Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeA Prescriptive Learning Analytics Framework: Beyond Predictive Modelling and onto Explainable AI with Prescriptive Analytics and ChatGPT
A significant body of recent research in the field of Learning Analytics has focused on leveraging machine learning approaches for predicting at-risk students in order to initiate timely interventions and thereby elevate retention and completion rates. The overarching feature of the majority of these research studies has been on the science of prediction only. The component of predictive analytics concerned with interpreting the internals of the models and explaining their predictions for individual cases to stakeholders has largely been neglected. Additionally, works that attempt to employ data-driven prescriptive analytics to automatically generate evidence-based remedial advice for at-risk learners are in their infancy. eXplainable AI is a field that has recently emerged providing cutting-edge tools which support transparent predictive analytics and techniques for generating tailored advice for at-risk students. This study proposes a novel framework that unifies both transparent machine learning as well as techniques for enabling prescriptive analytics, while integrating the latest advances in large language models. This work practically demonstrates the proposed framework using predictive models for identifying at-risk learners of programme non-completion. The study then further demonstrates how predictive modelling can be augmented with prescriptive analytics on two case studies in order to generate human-readable prescriptive feedback for those who are at risk using ChatGPT.
Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Recent advances have witnessed the effectiveness of reinforcement learning (RL) finetuning in enhancing the reasoning capabilities of large language models (LLMs). The optimization process often requires numerous iterations to achieve satisfactory performance, resulting in high computational costs due to the need for frequent prompt evaluations under intensive LLM interactions and repeated policy updates. Appropriate online prompt selection methods reduce iteration steps by prioritizing informative prompts during training, while the pipeline's reliance on exhaustive prompt evaluation and subset selection for optimization still incurs substantial computational overhead due to frequent LLM inference calls. Distinguished from these direct evaluate-then-select schemes, this work investigates iterative approximate evaluation for arbitrary prompts and introduces Model Predictive Prompt Selection (MoPPS), a Bayesian risk-predictive framework that online estimates prompt difficulty without requiring costly LLM interactions. Technically, MoPPS models each prompt's success rate as a latent variable, performs streaming Bayesian inference, and employs posterior sampling in a constructed multi-armed bandit machine, enabling sample efficient and adaptive prompt selection. Extensive experiments across mathematics, planning, and vision-based geometry tasks show that MoPPS reliably predicts prompt difficulty and accelerates training with significantly reduced LLM rollouts.
A multi-view contrastive learning framework for spatial embeddings in risk modelling
Incorporating spatial information, particularly those influenced by climate, weather, and demographic factors, is crucial for improving underwriting precision and enhancing risk management in insurance. However, spatial data are often unstructured, high-dimensional, and difficult to integrate into predictive models. Embedding methods are needed to convert spatial data into meaningful representations for modelling tasks. We propose a novel multi-view contrastive learning framework for generating spatial embeddings that combine information from multiple spatial data sources. To train the model, we construct a spatial dataset that merges satellite imagery and OpenStreetMap features across Europe. The framework aligns these spatial views with coordinate-based encodings, producing low-dimensional embeddings that capture both spatial structure and contextual similarity. Once trained, the model generates embeddings directly from latitude-longitude pairs, enabling any dataset with coordinates to be enriched with meaningful spatial features without requiring access to the original spatial inputs. In a case study on French real estate prices, we compare models trained on raw coordinates against those using our spatial embeddings as inputs. The embeddings consistently improve predictive accuracy across generalised linear, additive, and boosting models, while providing interpretable spatial effects and demonstrating transferability to unseen regions.
Credit Risk Meets Large Language Models: Building a Risk Indicator from Loan Descriptions in P2P Lending
Peer-to-peer (P2P) lending connects borrowers and lenders through online platforms but suffers from significant information asymmetry, as lenders often lack sufficient data to assess borrowers' creditworthiness. This paper addresses this challenge by leveraging BERT, a Large Language Model (LLM) known for its ability to capture contextual nuances in text, to generate a risk score based on borrowers' loan descriptions using a dataset from the Lending Club platform. We fine-tune BERT to distinguish between defaulted and non-defaulted loans using the loan descriptions provided by the borrowers. The resulting BERT-generated risk score is then integrated as an additional feature into an XGBoost classifier used at the loan granting stage, where decision-makers have limited information available to guide their decisions. This integration enhances predictive performance, with improvements in balanced accuracy and AUC, highlighting the value of textual features in complementing traditional inputs. Moreover, we find that the incorporation of the BERT score alters how classification models utilize traditional input variables, with these changes varying by loan purpose. These findings suggest that BERT discerns meaningful patterns in loan descriptions, encompassing borrower-specific features, specific purposes, and linguistic characteristics. However, the inherent opacity of LLMs and their potential biases underscore the need for transparent frameworks to ensure regulatory compliance and foster trust. Overall, this study demonstrates how LLM-derived insights interact with traditional features in credit risk modeling, opening new avenues to enhance the explainability and fairness of these models.
Evaluating language models as risk scores
Current question-answering benchmarks predominantly focus on accuracy in realizable prediction tasks. Conditioned on a question and answer-key, does the most likely token match the ground truth? Such benchmarks necessarily fail to evaluate LLMs' ability to quantify ground-truth outcome uncertainty. In this work, we focus on the use of LLMs as risk scores for unrealizable prediction tasks. We introduce folktexts, a software package to systematically generate risk scores using LLMs, and evaluate them against US Census data products. A flexible API enables the use of different prompting schemes, local or web-hosted models, and diverse census columns that can be used to compose custom prediction tasks. We evaluate 17 recent LLMs across five proposed benchmark tasks. We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated. Base models consistently overestimate outcome uncertainty, while instruction-tuned models underestimate uncertainty and produce over-confident risk scores. In fact, instruction-tuning polarizes answer distribution regardless of true underlying data uncertainty. This reveals a general inability of instruction-tuned LLMs to express data uncertainty using multiple-choice answers. A separate experiment using verbalized chat-style risk queries yields substantially improved calibration across instruction-tuned models. These differences in ability to quantify data uncertainty cannot be revealed in realizable settings, and highlight a blind-spot in the current evaluation ecosystem that folktexts covers.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
WellDunn: On the Robustness and Explainability of Language Models and Large Language Models in Identifying Wellness Dimensions
Language Models (LMs) are being proposed for mental health applications where the heightened risk of adverse outcomes means predictive performance may not be a sufficient litmus test of a model's utility in clinical practice. A model that can be trusted for practice should have a correspondence between explanation and clinical determination, yet no prior research has examined the attention fidelity of these models and their effect on ground truth explanations. We introduce an evaluation design that focuses on the robustness and explainability of LMs in identifying Wellness Dimensions (WDs). We focus on two existing mental health and well-being datasets: (a) Multi-label Classification-based MultiWD, and (b) WellXplain for evaluating attention mechanism veracity against expert-labeled explanations. The labels are based on Halbert Dunn's theory of wellness, which gives grounding to our evaluation. We reveal four surprising results about LMs/LLMs: (1) Despite their human-like capabilities, GPT-3.5/4 lag behind RoBERTa, and MedAlpaca, a fine-tuned LLM on WellXplain fails to deliver any remarkable improvements in performance or explanations. (2) Re-examining LMs' predictions based on a confidence-oriented loss function reveals a significant performance drop. (3) Across all LMs/LLMs, the alignment between attention and explanations remains low, with LLMs scoring a dismal 0.0. (4) Most mental health-specific LMs/LLMs overlook domain-specific knowledge and undervalue explanations, causing these discrepancies. This study highlights the need for further research into their consistency and explanations in mental health and well-being.
RUL forecasting for wind turbine predictive maintenance based on deep learning
Predictive maintenance (PdM) is increasingly pursued to reduce wind farm operation and maintenance costs by accurately predicting the remaining useful life (RUL) and strategically scheduling maintenance. However, the remoteness of wind farms often renders current methodologies ineffective, as they fail to provide a sufficiently reliable advance time window for maintenance planning, limiting PdM's practicality. This study introduces a novel deep learning (DL) methodology for future RUL forecasting. By employing a multi-parametric attention-based DL approach that bypasses feature engineering, thereby minimizing the risk of human error, two models: ForeNet-2d and ForeNet-3d are proposed. These models successfully forecast the RUL for seven multifaceted wind turbine (WT) failures with a 2-week forecast window. The most precise forecast deviated by only 10 minutes from the actual RUL, while the least accurate prediction deviated by 1.8 days, with most predictions being off by only a few hours. This methodology offers a substantial time frame to access remote WTs and perform necessary maintenance, thereby enabling the practical implementation of PdM.
A Spatio-Temporal Machine Learning Model for Mortgage Credit Risk: Default Probabilities and Loan Portfolios
We introduce a novel machine learning model for credit risk by combining tree-boosting with a latent spatio-temporal Gaussian process model accounting for frailty correlation. This allows for modeling non-linearities and interactions among predictor variables in a flexible data-driven manner and for accounting for spatio-temporal variation that is not explained by observable predictor variables. We also show how estimation and prediction can be done in a computationally efficient manner. In an application to a large U.S. mortgage credit risk data set, we find that both predictive default probabilities for individual loans and predictive loan portfolio loss distributions obtained with our novel approach are more accurate compared to conventional independent linear hazard models and also linear spatio-temporal models. Using interpretability tools for machine learning models, we find that the likely reasons for this outperformance are strong interaction and non-linear effects in the predictor variables and the presence of large spatio-temporal frailty effects.
