually pushing beyond both physical and intellectual frontiers.
InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning
We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.
Rethinking Thinking Tokens: Understanding Why They Underperform in Practice
Thinking Tokens (TT) have been proposed as an unsupervised method to facilitate reasoning in language models. However, despite their conceptual appeal, our findings show that TTs marginally improves performance and consistently underperforms compared to Chain-of-Thought (CoT) reasoning across multiple benchmarks. We hypothesize that this underperformance stems from the reliance on a single embedding for TTs, which results in inconsistent learning signals and introduces noisy gradients. This paper provides a comprehensive empirical analysis to validate this hypothesis and discusses the implications for future research on unsupervised reasoning in LLMs.
34 Examples of LLM Applications in Materials Science and Chemistry: Towards Automation, Assistants, Agents, and Accelerated Scientific Discovery
Large Language Models (LLMs) are reshaping many aspects of materials science and chemistry research, enabling advances in molecular property prediction, materials design, scientific automation, knowledge extraction, and more. Recent developments demonstrate that the latest class of models are able to integrate structured and unstructured data, assist in hypothesis generation, and streamline research workflows. To explore the frontier of LLM capabilities across the research lifecycle, we review applications of LLMs through 34 total projects developed during the second annual Large Language Model Hackathon for Applications in Materials Science and Chemistry, a global hybrid event. These projects spanned seven key research areas: (1) molecular and material property prediction, (2) molecular and material design, (3) automation and novel interfaces, (4) scientific communication and education, (5) research data management and automation, (6) hypothesis generation and evaluation, and (7) knowledge extraction and reasoning from the scientific literature. Collectively, these applications illustrate how LLMs serve as versatile predictive models, platforms for rapid prototyping of domain-specific tools, and much more. In particular, improvements in both open source and proprietary LLM performance through the addition of reasoning, additional training data, and new techniques have expanded effectiveness, particularly in low-data environments and interdisciplinary research. As LLMs continue to improve, their integration into scientific workflows presents both new opportunities and new challenges, requiring ongoing exploration, continued refinement, and further research to address reliability, interpretability, and reproducibility.
From AI for Science to Agentic Science: A Survey on Autonomous Scientific Discovery
Artificial intelligence (AI) is reshaping scientific discovery, evolving from specialized computational tools into autonomous research partners. We position Agentic Science as a pivotal stage within the broader AI for Science paradigm, where AI systems progress from partial assistance to full scientific agency. Enabled by large language models (LLMs), multimodal systems, and integrated research platforms, agentic AI shows capabilities in hypothesis generation, experimental design, execution, analysis, and iterative refinement -- behaviors once regarded as uniquely human. This survey provides a domain-oriented review of autonomous scientific discovery across life sciences, chemistry, materials science, and physics. We unify three previously fragmented perspectives -- process-oriented, autonomy-oriented, and mechanism-oriented -- through a comprehensive framework that connects foundational capabilities, core processes, and domain-specific realizations. Building on this framework, we (i) trace the evolution of AI for Science, (ii) identify five core capabilities underpinning scientific agency, (iii) model discovery as a dynamic four-stage workflow, (iv) review applications across the above domains, and (v) synthesize key challenges and future opportunities. This work establishes a domain-oriented synthesis of autonomous scientific discovery and positions Agentic Science as a structured paradigm for advancing AI-driven research.
Reflections from the 2024 Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry
Here, we present the outcomes from the second Large Language Model (LLM) Hackathon for Applications in Materials Science and Chemistry, which engaged participants across global hybrid locations, resulting in 34 team submissions. The submissions spanned seven key application areas and demonstrated the diverse utility of LLMs for applications in (1) molecular and material property prediction; (2) molecular and material design; (3) automation and novel interfaces; (4) scientific communication and education; (5) research data management and automation; (6) hypothesis generation and evaluation; and (7) knowledge extraction and reasoning from scientific literature. Each team submission is presented in a summary table with links to the code and as brief papers in the appendix. Beyond team results, we discuss the hackathon event and its hybrid format, which included physical hubs in Toronto, Montreal, San Francisco, Berlin, Lausanne, and Tokyo, alongside a global online hub to enable local and virtual collaboration. Overall, the event highlighted significant improvements in LLM capabilities since the previous year's hackathon, suggesting continued expansion of LLMs for applications in materials science and chemistry research. These outcomes demonstrate the dual utility of LLMs as both multipurpose models for diverse machine learning tasks and platforms for rapid prototyping custom applications in scientific research.
