- Pop Music Transformer: Beat-based Modeling and Generation of Expressive Pop Piano Compositions A great number of deep learning based models have been recently proposed for automatic music composition. Among these models, the Transformer stands out as a prominent approach for generating expressive classical piano performance with a coherent structure of up to one minute. The model is powerful in that it learns abstractions of data on its own, without much human-imposed domain knowledge or constraints. In contrast with this general approach, this paper shows that Transformers can do even better for music modeling, when we improve the way a musical score is converted into the data fed to a Transformer model. In particular, we seek to impose a metrical structure in the input data, so that Transformers can be more easily aware of the beat-bar-phrase hierarchical structure in music. The new data representation maintains the flexibility of local tempo changes, and provides hurdles to control the rhythmic and harmonic structure of music. With this approach, we build a Pop Music Transformer that composes Pop piano music with better rhythmic structure than existing Transformer models. 2 authors · Feb 1, 2020
- Poem Meter Classification of Recited Arabic Poetry: Integrating High-Resource Systems for a Low-Resource Task Arabic poetry is an essential and integral part of Arabic language and culture. It has been used by the Arabs to spot lights on their major events such as depicting brutal battles and conflicts. They also used it, as in many other languages, for various purposes such as romance, pride, lamentation, etc. Arabic poetry has received major attention from linguistics over the decades. One of the main characteristics of Arabic poetry is its special rhythmic structure as opposed to prose. This structure is referred to as a meter. Meters, along with other poetic characteristics, are intensively studied in an Arabic linguistic field called "Aroud". Identifying these meters for a verse is a lengthy and complicated process. It also requires technical knowledge in Aruod. For recited poetry, it adds an extra layer of processing. Developing systems for automatic identification of poem meters for recited poems need large amounts of labelled data. In this study, we propose a state-of-the-art framework to identify the poem meters of recited Arabic poetry, where we integrate two separate high-resource systems to perform the low-resource task. To ensure generalization of our proposed architecture, we publish a benchmark for this task for future research. 3 authors · Apr 16
- A Novel 1D State Space for Efficient Music Rhythmic Analysis Inferring music time structures has a broad range of applications in music production, processing and analysis. Scholars have proposed various methods to analyze different aspects of time structures, such as beat, downbeat, tempo and meter. Many state-of-the-art (SOFA) methods, however, are computationally expensive. This makes them inapplicable in real-world industrial settings where the scale of the music collections can be millions. This paper proposes a new state space and a semi-Markov model for music time structure analysis. The proposed approach turns the commonly used 2D state spaces into a 1D model through a jump-back reward strategy. It reduces the state spaces size drastically. We then utilize the proposed method for causal, joint beat, downbeat, tempo, and meter tracking, and compare it against several previous methods. The proposed method delivers similar performance with the SOFA joint causal models with a much smaller state space and a more than 30 times speedup. 4 authors · Nov 1, 2021
1 Hierarchical Recurrent Neural Networks for Conditional Melody Generation with Long-term Structure The rise of deep learning technologies has quickly advanced many fields, including that of generative music systems. There exist a number of systems that allow for the generation of good sounding short snippets, yet, these generated snippets often lack an overarching, longer-term structure. In this work, we propose CM-HRNN: a conditional melody generation model based on a hierarchical recurrent neural network. This model allows us to generate melodies with long-term structures based on given chord accompaniments. We also propose a novel, concise event-based representation to encode musical lead sheets while retaining the notes' relative position within the bar with respect to the musical meter. With this new data representation, the proposed architecture can simultaneously model the rhythmic, as well as the pitch structures in an effective way. Melodies generated by the proposed model were extensively evaluated in quantitative experiments as well as a user study to ensure the musical quality of the output as well as to evaluate if they contain repeating patterns. We also compared the system with the state-of-the-art AttentionRNN. This comparison shows that melodies generated by CM-HRNN contain more repeated patterns (i.e., higher compression ratio) and a lower tonal tension (i.e., more tonally concise). Results from our listening test indicate that CM-HRNN outperforms AttentionRNN in terms of long-term structure and overall rating. 3 authors · Feb 19, 2021