Heart Disease Detection using Vision-Based Transformer Models from ECG Images
Heart disease, also known as cardiovascular disease, is a prevalent and critical medical condition characterized by the impairment of the heart and blood vessels, leading to various complications such as coronary artery disease, heart failure, and myocardial infarction. The timely and accurate detection of heart disease is of paramount importance in clinical practice. Early identification of individuals at risk enables proactive interventions, preventive measures, and personalized treatment strategies to mitigate the progression of the disease and reduce adverse outcomes. In recent years, the field of heart disease detection has witnessed notable advancements due to the integration of sophisticated technologies and computational approaches. These include machine learning algorithms, data mining techniques, and predictive modeling frameworks that leverage vast amounts of clinical and physiological data to improve diagnostic accuracy and risk stratification. In this work, we propose to detect heart disease from ECG images using cutting-edge technologies, namely vision transformer models. These models are Google-Vit, Microsoft-Beit, and Swin-Tiny. To the best of our knowledge, this is the initial endeavor concentrating on the detection of heart diseases through image-based ECG data by employing cuttingedge technologies namely, transformer models. To demonstrate the contribution of the proposed framework, the performance of vision transformer models are compared with state-of-the-art studies. Experiment results show that the proposed framework exhibits remarkable classification results.
Model Predictive Task Sampling for Efficient and Robust Adaptation
Foundation models have revolutionized general-purpose problem-solving, offering rapid task adaptation through pretraining, meta-training, and finetuning. Recent crucial advances in these paradigms reveal the importance of challenging task prioritized sampling to enhance adaptation robustness under distribution shifts. However, ranking task difficulties over iteration as a preliminary step typically requires exhaustive task evaluation, which is practically unaffordable in computation and data-annotation. This study provides a novel perspective to illuminate the possibility of leveraging the dual importance of adaptation robustness and learning efficiency, particularly in scenarios where task evaluation is risky or costly, such as iterative agent-environment interactions for robotic policy evaluation or computationally intensive inference steps for finetuning foundation models. Firstly, we introduce Model Predictive Task Sampling (MPTS), a framework that bridges the task space and adaptation risk landscape, providing a theoretical foundation for robust active task sampling. MPTS employs a generative model to characterize the episodic optimization process and predicts task-specific adaptation risk via posterior inference. The resulting risk learner amortizes the costly evaluation of task adaptation performance and provably approximates task difficulty rankings. MPTS seamlessly integrates into zero-shot, few-shot, and supervised finetuning settings. Empirically, we conduct extensive experiments in pattern recognition using foundation models and sequential decision-making. Our results demonstrate that MPTS significantly enhances adaptation robustness for tail or out-of-distribution (OOD) tasks and improves learning efficiency compared to state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.
Risk Map As Middleware: Towards Interpretable Cooperative End-to-end Autonomous Driving for Risk-Aware Planning
End-to-end paradigm has emerged as a promising approach to autonomous driving. However, existing single-agent end-to-end pipelines are often constrained by occlusion and limited perception range, resulting in hazardous driving. Furthermore, their black-box nature prevents the interpretability of the driving behavior, leading to an untrustworthiness system. To address these limitations, we introduce Risk Map as Middleware (RiskMM) and propose an interpretable cooperative end-to-end driving framework. The risk map learns directly from the driving data and provides an interpretable spatiotemporal representation of the scenario from the upstream perception and the interactions between the ego vehicle and the surrounding environment for downstream planning. RiskMM first constructs a multi-agent spatiotemporal representation with unified Transformer-based architecture, then derives risk-aware representations by modeling interactions among surrounding environments with attention. These representations are subsequently fed into a learning-based Model Predictive Control (MPC) module. The MPC planner inherently accommodates physical constraints and different vehicle types and can provide interpretation by aligning learned parameters with explicit MPC elements. Evaluations conducted on the real-world V2XPnP-Seq dataset confirm that RiskMM achieves superior and robust performance in risk-aware trajectory planning, significantly enhancing the interpretability of the cooperative end-to-end driving framework. The codebase will be released to facilitate future research in this field.
Case Studies for Computing Density of Reachable States for Safe Autonomous Motion Planning
Density of the reachable states can help understand the risk of safety-critical systems, especially in situations when worst-case reachability is too conservative. Recent work provides a data-driven approach to compute the density distribution of autonomous systems' forward reachable states online. In this paper, we study the use of such approach in combination with model predictive control for verifiable safe path planning under uncertainties. We first use the learned density distribution to compute the risk of collision online. If such risk exceeds the acceptable threshold, our method will plan for a new path around the previous trajectory, with the risk of collision below the threshold. Our method is well-suited to handle systems with uncertainties and complicated dynamics as our data-driven approach does not need an analytical form of the systems' dynamics and can estimate forward state density with an arbitrary initial distribution of uncertainties. We design two challenging scenarios (autonomous driving and hovercraft control) for safe motion planning in environments with obstacles under system uncertainties. We first show that our density estimation approach can reach a similar accuracy as the Monte-Carlo-based method while using only 0.01X training samples. By leveraging the estimated risk, our algorithm achieves the highest success rate in goal reaching when enforcing the safety rate above 0.99.
Quantitative Risk Management in Volatile Markets with an Expectile-Based Framework for the FTSE Index
This research presents a framework for quantitative risk management in volatile markets, specifically focusing on expectile-based methodologies applied to the FTSE 100 index. Traditional risk measures such as Value-at-Risk (VaR) have demonstrated significant limitations during periods of market stress, as evidenced during the 2008 financial crisis and subsequent volatile periods. This study develops an advanced expectile-based framework that addresses the shortcomings of conventional quantile-based approaches by providing greater sensitivity to tail losses and improved stability in extreme market conditions. The research employs a dataset spanning two decades of FTSE 100 returns, incorporating periods of high volatility, market crashes, and recovery phases. Our methodology introduces novel mathematical formulations for expectile regression models, enhanced threshold determination techniques using time series analysis, and robust backtesting procedures. The empirical results demonstrate that expectile-based Value-at-Risk (EVaR) consistently outperforms traditional VaR measures across various confidence levels and market conditions. The framework exhibits superior performance during volatile periods, with reduced model risk and enhanced predictive accuracy. Furthermore, the study establishes practical implementation guidelines for financial institutions and provides evidence-based recommendations for regulatory compliance and portfolio management. The findings contribute significantly to the literature on financial risk management and offer practical tools for practitioners dealing with volatile market environments.
Label Dependent Attention Model for Disease Risk Prediction Using Multimodal Electronic Health Records
Disease risk prediction has attracted increasing attention in the field of modern healthcare, especially with the latest advances in artificial intelligence (AI). Electronic health records (EHRs), which contain heterogeneous patient information, are widely used in disease risk prediction tasks. One challenge of applying AI models for risk prediction lies in generating interpretable evidence to support the prediction results while retaining the prediction ability. In order to address this problem, we propose the method of jointly embedding words and labels whereby attention modules learn the weights of words from medical notes according to their relevance to the names of risk prediction labels. This approach boosts interpretability by employing an attention mechanism and including the names of prediction tasks in the model. However, its application is only limited to the handling of textual inputs such as medical notes. In this paper, we propose a label dependent attention model LDAM to 1) improve the interpretability by exploiting Clinical-BERT (a biomedical language model pre-trained on a large clinical corpus) to encode biomedically meaningful features and labels jointly; 2) extend the idea of joint embedding to the processing of time-series data, and develop a multi-modal learning framework for integrating heterogeneous information from medical notes and time-series health status indicators. To demonstrate our method, we apply LDAM to the MIMIC-III dataset to predict different disease risks. We evaluate our method both quantitatively and qualitatively. Specifically, the predictive power of LDAM will be shown, and case studies will be carried out to illustrate its interpretability.
Foundation Model of Electronic Medical Records for Adaptive Risk Estimation
Hospitals struggle to predict critical outcomes. Traditional early warning systems, like NEWS and MEWS, rely on static variables and fixed thresholds, limiting their adaptability, accuracy, and personalization. We previously developed the Enhanced Transformer for Health Outcome Simulation (ETHOS), an AI model that tokenizes patient health timelines (PHTs) from EHRs and uses transformer-based architectures to predict future PHTs. ETHOS is a versatile framework for developing a wide range of applications. In this work, we develop the Adaptive Risk Estimation System (ARES) that leverages ETHOS to compute dynamic, personalized risk probabilities for clinician-defined critical events. ARES also features a personalized explainability module that highlights key clinical factors influencing risk estimates. We evaluated ARES using the MIMIC-IV v2.2 dataset together with its Emergency Department (ED) extension and benchmarked performance against both classical early warning systems and contemporary machine learning models. The entire dataset was tokenized resulting in 285,622 PHTs, comprising over 360 million tokens. ETHOS outperformed benchmark models in predicting hospital admissions, ICU admissions, and prolonged stays, achieving superior AUC scores. Its risk estimates were robust across demographic subgroups, with calibration curves confirming model reliability. The explainability module provided valuable insights into patient-specific risk factors. ARES, powered by ETHOS, advances predictive healthcare AI by delivering dynamic, real-time, personalized risk estimation with patient-specific explainability. Although our results are promising, the clinical impact remains uncertain. Demonstrating ARES's true utility in real-world settings will be the focus of our future work. We release the source code to facilitate future research.
Conformal Risk Control for Pulmonary Nodule Detection
Quantitative tools are increasingly appealing for decision support in healthcare, driven by the growing capabilities of advanced AI systems. However, understanding the predictive uncertainties surrounding a tool's output is crucial for decision-makers to ensure reliable and transparent decisions. In this paper, we present a case study on pulmonary nodule detection for lung cancer screening, enhancing an advanced detection model with an uncertainty quantification technique called conformal risk control (CRC). We demonstrate that prediction sets with conformal guarantees are attractive measures of predictive uncertainty in the safety-critical healthcare domain, allowing end-users to achieve arbitrary validity by trading off false positives and providing formal statistical guarantees on model performance. Among ground-truth nodules annotated by at least three radiologists, our model achieves a sensitivity that is competitive with that generally achieved by individual radiologists, with a slight increase in false positives. Furthermore, we illustrate the risks of using off-the-shelve prediction models when faced with ontological uncertainty, such as when radiologists disagree on what constitutes the ground truth on pulmonary nodules.