MOOSE-Chem: Large Language Models for Rediscovering Unseen Chemistry Scientific Hypotheses
Scientific discovery contributes largely to human society's prosperity, and recent progress shows that LLMs could potentially catalyze this process. However, it is still unclear whether LLMs can discover novel and valid hypotheses in chemistry. In this work, we investigate this central research question: Can LLMs automatically discover novel and valid chemistry research hypotheses given only a chemistry research background (consisting of a research question and/or a background survey), without limitation on the domain of the research question? After extensive discussions with chemistry experts, we propose an assumption that a majority of chemistry hypotheses can be resulted from a research background and several inspirations. With this key insight, we break the central question into three smaller fundamental questions. In brief, they are: (1) given a background question, whether LLMs can retrieve good inspirations; (2) with background and inspirations, whether LLMs can lead to hypothesis; and (3) whether LLMs can identify good hypotheses to rank them higher. To investigate these questions, we construct a benchmark consisting of 51 chemistry papers published in Nature, Science, or a similar level in 2024 (all papers are only available online since 2024). Every paper is divided by chemistry PhD students into three components: background, inspirations, and hypothesis. The goal is to rediscover the hypothesis, given only the background and a large randomly selected chemistry literature corpus consisting the ground truth inspiration papers, with LLMs trained with data up to 2023. We also develop an LLM-based multi-agent framework that leverages the assumption, consisting of three stages reflecting the three smaller questions. The proposed method can rediscover many hypotheses with very high similarity with the ground truth ones, covering the main innovations.
RExBench: Can coding agents autonomously implement AI research extensions?
Agents based on Large Language Models (LLMs) have shown promise for performing sophisticated software engineering tasks autonomously. In addition, there has been progress towards developing agents that can perform parts of the research pipeline in machine learning and the natural sciences. We argue that research extension and its implementation is a critical capability for such systems, and introduce RExBench to support the evaluation of this capability. RExBench is a benchmark consisting of 12 realistic research experiment implementation tasks that aim to investigate research hypotheses that have not previously been implemented. Each task is set up as an extension to an existing research paper and codebase, accompanied by domain expert-written instructions. RExBench is robust to data contamination, and supports an automatic evaluation infrastructure that executes agent outputs to determine whether the success criteria are met. We use this benchmark to evaluate nine LLM agents implemented using three different frameworks: aider, Claude Code, and OpenHands. We find that all agents evaluated fail to autonomously implement the majority of the extensions. Although the success rate improves with additional human-written hints, the best performance under this setting remains below 40%. This indicates that current agents are still short of being able to handle realistic research extension tasks without substantial human guidance.
NEVIS'22: A Stream of 100 Tasks Sampled from 30 Years of Computer Vision Research
A shared goal of several machine learning communities like continual learning, meta-learning and transfer learning, is to design algorithms and models that efficiently and robustly adapt to unseen tasks. An even more ambitious goal is to build models that never stop adapting, and that become increasingly more efficient through time by suitably transferring the accrued knowledge. Beyond the study of the actual learning algorithm and model architecture, there are several hurdles towards our quest to build such models, such as the choice of learning protocol, metric of success and data needed to validate research hypotheses. In this work, we introduce the Never-Ending VIsual-classification Stream (NEVIS'22), a benchmark consisting of a stream of over 100 visual classification tasks, sorted chronologically and extracted from papers sampled uniformly from computer vision proceedings spanning the last three decades. The resulting stream reflects what the research community thought was meaningful at any point in time, and it serves as an ideal test bed to assess how well models can adapt to new tasks, and do so better and more efficiently as time goes by. Despite being limited to classification, the resulting stream has a rich diversity of tasks from OCR, to texture analysis, scene recognition, and so forth. The diversity is also reflected in the wide range of dataset sizes, spanning over four orders of magnitude. Overall, NEVIS'22 poses an unprecedented challenge for current sequential learning approaches due to the scale and diversity of tasks, yet with a low entry barrier as it is limited to a single modality and well understood supervised learning problems. Moreover, we provide a reference implementation including strong baselines and an evaluation protocol to compare methods in terms of their trade-off between accuracy and compute.
SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding by exploring novel domains, identifying complex patterns, and uncovering previously unseen connections in vast scientific data. In this work, we present SciAgents, an approach that leverages three core concepts: (1) the use of large-scale ontological knowledge graphs to organize and interconnect diverse scientific concepts, (2) a suite of large language models (LLMs) and data retrieval tools, and (3) multi-agent systems with in-situ learning capabilities. Applied to biologically inspired materials, SciAgents reveals hidden interdisciplinary relationships that were previously considered unrelated, achieving a scale, precision, and exploratory power that surpasses traditional human-driven research methods. The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties. By integrating these capabilities in a modular fashion, the intelligent system yields material discoveries, critique and improve existing hypotheses, retrieve up-to-date data about existing research, and highlights their strengths and limitations. Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a `swarm of intelligence' similar to biological systems. This provides new avenues for materials discovery and accelerates the development of advanced materials by unlocking Nature's design principles.
AIDE: AI-Driven Exploration in the Space of Code
Machine learning, the foundation of modern artificial intelligence, has driven innovations that have fundamentally transformed the world. Yet, behind advancements lies a complex and often tedious process requiring labor and compute intensive iteration and experimentation. Engineers and scientists developing machine learning models spend much of their time on trial-and-error tasks instead of conceptualizing innovative solutions or research hypotheses. To address this challenge, we introduce AI-Driven Exploration (AIDE), a machine learning engineering agent powered by large language models (LLMs). AIDE frames machine learning engineering as a code optimization problem, and formulates trial-and-error as a tree search in the space of potential solutions. By strategically reusing and refining promising solutions, AIDE effectively trades computational resources for enhanced performance, achieving state-of-the-art results on multiple machine learning engineering benchmarks, including our Kaggle evaluations, OpenAI MLE-Bench and METRs RE-Bench.
Towards an AI co-scientist
Scientific discovery relies on scientists generating novel hypotheses that undergo rigorous experimental validation. To augment this process, we introduce an AI co-scientist, a multi-agent system built on Gemini 2.0. The AI co-scientist is intended to help uncover new, original knowledge and to formulate demonstrably novel research hypotheses and proposals, building upon prior evidence and aligned to scientist-provided research objectives and guidance. The system's design incorporates a generate, debate, and evolve approach to hypothesis generation, inspired by the scientific method and accelerated by scaling test-time compute. Key contributions include: (1) a multi-agent architecture with an asynchronous task execution framework for flexible compute scaling; (2) a tournament evolution process for self-improving hypotheses generation. Automated evaluations show continued benefits of test-time compute, improving hypothesis quality. While general purpose, we focus development and validation in three biomedical areas: drug repurposing, novel target discovery, and explaining mechanisms of bacterial evolution and anti-microbial resistance. For drug repurposing, the system proposes candidates with promising validation findings, including candidates for acute myeloid leukemia that show tumor inhibition in vitro at clinically applicable concentrations. For novel target discovery, the AI co-scientist proposed new epigenetic targets for liver fibrosis, validated by anti-fibrotic activity and liver cell regeneration in human hepatic organoids. Finally, the AI co-scientist recapitulated unpublished experimental results via a parallel in silico discovery of a novel gene transfer mechanism in bacterial evolution. These results, detailed in separate, co-timed reports, demonstrate the potential to augment biomedical and scientific discovery and usher an era of AI empowered scientists.
Learning to Generate Research Idea with Dynamic Control
The rapid advancements in large language models (LLMs) have demonstrated their potential to accelerate scientific discovery, particularly in automating the process of research ideation. LLM-based systems have shown promise in generating hypotheses and research ideas. However, current approaches predominantly rely on prompting-based pre-trained models, limiting their ability to optimize generated content effectively. Moreover, they also lack the capability to deal with the complex interdependence and inherent restrictions among novelty, feasibility, and effectiveness, which remains challenging due to the inherent trade-offs among these dimensions, such as the innovation-feasibility conflict. To address these limitations, we for the first time propose fine-tuning LLMs to be better idea proposers and introduce a novel framework that employs a two-stage approach combining Supervised Fine-Tuning (SFT) and controllable Reinforcement Learning (RL). In the SFT stage, the model learns foundational patterns from pairs of research papers and follow-up ideas. In the RL stage, multi-dimensional reward modeling, guided by fine-grained feedback, evaluates and optimizes the generated ideas across key metrics. Dimensional controllers enable dynamic adjustment of generation, while a sentence-level decoder ensures context-aware emphasis during inference. Our framework provides a balanced approach to research ideation, achieving high-quality outcomes by dynamically navigating the trade-offs among novelty, feasibility, and effectiveness.