Controlling Risk of Retrieval-augmented Generation: A Counterfactual Prompting Framework
Retrieval-augmented generation (RAG) has emerged as a popular solution to mitigate the hallucination issues of large language models. However, existing studies on RAG seldom address the issue of predictive uncertainty, i.e., how likely it is that a RAG model's prediction is incorrect, resulting in uncontrollable risks in real-world applications. In this work, we emphasize the importance of risk control, ensuring that RAG models proactively refuse to answer questions with low confidence. Our research identifies two critical latent factors affecting RAG's confidence in its predictions: the quality of the retrieved results and the manner in which these results are utilized. To guide RAG models in assessing their own confidence based on these two latent factors, we develop a counterfactual prompting framework that induces the models to alter these factors and analyzes the effect on their answers. We also introduce a benchmarking procedure to collect answers with the option to abstain, facilitating a series of experiments. For evaluation, we introduce several risk-related metrics and the experimental results demonstrate the effectiveness of our approach.
MLE convergence speed to information projection of exponential family: Criterion for model dimension and sample size -- complete proof version--
For a parametric model of distributions, the closest distribution in the model to the true distribution located outside the model is considered. Measuring the closeness between two distributions with the Kullback-Leibler (K-L) divergence, the closest distribution is called the "information projection." The estimation risk of the maximum likelihood estimator (MLE) is defined as the expectation of K-L divergence between the information projection and the predictive distribution with plugged-in MLE. Here, the asymptotic expansion of the risk is derived up to n^{-2}-order, and the sufficient condition on the risk for the Bayes error rate between the true distribution and the information projection to be lower than a specified value is investigated. Combining these results, the "p-n criterion" is proposed, which determines whether the MLE is sufficiently close to the information projection for the given model and sample. In particular, the criterion for an exponential family model is relatively simple and can be used for a complex model with no explicit form of normalizing constant. This criterion can constitute a solution to the sample size or model acceptance problem. Use of the p-n criteria is demonstrated for two practical datasets. The relationship between the results and information criteria is also studied.
Evaluation of Popular XAI Applied to Clinical Prediction Models: Can They be Trusted?
The absence of transparency and explainability hinders the clinical adoption of Machine learning (ML) algorithms. Although various methods of explainable artificial intelligence (XAI) have been suggested, there is a lack of literature that delves into their practicality and assesses them based on criteria that could foster trust in clinical environments. To address this gap this study evaluates two popular XAI methods used for explaining predictive models in the healthcare context in terms of whether they (i) generate domain-appropriate representation, i.e. coherent with respect to the application task, (ii) impact clinical workflow and (iii) are consistent. To that end, explanations generated at the cohort and patient levels were analysed. The paper reports the first benchmarking of the XAI methods applied to risk prediction models obtained by evaluating the concordance between generated explanations and the trigger of a future clinical deterioration episode recorded by the data collection system. We carried out an analysis using two Electronic Medical Records (EMR) datasets sourced from Australian major hospitals. The findings underscore the limitations of state-of-the-art XAI methods in the clinical context and their potential benefits. We discuss these limitations and contribute to the theoretical development of trustworthy XAI solutions where clinical decision support guides the choice of intervention by suggesting the pattern or drivers for clinical deterioration in the future.
Learning Optimized Risk Scores
Risk scores are simple classification models that let users make quick risk predictions by adding and subtracting a few small numbers. These models are widely used in medicine and criminal justice, but are difficult to learn from data because they need to be calibrated, sparse, use small integer coefficients, and obey application-specific operational constraints. In this paper, we present a new machine learning approach to learn risk scores. We formulate the risk score problem as a mixed integer nonlinear program, and present a cutting plane algorithm for non-convex settings to efficiently recover its optimal solution. We improve our algorithm with specialized techniques to generate feasible solutions, narrow the optimality gap, and reduce data-related computation. Our approach can fit risk scores in a way that scales linearly in the number of samples, provides a certificate of optimality, and obeys real-world constraints without parameter tuning or post-processing. We benchmark the performance benefits of this approach through an extensive set of numerical experiments, comparing to risk scores built using heuristic approaches. We also discuss its practical benefits through a real-world application where we build a customized risk score for ICU seizure prediction in collaboration with the Massachusetts General Hospital.
Assessing Language Model Deployment with Risk Cards
This paper introduces RiskCards, a framework for structured assessment and documentation of risks associated with an application of language models. As with all language, text generated by language models can be harmful, or used to bring about harm. Automating language generation adds both an element of scale and also more subtle or emergent undesirable tendencies to the generated text. Prior work establishes a wide variety of language model harms to many different actors: existing taxonomies identify categories of harms posed by language models; benchmarks establish automated tests of these harms; and documentation standards for models, tasks and datasets encourage transparent reporting. However, there is no risk-centric framework for documenting the complexity of a landscape in which some risks are shared across models and contexts, while others are specific, and where certain conditions may be required for risks to manifest as harms. RiskCards address this methodological gap by providing a generic framework for assessing the use of a given language model in a given scenario. Each RiskCard makes clear the routes for the risk to manifest harm, their placement in harm taxonomies, and example prompt-output pairs. While RiskCards are designed to be open-source, dynamic and participatory, we present a "starter set" of RiskCards taken from a broad literature survey, each of which details a concrete risk presentation. Language model RiskCards initiate a community knowledge base which permits the mapping of risks and harms to a specific model or its application scenario, ultimately contributing to a better, safer and shared understanding of the risk landscape.
Domain constraints improve risk prediction when outcome data is missing
Machine learning models are often trained to predict the outcome resulting from a human decision. For example, if a doctor decides to test a patient for disease, will the patient test positive? A challenge is that historical decision-making determines whether the outcome is observed: we only observe test outcomes for patients doctors historically tested. Untested patients, for whom outcomes are unobserved, may differ from tested patients along observed and unobserved dimensions. We propose a Bayesian model class which captures this setting. The purpose of the model is to accurately estimate risk for both tested and untested patients. Estimating this model is challenging due to the wide range of possibilities for untested patients. To address this, we propose two domain constraints which are plausible in health settings: a prevalence constraint, where the overall disease prevalence is known, and an expertise constraint, where the human decision-maker deviates from purely risk-based decision-making only along a constrained feature set. We show theoretically and on synthetic data that domain constraints improve parameter inference. We apply our model to a case study of cancer risk prediction, showing that the model's inferred risk predicts cancer diagnoses, its inferred testing policy captures known public health policies, and it can identify suboptimalities in test allocation. Though our case study is in healthcare, our analysis reveals a general class of domain constraints which can improve model estimation in many settings.
Interpretability, Then What? Editing Machine Learning Models to Reflect Human Knowledge and Values
Machine learning (ML) interpretability techniques can reveal undesirable patterns in data that models exploit to make predictions--potentially causing harms once deployed. However, how to take action to address these patterns is not always clear. In a collaboration between ML and human-computer interaction researchers, physicians, and data scientists, we develop GAM Changer, the first interactive system to help domain experts and data scientists easily and responsibly edit Generalized Additive Models (GAMs) and fix problematic patterns. With novel interaction techniques, our tool puts interpretability into action--empowering users to analyze, validate, and align model behaviors with their knowledge and values. Physicians have started to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an evaluation with 7 data scientists working in diverse domains highlights that our tool is easy to use, meets their model editing needs, and fits into their current workflows. Built with modern web technologies, our tool runs locally in users' web browsers or computational notebooks, lowering the barrier to use. GAM Changer is available at the following public demo link: https://interpret.ml/gam-changer.
Measuring the Stability of EHR- and EKG-based Predictive Models
Databases of electronic health records (EHRs) are increasingly used to inform clinical decisions. Machine learning methods can find patterns in EHRs that are predictive of future adverse outcomes. However, statistical models may be built upon patterns of health-seeking behavior that vary across patient subpopulations, leading to poor predictive performance when training on one patient population and predicting on another. This note proposes two tests to better measure and understand model generalization. We use these tests to compare models derived from two data sources: (i) historical medical records, and (ii) electrocardiogram (EKG) waveforms. In a predictive task, we show that EKG-based models can be more stable than EHR-based models across different patient populations.
Predictive Churn with the Set of Good Models
Machine learning models in modern mass-market applications are often updated over time. One of the foremost challenges faced is that, despite increasing overall performance, these updates may flip specific model predictions in unpredictable ways. In practice, researchers quantify the number of unstable predictions between models pre and post update -- i.e., predictive churn. In this paper, we study this effect through the lens of predictive multiplicity -- i.e., the prevalence of conflicting predictions over the set of near-optimal models (the Rashomon set). We show how traditional measures of predictive multiplicity can be used to examine expected churn over this set of prospective models -- i.e., the set of models that may be used to replace a baseline model in deployment. We present theoretical results on the expected churn between models within the Rashomon set from different perspectives. And we characterize expected churn over model updates via the Rashomon set, pairing our analysis with empirical results on real-world datasets -- showing how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications. Further, we show that our approach is useful even for models enhanced with uncertainty awareness.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.
On Information-Theoretic Measures of Predictive Uncertainty
Reliable estimation of predictive uncertainty is crucial for machine learning applications, particularly in high-stakes scenarios where hedging against risks is essential. Despite its significance, there is no universal agreement on how to best quantify predictive uncertainty. In this work, we revisit core concepts to propose a framework for information-theoretic measures of predictive uncertainty. Our proposed framework categorizes predictive uncertainty measures according to two factors: (I) The predicting model (II) The approximation of the true predictive distribution. Examining all possible combinations of these two factors, we derive a set of predictive uncertainty measures that includes both known and newly introduced ones. We extensively evaluate these measures across a broad set of tasks, identifying conditions under which certain measures excel. Our findings show the importance of aligning the choice of uncertainty measure with the predicting model on in-distribution (ID) data, the limitations of epistemic uncertainty measures for out-of-distribution (OOD) data, and that the disentanglement between measures varies substantially between ID and OOD data. Together, these insights provide a more comprehensive understanding of predictive uncertainty measures, revealing their implicit assumptions and relationships.
PropensityBench: Evaluating Latent Safety Risks in Large Language Models via an Agentic Approach
Recent advances in Large Language Models (LLMs) have sparked concerns over their potential to acquire and misuse dangerous or high-risk capabilities, posing frontier risks. Current safety evaluations primarily test for what a model can do - its capabilities - without assessing what it would do if endowed with high-risk capabilities. This leaves a critical blind spot: models may strategically conceal capabilities or rapidly acquire them, while harboring latent inclinations toward misuse. We argue that propensity - the likelihood of a model to pursue harmful actions if empowered - is a critical, yet underexplored, axis of safety evaluation. We present PropensityBench, a novel benchmark framework that assesses the proclivity of models to engage in risky behaviors when equipped with simulated dangerous capabilities using proxy tools. Our framework includes 5,874 scenarios with 6,648 tools spanning four high-risk domains: cybersecurity, self-proliferation, biosecurity, and chemical security. We simulate access to powerful capabilities via a controlled agentic environment and evaluate the models' choices under varying operational pressures that reflect real-world constraints or incentives models may encounter, such as resource scarcity or gaining more autonomy. Across open-source and proprietary frontier models, we uncover 9 alarming signs of propensity: models frequently choose high-risk tools when under pressure, despite lacking the capability to execute such actions unaided. These findings call for a shift from static capability audits toward dynamic propensity assessments as a prerequisite for deploying frontier AI systems safely. Our code is available at https://github.com/scaleapi/propensity-evaluation.
Empirical Risk Minimization under Random Censorship: Theory and Practice
We consider the classic supervised learning problem, where a continuous non-negative random label Y (i.e. a random duration) is to be predicted based upon observing a random vector X valued in R^d with dgeq 1 by means of a regression rule with minimum least square error. In various applications, ranging from industrial quality control to public health through credit risk analysis for instance, training observations can be right censored, meaning that, rather than on independent copies of (X,Y), statistical learning relies on a collection of ngeq 1 independent realizations of the triplet (X, ; min{Y,; C},; δ), where C is a nonnegative r.v. with unknown distribution, modeling censorship and δ=I{Yleq C} indicates whether the duration is right censored or not. As ignoring censorship in the risk computation may clearly lead to a severe underestimation of the target duration and jeopardize prediction, we propose to consider a plug-in estimate of the true risk based on a Kaplan-Meier estimator of the conditional survival function of the censorship C given X, referred to as Kaplan-Meier risk, in order to perform empirical risk minimization. It is established, under mild conditions, that the learning rate of minimizers of this biased/weighted empirical risk functional is of order O_{P}(log(n)/n) when ignoring model bias issues inherent to plug-in estimation, as can be attained in absence of censorship. Beyond theoretical results, numerical experiments are presented in order to illustrate the relevance of the approach developed.
Introducing an Improved Information-Theoretic Measure of Predictive Uncertainty
Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Deep Probability Estimation
Reliable probability estimation is of crucial importance in many real-world applications where there is inherent (aleatoric) uncertainty. Probability-estimation models are trained on observed outcomes (e.g. whether it has rained or not, or whether a patient has died or not), because the ground-truth probabilities of the events of interest are typically unknown. The problem is therefore analogous to binary classification, with the difference that the objective is to estimate probabilities rather than predicting the specific outcome. This work investigates probability estimation from high-dimensional data using deep neural networks. There exist several methods to improve the probabilities generated by these models but they mostly focus on model (epistemic) uncertainty. For problems with inherent uncertainty, it is challenging to evaluate performance without access to ground-truth probabilities. To address this, we build a synthetic dataset to study and compare different computable metrics. We evaluate existing methods on the synthetic data as well as on three real-world probability estimation tasks, all of which involve inherent uncertainty: precipitation forecasting from radar images, predicting cancer patient survival from histopathology images, and predicting car crashes from dashcam videos. We also give a theoretical analysis of a model for high-dimensional probability estimation which reproduces several of the phenomena evinced in our experiments. Finally, we propose a new method for probability estimation using neural networks, which modifies the training process to promote output probabilities that are consistent with empirical probabilities computed from the data. The method outperforms existing approaches on most metrics on the simulated as well as real-world data.
Calibrated Multiple-Output Quantile Regression with Representation Learning
We develop a method to generate predictive regions that cover a multivariate response variable with a user-specified probability. Our work is composed of two components. First, we use a deep generative model to learn a representation of the response that has a unimodal distribution. Existing multiple-output quantile regression approaches are effective in such cases, so we apply them on the learned representation, and then transform the solution to the original space of the response. This process results in a flexible and informative region that can have an arbitrary shape, a property that existing methods lack. Second, we propose an extension of conformal prediction to the multivariate response setting that modifies any method to return sets with a pre-specified coverage level. The desired coverage is theoretically guaranteed in the finite-sample case for any distribution. Experiments conducted on both real and synthetic data show that our method constructs regions that are significantly smaller compared to existing techniques.
An Introduction to Conditional Random Fields
Often we wish to predict a large number of variables that depend on each other as well as on other observed variables. Structured prediction methods are essentially a combination of classification and graphical modeling, combining the ability of graphical models to compactly model multivariate data with the ability of classification methods to perform prediction using large sets of input features. This tutorial describes conditional random fields, a popular probabilistic method for structured prediction. CRFs have seen wide application in natural language processing, computer vision, and bioinformatics. We describe methods for inference and parameter estimation for CRFs, including practical issues for implementing large scale CRFs. We do not assume previous knowledge of graphical modeling, so this tutorial is intended to be useful to practitioners in a wide variety of fields.
BIRD: A Trustworthy Bayesian Inference Framework for Large Language Models
Predictive models often need to work with incomplete information in real-world tasks. Consequently, they must provide reliable probability or confidence estimation, especially in large-scale decision-making and planning tasks. Current large language models (LLMs) are insufficient for accurate estimations, but they can generate relevant factors that may affect the probabilities, produce coarse-grained probabilities when the information is more complete, and help determine which factors are relevant to specific downstream contexts. In this paper, we make use of these capabilities of LLMs to provide a significantly more accurate probabilistic estimation. We propose BIRD, a novel probabilistic inference framework that aligns a Bayesian network with LLM abductions and then estimates more accurate probabilities in a deduction step. We show BIRD provides reliable probability estimations that are 30% better than those provided directly by LLM baselines. These estimates further contribute to better and more trustworthy decision making.
Quantifying Limits to Detection of Early Warning for Critical Transitions
Catastrophic regime shifts in complex natural systems may be averted through advanced detection. Recent work has provided a proof-of-principle that many systems approaching a catastrophic transition may be identified through the lens of early warning indicators such as rising variance or increased return times. Despite widespread appreciation of the difficulties and uncertainty involved in such forecasts, proposed methods hardly ever characterize their expected error rates. Without the benefits of replicates, controls, or hindsight, applications of these approaches must quantify how reliable different indicators are in avoiding false alarms, and how sensitive they are to missing subtle warning signs. We propose a model based approach in order to quantify this trade-off between reliability and sensitivity and allow comparisons between different indicators. We show these error rates can be quite severe for common indicators even under favorable assumptions, and also illustrate how a model-based indicator can improve this performance. We demonstrate how the performance of an early warning indicator varies in different data sets, and suggest that uncertainty quantification become a more central part of early warning predictions.
Safe AI for health and beyond -- Monitoring to transform a health service
Machine learning techniques are effective for building predictive models because they identify patterns in large datasets. Development of a model for complex real-life problems often stop at the point of publication, proof of concept or when made accessible through some mode of deployment. However, a model in the medical domain risks becoming obsolete as patient demographics, systems and clinical practices change. The maintenance and monitoring of predictive model performance post-publication is crucial to enable their safe and effective long-term use. We will assess the infrastructure required to monitor the outputs of a machine learning algorithm, and present two scenarios with examples of monitoring and updates of models, firstly on a breast cancer prognosis model trained on public longitudinal data, and secondly on a neurodegenerative stratification algorithm that is currently being developed and tested in clinic.
HYPRO: A Hybridly Normalized Probabilistic Model for Long-Horizon Prediction of Event Sequences
In this paper, we tackle the important yet under-investigated problem of making long-horizon prediction of event sequences. Existing state-of-the-art models do not perform well at this task due to their autoregressive structure. We propose HYPRO, a hybridly normalized probabilistic model that naturally fits this task: its first part is an autoregressive base model that learns to propose predictions; its second part is an energy function that learns to reweight the proposals such that more realistic predictions end up with higher probabilities. We also propose efficient training and inference algorithms for this model. Experiments on multiple real-world datasets demonstrate that our proposed HYPRO model can significantly outperform previous models at making long-horizon predictions of future events. We also conduct a range of ablation studies to investigate the effectiveness of each component of our proposed methods.
Individual Survival Curves with Conditional Normalizing Flows
Survival analysis, or time-to-event modelling, is a classical statistical problem that has garnered a lot of interest for its practical use in epidemiology, demographics or actuarial sciences. Recent advances on the subject from the point of view of machine learning have been concerned with precise per-individual predictions instead of population studies, driven by the rise of individualized medicine. We introduce here a conditional normalizing flow based estimate of the time-to-event density as a way to model highly flexible and individualized conditional survival distributions. We use a novel hierarchical formulation of normalizing flows to enable efficient fitting of flexible conditional distributions without overfitting and show how the normalizing flow formulation can be efficiently adapted to the censored setting. We experimentally validate the proposed approach on a synthetic dataset as well as four open medical datasets and an example of a common financial problem.
ChronosX: Adapting Pretrained Time Series Models with Exogenous Variables
Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pretraining large language model architectures for time series forecasting have led to highly accurate forecasters. However, the majority of these models do not readily use covariates as they are often specific to a certain task or domain. This paper introduces a new method to incorporate covariates into pretrained time series forecasting models. Our proposed approach incorporates covariate information into pretrained forecasting models through modular blocks that inject past and future covariate information, without necessarily modifying the pretrained model in consideration. In order to evaluate our approach, we introduce a benchmark composed of 32 different synthetic datasets with varying dynamics to evaluate the effectivity of forecasting models with covariates. Extensive evaluations on both synthetic and real datasets show that our approach effectively incorporates covariate information into pretrained models, outperforming existing baselines.
Second-Order Uncertainty Quantification: A Distance-Based Approach
In the past couple of years, various approaches to representing and quantifying different types of predictive uncertainty in machine learning, notably in the setting of classification, have been proposed on the basis of second-order probability distributions, i.e., predictions in the form of distributions on probability distributions. A completely conclusive solution has not yet been found, however, as shown by recent criticisms of commonly used uncertainty measures associated with second-order distributions, identifying undesirable theoretical properties of these measures. In light of these criticisms, we propose a set of formal criteria that meaningful uncertainty measures for predictive uncertainty based on second-order distributions should obey. Moreover, we provide a general framework for developing uncertainty measures to account for these criteria, and offer an instantiation based on the Wasserstein distance, for which we prove that all criteria are satisfied.
Early Warning Signals and the Prosecutor's Fallacy
Early warning signals have been proposed to forecast the possibility of a critical transition, such as the eutrophication of a lake, the collapse of a coral reef, or the end of a glacial period. Because such transitions often unfold on temporal and spatial scales that can be difficult to approach by experimental manipulation, research has often relied on historical observations as a source of natural experiments. Here we examine a critical difference between selecting systems for study based on the fact that we have observed a critical transition and those systems for which we wish to forecast the approach of a transition. This difference arises by conditionally selecting systems known to experience a transition of some sort and failing to account for the bias this introduces -- a statistical error often known as the Prosecutor's Fallacy. By analysing simulated systems that have experienced transitions purely by chance, we reveal an elevated rate of false positives in common warning signal statistics. We further demonstrate a model-based approach that is less subject to this bias than these more commonly used summary statistics. We note that experimental studies with replicates avoid this pitfall entirely.
RAP: Risk-Aware Prediction for Robust Planning
Robust planning in interactive scenarios requires predicting the uncertain future to make risk-aware decisions. Unfortunately, due to long-tail safety-critical events, the risk is often under-estimated by finite-sampling approximations of probabilistic motion forecasts. This can lead to overconfident and unsafe robot behavior, even with robust planners. Instead of assuming full prediction coverage that robust planners require, we propose to make prediction itself risk-aware. We introduce a new prediction objective to learn a risk-biased distribution over trajectories, so that risk evaluation simplifies to an expected cost estimation under this biased distribution. This reduces the sample complexity of the risk estimation during online planning, which is needed for safe real-time performance. Evaluation results in a didactic simulation environment and on a real-world dataset demonstrate the effectiveness of our approach. The code and a demo are available.
LABOR-LLM: Language-Based Occupational Representations with Large Language Models
Many empirical studies of labor market questions rely on estimating relatively simple predictive models using small, carefully constructed longitudinal survey datasets based on hand-engineered features. Large Language Models (LLMs), trained on massive datasets, encode vast quantities of world knowledge and can be used for the next job prediction problem. However, while an off-the-shelf LLM produces plausible career trajectories when prompted, the probability with which an LLM predicts a particular job transition conditional on career history will not, in general, align with the true conditional probability in a given population. Recently, Vafa et al. (2024) introduced a transformer-based "foundation model", CAREER, trained using a large, unrepresentative resume dataset, that predicts transitions between jobs; it further demonstrated how transfer learning techniques can be used to leverage the foundation model to build better predictive models of both transitions and wages that reflect conditional transition probabilities found in nationally representative survey datasets. This paper considers an alternative where the fine-tuning of the CAREER foundation model is replaced by fine-tuning LLMs. For the task of next job prediction, we demonstrate that models trained with our approach outperform several alternatives in terms of predictive performance on the survey data, including traditional econometric models, CAREER, and LLMs with in-context learning, even though the LLM can in principle predict job titles that are not allowed in the survey data. Further, we show that our fine-tuned LLM-based models' predictions are more representative of the career trajectories of various workforce subpopulations than off-the-shelf LLM models and CAREER. We conduct experiments and analyses that highlight the sources of the gains in the performance of our models for representative predictions.
Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance
This paper introduces a novel approach to financial risk analysis that does not rely on traditional price and market data, instead using market news to model assets as distributions over a metric space of risk factors. By representing asset returns as integrals over the scalar field of these risk factors, we derive the covariance structure between asset returns. Utilizing encoder-only language models to embed this news data, we explore the relationships between asset return distributions through the concept of Energy Distance, establishing connections between distributional differences and excess returns co-movements. This data-agnostic approach provides new insights into portfolio diversification, risk management, and the construction of hedging strategies. Our findings have significant implications for both theoretical finance and practical risk management, offering a more robust framework for modelling complex financial systems without depending on conventional market data.
Fundamental Tradeoffs in Learning with Prior Information
We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning.
Causal Strategic Classification: A Tale of Two Shifts
When users can benefit from certain predictive outcomes, they may be prone to act to achieve those outcome, e.g., by strategically modifying their features. The goal in strategic classification is therefore to train predictive models that are robust to such behavior. However, the conventional framework assumes that changing features does not change actual outcomes, which depicts users as "gaming" the system. Here we remove this assumption, and study learning in a causal strategic setting where true outcomes do change. Focusing on accuracy as our primary objective, we show how strategic behavior and causal effects underlie two complementing forms of distribution shift. We characterize these shifts, and propose a learning algorithm that balances between these two forces and over time, and permits end-to-end training. Experiments on synthetic and semi-synthetic data demonstrate the utility of our approach.
A Time Series Analysis-Based Stock Price Prediction Using Machine Learning and Deep Learning Models
Prediction of future movement of stock prices has always been a challenging task for the researchers. While the advocates of the efficient market hypothesis (EMH) believe that it is impossible to design any predictive framework that can accurately predict the movement of stock prices, there are seminal work in the literature that have clearly demonstrated that the seemingly random movement patterns in the time series of a stock price can be predicted with a high level of accuracy. Design of such predictive models requires choice of appropriate variables, right transformation methods of the variables, and tuning of the parameters of the models. In this work, we present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models. We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India. The granular data is aggregated into three slots in a day, and the aggregated data is used for building and training the forecasting models. We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data. We build eight classification and eight regression models based on statistical and machine learning approaches. In addition to these models, a deep learning regression model using a long-and-short-term memory (LSTM) network is also built. Extensive results have been presented on the performance of these models, and the results are critically analyzed.
Credit risk for large portfolios of green and brown loans: extending the ASRF model
We propose a credit risk model for portfolios composed of green and brown loans, extending the ASRF framework via a two-factor copula structure. Systematic risk is modeled using potentially skewed distributions, allowing for asymmetric creditworthiness effects, while idiosyncratic risk remains Gaussian. Under a non-uniform exposure setting, we establish convergence in quadratic mean of the portfolio loss to a limit reflecting the distinct characteristics of the two loan segments. Numerical results confirm the theoretical findings and illustrate how value-at-risk is affected by portfolio granularity, default probabilities, factor loadings, and skewness. Our model accommodates differential sensitivity to systematic shocks and offers a tractable basis for further developments in credit risk modeling, including granularity adjustments, CDO pricing, and empirical analysis of green loan portfolios.
Predictive Multiplicity in Classification
Prediction problems often admit competing models that perform almost equally well. This effect challenges key assumptions in machine learning when competing models assign conflicting predictions. In this paper, we define predictive multiplicity as the ability of a prediction problem to admit competing models with conflicting predictions. We introduce formal measures to evaluate the severity of predictive multiplicity and develop integer programming tools to compute them exactly for linear classification problems. We apply our tools to measure predictive multiplicity in recidivism prediction problems. Our results show that real-world datasets may admit competing models that assign wildly conflicting predictions, and motivate the need to measure and report predictive multiplicity in model development.
Will AI Tell Lies to Save Sick Children? Litmus-Testing AI Values Prioritization with AIRiskDilemmas
Detecting AI risks becomes more challenging as stronger models emerge and find novel methods such as Alignment Faking to circumvent these detection attempts. Inspired by how risky behaviors in humans (i.e., illegal activities that may hurt others) are sometimes guided by strongly-held values, we believe that identifying values within AI models can be an early warning system for AI's risky behaviors. We create LitmusValues, an evaluation pipeline to reveal AI models' priorities on a range of AI value classes. Then, we collect AIRiskDilemmas, a diverse collection of dilemmas that pit values against one another in scenarios relevant to AI safety risks such as Power Seeking. By measuring an AI model's value prioritization using its aggregate choices, we obtain a self-consistent set of predicted value priorities that uncover potential risks. We show that values in LitmusValues (including seemingly innocuous ones like Care) can predict for both seen risky behaviors in AIRiskDilemmas and unseen risky behaviors in HarmBench.
Analysis of Sectoral Profitability of the Indian Stock Market Using an LSTM Regression Model
Predictive model design for accurately predicting future stock prices has always been considered an interesting and challenging research problem. The task becomes complex due to the volatile and stochastic nature of the stock prices in the real world which is affected by numerous controllable and uncontrollable variables. This paper presents an optimized predictive model built on long-and-short-term memory (LSTM) architecture for automatically extracting past stock prices from the web over a specified time interval and predicting their future prices for a specified forecast horizon, and forecasts the future stock prices. The model is deployed for making buy and sell transactions based on its predicted results for 70 important stocks from seven different sectors listed in the National Stock Exchange (NSE) of India. The profitability of each sector is derived based on the total profit yielded by the stocks in that sector over a period from Jan 1, 2010 to Aug 26, 2021. The sectors are compared based on their profitability values. The prediction accuracy of the model is also evaluated for each sector. The results indicate that the model is highly accurate in predicting future stock prices.
Conformalized Selective Regression
Should prediction models always deliver a prediction? In the pursuit of maximum predictive performance, critical considerations of reliability and fairness are often overshadowed, particularly when it comes to the role of uncertainty. Selective regression, also known as the "reject option," allows models to abstain from predictions in cases of considerable uncertainty. Initially proposed seven decades ago, approaches to selective regression have mostly focused on distribution-based proxies for measuring uncertainty, particularly conditional variance. However, this focus neglects the significant influence of model-specific biases on a model's performance. In this paper, we propose a novel approach to selective regression by leveraging conformal prediction, which provides grounded confidence measures for individual predictions based on model-specific biases. In addition, we propose a standardized evaluation framework to allow proper comparison of selective regression approaches. Via an extensive experimental approach, we demonstrate how our proposed approach, conformalized selective regression, demonstrates an advantage over multiple state-of-the-art baselines.
Decoding-based Regression
Language models have recently been shown capable of performing regression tasks wherein numeric predictions are represented as decoded strings. In this work, we provide theoretical grounds for this capability and furthermore investigate the utility of causal auto-regressive sequence models when they are applied to any feature representation. We find that, despite being trained in the usual way - for next-token prediction via cross-entropy loss - decoding-based regression is as performant as traditional approaches for tabular regression tasks, while being flexible enough to capture arbitrary distributions, such as in the task of density estimation.
When Personalization Harms: Reconsidering the Use of Group Attributes in Prediction
Machine learning models are often personalized with categorical attributes that are protected, sensitive, self-reported, or costly to acquire. In this work, we show models that are personalized with group attributes can reduce performance at a group level. We propose formal conditions to ensure the "fair use" of group attributes in prediction tasks by training one additional model -- i.e., collective preference guarantees to ensure that each group who provides personal data will receive a tailored gain in performance in return. We present sufficient conditions to ensure fair use in empirical risk minimization and characterize failure modes that lead to fair use violations due to standard practices in model development and deployment. We present a comprehensive empirical study of fair use in clinical prediction tasks. Our results demonstrate the prevalence of fair use violations in practice and illustrate simple interventions to mitigate their harm.
Regretful Decisions under Label Noise
Machine learning models are routinely used to support decisions that affect individuals -- be it to screen a patient for a serious illness or to gauge their response to treatment. In these tasks, we are limited to learning models from datasets with noisy labels. In this paper, we study the instance-level impact of learning under label noise. We introduce a notion of regret for this regime, which measures the number of unforeseen mistakes due to noisy labels. We show that standard approaches to learning under label noise can return models that perform well at a population-level while subjecting individuals to a lottery of mistakes. We present a versatile approach to estimate the likelihood of mistakes at the individual-level from a noisy dataset by training models over plausible realizations of datasets without label noise. This is supported by a comprehensive empirical study of label noise in clinical prediction tasks. Our results reveal how failure to anticipate mistakes can compromise model reliability and adoption -- we demonstrate how we can address these challenges by anticipating and avoiding regretful decisions.
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods For Uncertainty Estimation
Popular approaches for quantifying predictive uncertainty in deep neural networks often involve distributions over weights or multiple models, for instance via Markov Chain sampling, ensembling, or Monte Carlo dropout. These techniques usually incur overhead by having to train multiple model instances or do not produce very diverse predictions. This comprehensive and extensive survey aims to familiarize the reader with an alternative class of models based on the concept of Evidential Deep Learning: For unfamiliar data, they aim to admit "what they don't know", and fall back onto a prior belief. Furthermore, they allow uncertainty estimation in a single model and forward pass by parameterizing distributions over distributions. This survey recapitulates existing works, focusing on the implementation in a classification setting, before surveying the application of the same paradigm to regression. We also reflect on the strengths and weaknesses compared to other existing methods and provide the most fundamental derivations using a unified notation to aid future research.
Statistical Learning under Heterogenous Distribution Shift
This paper studies the prediction of a target z from a pair of random variables (x,y), where the ground-truth predictor is additive E[z mid x,y] = f_star(x) +g_{star}(y). We study the performance of empirical risk minimization (ERM) over functions f+g, f in F and g in G, fit on a given training distribution, but evaluated on a test distribution which exhibits covariate shift. We show that, when the class F is "simpler" than G (measured, e.g., in terms of its metric entropy), our predictor is more resilient to heterogenous covariate shifts in which the shift in x is much greater than that in y. These results rely on a novel H\"older style inequality for the Dudley integral which may be of independent interest. Moreover, we corroborate our theoretical findings with experiments demonstrating improved resilience to shifts in "simpler" features across numerous domains.
Learning Optimal Predictive Checklists
Checklists are simple decision aids that are often used to promote safety and reliability in clinical applications. In this paper, we present a method to learn checklists for clinical decision support. We represent predictive checklists as discrete linear classifiers with binary features and unit weights. We then learn globally optimal predictive checklists from data by solving an integer programming problem. Our method allows users to customize checklists to obey complex constraints, including constraints to enforce group fairness and to binarize real-valued features at training time. In addition, it pairs models with an optimality gap that can inform model development and determine the feasibility of learning sufficiently accurate checklists on a given dataset. We pair our method with specialized techniques that speed up its ability to train a predictive checklist that performs well and has a small optimality gap. We benchmark the performance of our method on seven clinical classification problems, and demonstrate its practical benefits by training a short-form checklist for PTSD screening. Our results show that our method can fit simple predictive checklists that perform well and that can easily be customized to obey a rich class of custom constraints.
DEUP: Direct Epistemic Uncertainty Prediction
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
Temporal Label Smoothing for Early Event Prediction
Models that can predict the occurrence of events ahead of time with low false-alarm rates are critical to the acceptance of decision support systems in the medical community. This challenging task is typically treated as a simple binary classification, ignoring temporal dependencies between samples, whereas we propose to exploit this structure. We first introduce a common theoretical framework unifying dynamic survival analysis and early event prediction. Following an analysis of objectives from both fields, we propose Temporal Label Smoothing (TLS), a simpler, yet best-performing method that preserves prediction monotonicity over time. By focusing the objective on areas with a stronger predictive signal, TLS improves performance over all baselines on two large-scale benchmark tasks. Gains are particularly notable along clinically relevant measures, such as event recall at low false-alarm rates. TLS reduces the number of missed events by up to a factor of two over previously used approaches in early event prediction.
BDNNSurv: Bayesian deep neural networks for survival analysis using pseudo values
There has been increasing interest in modeling survival data using deep learning methods in medical research. In this paper, we proposed a Bayesian hierarchical deep neural networks model for modeling and prediction of survival data. Compared with previously studied methods, the new proposal can provide not only point estimate of survival probability but also quantification of the corresponding uncertainty, which can be of crucial importance in predictive modeling and subsequent decision making. The favorable statistical properties of point and uncertainty estimates were demonstrated by simulation studies and real data analysis. The Python code implementing the proposed approach was provided.
Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning
We employ random matrix theory to establish consistency of generalized cross validation (GCV) for estimating prediction risks of sketched ridge regression ensembles, enabling efficient and consistent tuning of regularization and sketching parameters. Our results hold for a broad class of asymptotically free sketches under very mild data assumptions. For squared prediction risk, we provide a decomposition into an unsketched equivalent implicit ridge bias and a sketching-based variance, and prove that the risk can be globally optimized by only tuning sketch size in infinite ensembles. For general subquadratic prediction risk functionals, we extend GCV to construct consistent risk estimators, and thereby obtain distributional convergence of the GCV-corrected predictions in Wasserstein-2 metric. This in particular allows construction of prediction intervals with asymptotically correct coverage conditional on the training data. We also propose an "ensemble trick" whereby the risk for unsketched ridge regression can be efficiently estimated via GCV using small sketched ridge ensembles. We empirically validate our theoretical results using both synthetic and real large-scale datasets with practical sketches including CountSketch and subsampled randomized discrete cosine transforms.
Conformal Prediction with Missing Values
Conformal prediction is a theoretically grounded framework for constructing predictive intervals. We study conformal prediction with missing values in the covariates -- a setting that brings new challenges to uncertainty quantification. We first show that the marginal coverage guarantee of conformal prediction holds on imputed data for any missingness distribution and almost all imputation functions. However, we emphasize that the average coverage varies depending on the pattern of missing values: conformal methods tend to construct prediction intervals that under-cover the response conditionally to some missing patterns. This motivates our novel generalized conformalized quantile regression framework, missing data augmentation, which yields prediction intervals that are valid conditionally to the patterns of missing values, despite their exponential number. We then show that a universally consistent quantile regression algorithm trained on the imputed data is Bayes optimal for the pinball risk, thus achieving valid coverage conditionally to any given data point. Moreover, we examine the case of a linear model, which demonstrates the importance of our proposal in overcoming the heteroskedasticity induced by missing values. Using synthetic and data from critical care, we corroborate our theory and report improved performance of our methods.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of predictions, various machine learning methods have recently been developed with the goal to let the learner also represent its epistemic uncertainty, i.e., the uncertainty caused by a lack of knowledge and data. An emerging branch of the literature proposes the use of a second-order learner that provides predictions in terms of distributions on probability distributions. However, recent work has revealed serious theoretical shortcomings for second-order predictors based on loss minimisation. In this paper, we generalise these findings and prove a more fundamental result: There seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its epistemic uncertainty in the same manner as proper scoring rules do for standard (first-order) learners. As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
Quantifying surprise in clinical care: Detecting highly informative events in electronic health records with foundation models
We present a foundation model-derived method to identify highly informative tokens and events in electronic health records. Our approach considers incoming data in the entire context of a patient's hospitalization and so can flag anomalous events that rule-based approaches would consider within a normal range. We demonstrate that the events our model flags are significant for predicting downstream patient outcomes and that a fraction of events identified as carrying little information can safely be dropped. Additionally, we show how informativeness can help interpret the predictions of prognostic models trained on foundation model-derived representations.
How to Trust Your Diffusion Model: A Convex Optimization Approach to Conformal Risk Control
Score-based generative modeling, informally referred to as diffusion models, continue to grow in popularity across several important domains and tasks. While they provide high-quality and diverse samples from empirical distributions, important questions remain on the reliability and trustworthiness of these sampling procedures for their responsible use in critical scenarios. Conformal prediction is a modern tool to construct finite-sample, distribution-free uncertainty guarantees for any black-box predictor. In this work, we focus on image-to-image regression tasks and we present a generalization of the Risk-Controlling Prediction Sets (RCPS) procedure, that we term K-RCPS, which allows to (i) provide entrywise calibrated intervals for future samples of any diffusion model, and (ii) control a certain notion of risk with respect to a ground truth image with minimal mean interval length. Differently from existing conformal risk control procedures, ours relies on a novel convex optimization approach that allows for multidimensional risk control while provably minimizing the mean interval length. We illustrate our approach on two real-world image denoising problems: on natural images of faces as well as on computed tomography (CT) scans of the abdomen, demonstrating state of the art performance.
FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models
Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction.
Machine Learning with a Reject Option: A survey
Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
An Empirical Analysis of Feature Engineering for Predictive Modeling
Machine learning models, such as neural networks, decision trees, random forests, and gradient boosting machines, accept a feature vector, and provide a prediction. These models learn in a supervised fashion where we provide feature vectors mapped to the expected output. It is common practice to engineer new features from the provided feature set. Such engineered features will either augment or replace portions of the existing feature vector. These engineered features are essentially calculated fields based on the values of the other features. Engineering such features is primarily a manual, time-consuming task. Additionally, each type of model will respond differently to different kinds of engineered features. This paper reports empirical research to demonstrate what kinds of engineered features are best suited to various machine learning model types. We provide this recommendation by generating several datasets that we designed to benefit from a particular type of engineered feature. The experiment demonstrates to what degree the machine learning model can synthesize the needed feature on its own. If a model can synthesize a planned feature, it is not necessary to provide that feature. The research demonstrated that the studied models do indeed perform differently with various types of engineered features.
Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models
For a long-time, researchers have been developing a reliable and accurate predictive model for stock price prediction. According to the literature, if predictive models are correctly designed and refined, they can painstakingly and faithfully estimate future stock values. This paper demonstrates a set of time series, econometric, and various learning-based models for stock price prediction. The data of Infosys, ICICI, and SUN PHARMA from the period of January 2004 to December 2019 was used here for training and testing the models to know which model performs best in which sector. One time series model (Holt-Winters Exponential Smoothing), one econometric model (ARIMA), two machine Learning models (Random Forest and MARS), and two deep learning-based models (simple RNN and LSTM) have been included in this paper. MARS has been proved to be the best performing machine learning model, while LSTM has proved to be the best performing deep learning model. But overall, for all three sectors - IT (on Infosys data), Banking (on ICICI data), and Health (on SUN PHARMA data), MARS has proved to be the best performing model in sales forecasting.
A Flexible Parametric Modelling Framework for Survival Analysis
We introduce a general, flexible, parametric survival modelling framework which encompasses key shapes of hazard function (constant, increasing, decreasing, up-then-down, down-then-up), various common survival distributions (log-logistic, Burr type XII, Weibull, Gompertz), and includes defective distributions (i.e., cure models). This generality is achieved using four basic distributional parameters: two scale-type parameters and two shape parameters. Generalising to covariate dependence, the scale-type regression components correspond to accelerated failure time (AFT) and proportional hazards (PH) models. Therefore, this general formulation unifies the most popular survival models which allows us to consider the practical value of possible modelling choices for survival data. Furthermore, in line with our proposed flexible baseline distribution, we advocate the use of multi-parameter regression in which more than one distributional parameter depends on covariates - rather than the usual convention of having a single covariate-dependent (scale) parameter. While many choices are available, we suggest introducing covariates through just one or other of the two scale parameters, which covers AFT and PH models, in combination with a `power' shape parameter, which allows for more complex non-AFT/non-PH effects, while the other shape parameter remains covariate-independent, and handles automatic selection of the baseline distribution. We explore inferential issues in simulations, both with and without a covariate, with particular focus on evidence concerning the need, or otherwise, to include both AFT and PH parameters. We illustrate the efficacy of our modelling framework by investigating differences between treatment groups using data from a lung cancer study and a melanoma study. Censoring is accommodated throughout.
Deep Learning and Foundation Models for Weather Prediction: A Survey
Physics-based numerical models have been the bedrock of atmospheric sciences for decades, offering robust solutions but often at the cost of significant computational resources. Deep learning (DL) models have emerged as powerful tools in meteorology, capable of analyzing complex weather and climate data by learning intricate dependencies and providing rapid predictions once trained. While these models demonstrate promising performance in weather prediction, often surpassing traditional physics-based methods, they still face critical challenges. This paper presents a comprehensive survey of recent deep learning and foundation models for weather prediction. We propose a taxonomy to classify existing models based on their training paradigms: deterministic predictive learning, probabilistic generative learning, and pre-training and fine-tuning. For each paradigm, we delve into the underlying model architectures, address major challenges, offer key insights, and propose targeted directions for future research. Furthermore, we explore real-world applications of these methods and provide a curated summary of open-source code repositories and widely used datasets, aiming to bridge research advancements with practical implementations while fostering open and trustworthy scientific practices in adopting cutting-edge artificial intelligence for weather prediction. The related sources are available at https://github.com/JimengShi/ DL-Foundation-Models-Weather.
Design and Analysis of Robust Deep Learning Models for Stock Price Prediction
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve. The well-known efficient market hypothesis believes in the impossibility of accurate prediction of future stock prices in an efficient stock market as the stock prices are assumed to be purely stochastic. However, numerous works proposed by researchers have demonstrated that it is possible to predict future stock prices with a high level of precision using sophisticated algorithms, model architectures, and the selection of appropriate variables in the models. This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India. The Metastock tool is used to download the historical stock prices over a period of two years (2013- 2014) at 5 minutes intervals. While the records for the first year are used to train the models, the testing is carried out using the remaining records. The design approaches of all the models and their performance results are presented in detail. The models are also compared based on their execution time and accuracy of prediction.
Performance Modeling of Data Storage Systems using Generative Models
High-precision modeling of systems is one of the main areas of industrial data analysis. Models of systems, their digital twins, are used to predict their behavior under various conditions. We have developed several models of a storage system using machine learning-based generative models. The system consists of several components: hard disk drive (HDD) and solid-state drive (SSD) storage pools with different RAID schemes and cache. Each storage component is represented by a probabilistic model that describes the probability distribution of the component performance in terms of IOPS and latency, depending on their configuration and external data load parameters. The results of the experiments demonstrate the errors of 4-10 % for IOPS and 3-16 % for latency predictions depending on the components and models of the system. The predictions show up to 0.99 Pearson correlation with Little's law, which can be used for unsupervised reliability checks of the models. In addition, we present novel data sets that can be used for benchmarking regression algorithms, conditional generative models, and uncertainty estimation methods in machine learning.
User-defined Event Sampling and Uncertainty Quantification in Diffusion Models for Physical Dynamical Systems
Diffusion models are a class of probabilistic generative models that have been widely used as a prior for image processing tasks like text conditional generation and inpainting. We demonstrate that these models can be adapted to make predictions and provide uncertainty quantification for chaotic dynamical systems. In these applications, diffusion models can implicitly represent knowledge about outliers and extreme events; however, querying that knowledge through conditional sampling or measuring probabilities is surprisingly difficult. Existing methods for conditional sampling at inference time seek mainly to enforce the constraints, which is insufficient to match the statistics of the distribution or compute the probability of the chosen events. To achieve these ends, optimally one would use the conditional score function, but its computation is typically intractable. In this work, we develop a probabilistic approximation scheme for the conditional score function which provably converges to the true distribution as the noise level decreases. With this scheme we are able to sample conditionally on nonlinear userdefined events at inference time, and matches data statistics even when sampling from the tails of the distribution.
On What Depends the Robustness of Multi-source Models to Missing Data in Earth Observation?
In recent years, the development of robust multi-source models has emerged in the Earth Observation (EO) field. These are models that leverage data from diverse sources to improve predictive accuracy when there is missing data. Despite these advancements, the factors influencing the varying effectiveness of such models remain poorly understood. In this study, we evaluate the predictive performance of six state-of-the-art multi-source models in predicting scenarios where either a single data source is missing or only a single source is available. Our analysis reveals that the efficacy of these models is intricately tied to the nature of the task, the complementarity among data sources, and the model design. Surprisingly, we observe instances where the removal of certain data sources leads to improved predictive performance, challenging the assumption that incorporating all available data is always beneficial. These findings prompt critical reflections on model complexity and the necessity of all collected data sources, potentially shaping the way for more streamlined approaches in EO applications.
Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
Datamodels: Predicting Predictions from Training Data
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data. For any fixed "target" example x, training set S, and learning algorithm, a datamodel is a parameterized function 2^S to R that for any subset of S' subset S -- using only information about which examples of S are contained in S' -- predicts the outcome of training a model on S' and evaluating on x. Despite the potential complexity of the underlying process being approximated (e.g., end-to-end training and evaluation of deep neural networks), we show that even simple linear datamodels can successfully predict model outputs. We then demonstrate that datamodels give rise to a variety of applications, such as: accurately predicting the effect of dataset counterfactuals; identifying brittle predictions; finding semantically similar examples; quantifying train-test leakage; and embedding data into a well-behaved and feature-rich representation space. Data for this paper (including pre-computed datamodels as well as raw predictions from four million trained deep neural networks) is available at https://github.com/MadryLab/datamodels-data .
Monotonicity and Double Descent in Uncertainty Estimation with Gaussian Processes
The quality of many modern machine learning models improves as model complexity increases, an effect that has been quantified, for predictive performance, with the non-monotonic double descent learning curve. Here, we address the overarching question: is there an analogous theory of double descent for models which estimate uncertainty? We provide a partially affirmative and partially negative answer in the setting of Gaussian processes (GP). Under standard assumptions, we prove that higher model quality for optimally-tuned GPs (including uncertainty prediction) under marginal likelihood is realized for larger input dimensions, and therefore exhibits a monotone error curve. After showing that marginal likelihood does not naturally exhibit double descent in the input dimension, we highlight related forms of posterior predictive loss that do exhibit non-monotonicity. Finally, we verify empirically that our results hold for real data, beyond our considered assumptions, and we explore consequences involving synthetic covariates.
CardioCoT: Hierarchical Reasoning for Multimodal Survival Analysis
Accurate prediction of major adverse cardiovascular events recurrence risk in acute myocardial infarction patients based on postoperative cardiac MRI and associated clinical notes is crucial for precision treatment and personalized intervention. Existing methods primarily focus on risk stratification capability while overlooking the need for intermediate robust reasoning and model interpretability in clinical practice. Moreover, end-to-end risk prediction using LLM/VLM faces significant challenges due to data limitations and modeling complexity. To bridge this gap, we propose CardioCoT, a novel two-stage hierarchical reasoning-enhanced survival analysis framework designed to enhance both model interpretability and predictive performance. In the first stage, we employ an evidence-augmented self-refinement mechanism to guide LLM/VLMs in generating robust hierarchical reasoning trajectories based on associated radiological findings. In the second stage, we integrate the reasoning trajectories with imaging data for risk model training and prediction. CardioCoT demonstrates superior performance in MACE recurrence risk prediction while providing interpretable reasoning processes, offering valuable insights for clinical decision-making.
Detectors for Safe and Reliable LLMs: Implementations, Uses, and Limitations
Large language models (LLMs) are susceptible to a variety of risks, from non-faithful output to biased and toxic generations. Due to several limiting factors surrounding LLMs (training cost, API access, data availability, etc.), it may not always be feasible to impose direct safety constraints on a deployed model. Therefore, an efficient and reliable alternative is required. To this end, we present our ongoing efforts to create and deploy a library of detectors: compact and easy-to-build classification models that provide labels for various harms. In addition to the detectors themselves, we discuss a wide range of uses for these detector models - from acting as guardrails to enabling effective AI governance. We also deep dive into inherent challenges in their development and discuss future work aimed at making the detectors more reliable and broadening their scope.
Counterfactual Plans under Distributional Ambiguity
Counterfactual explanations are attracting significant attention due to the flourishing applications of machine learning models in consequential domains. A counterfactual plan consists of multiple possibilities to modify a given instance so that the model's prediction will be altered. As the predictive model can be updated subject to the future arrival of new data, a counterfactual plan may become ineffective or infeasible with respect to the future values of the model parameters. In this work, we study the counterfactual plans under model uncertainty, in which the distribution of the model parameters is partially prescribed using only the first- and second-moment information. First, we propose an uncertainty quantification tool to compute the lower and upper bounds of the probability of validity for any given counterfactual plan. We then provide corrective methods to adjust the counterfactual plan to improve the validity measure. The numerical experiments validate our bounds and demonstrate that our correction increases the robustness of the counterfactual plans in different real-world datasets.
Similarity-Distance-Magnitude Universal Verification
We address the neural network robustness problem by adding Similarity (i.e., correctly predicted depth-matches into training)-awareness and Distance-to-training-distribution-awareness to the existing output Magnitude (i.e., decision-boundary)-awareness of the softmax function. The resulting SDM activation function provides strong signals of the relative epistemic (reducible) predictive uncertainty. We use this novel behavior to further address the complementary HCI problem of mapping the output to human-interpretable summary statistics over relevant partitions of a held-out calibration set. Estimates of prediction-conditional uncertainty are obtained via a parsimonious learned transform over the class-conditional empirical CDFs of the output of a final-layer SDM activation function. For decision-making and as an intrinsic model check, estimates of class-conditional accuracy are obtained by further partitioning the high-probability regions of this calibrated output into class-conditional, region-specific CDFs. The uncertainty estimates from SDM calibration are remarkably robust to test-time distribution shifts and out-of-distribution inputs; incorporate awareness of the effective sample size; provide estimates of uncertainty from the learning and data splitting processes; and are well-suited for selective classification and conditional branching for additional test-time compute based on the predictive uncertainty, as for selective LLM generation, routing, and composition over multiple models and retrieval. Finally, we construct SDM networks, LLMs with uncertainty-aware verification and interpretability-by-exemplar as intrinsic properties. We provide open-source software implementing these results.
Exploring the cloud of feature interaction scores in a Rashomon set
Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.
Generative AI Enhanced Financial Risk Management Information Retrieval
Risk management in finance involves recognizing, evaluating, and addressing financial risks to maintain stability and ensure regulatory compliance. Extracting relevant insights from extensive regulatory documents is a complex challenge requiring advanced retrieval and language models. This paper introduces RiskData, a dataset specifically curated for finetuning embedding models in risk management, and RiskEmbed, a finetuned embedding model designed to improve retrieval accuracy in financial question-answering systems. The dataset is derived from 94 regulatory guidelines published by the Office of the Superintendent of Financial Institutions (OSFI) from 1991 to 2024. We finetune a state-of-the-art sentence BERT embedding model to enhance domain-specific retrieval performance typically for Retrieval-Augmented Generation (RAG) systems. Experimental results demonstrate that RiskEmbed significantly outperforms general-purpose and financial embedding models, achieving substantial improvements in ranking metrics. By open-sourcing both the dataset and the model, we provide a valuable resource for financial institutions and researchers aiming to develop more accurate and efficient risk management AI solutions.
A Text Classification Framework for Simple and Effective Early Depression Detection Over Social Media Streams
With the rise of the Internet, there is a growing need to build intelligent systems that are capable of efficiently dealing with early risk detection (ERD) problems on social media, such as early depression detection, early rumor detection or identification of sexual predators. These systems, nowadays mostly based on machine learning techniques, must be able to deal with data streams since users provide their data over time. In addition, these systems must be able to decide when the processed data is sufficient to actually classify users. Moreover, since ERD tasks involve risky decisions by which people's lives could be affected, such systems must also be able to justify their decisions. However, most standard and state-of-the-art supervised machine learning models are not well suited to deal with this scenario. This is due to the fact that they either act as black boxes or do not support incremental classification/learning. In this paper we introduce SS3, a novel supervised learning model for text classification that naturally supports these aspects. SS3 was designed to be used as a general framework to deal with ERD problems. We evaluated our model on the CLEF's eRisk2017 pilot task on early depression detection. Most of the 30 contributions submitted to this competition used state-of-the-art methods. Experimental results show that our classifier was able to outperform these models and standard classifiers, despite being less computationally expensive and having the ability to explain its rationale.
Empirical Study of Market Impact Conditional on Order-Flow Imbalance
In this research, we have empirically investigated the key drivers affecting liquidity in equity markets. We illustrated how theoretical models, such as Kyle's model, of agents' interplay in the financial markets, are aligned with the phenomena observed in publicly available trades and quotes data. Specifically, we confirmed that for small signed order-flows, the price impact grows linearly with increase in the order-flow imbalance. We have, further, implemented a machine learning algorithm to forecast market impact given a signed order-flow. Our findings suggest that machine learning models can be used in estimation of financial variables; and predictive accuracy of such learning algorithms can surpass the performance of traditional statistical approaches. Understanding the determinants of price impact is crucial for several reasons. From a theoretical stance, modelling the impact provides a statistical measure of liquidity. Practitioners adopt impact models as a pre-trade tool to estimate expected transaction costs and optimize the execution of their strategies. This further serves as a post-trade valuation benchmark as suboptimal execution can significantly deteriorate a portfolio performance. More broadly, the price impact reflects the balance of liquidity across markets. This is of central importance to regulators as it provides an all-encompassing explanation of the correlation between market design and systemic risk, enabling regulators to design more stable and efficient markets.
CRUDE: Calibrating Regression Uncertainty Distributions Empirically
Calibrated uncertainty estimates in machine learning are crucial to many fields such as autonomous vehicles, medicine, and weather and climate forecasting. While there is extensive literature on uncertainty calibration for classification, the classification findings do not always translate to regression. As a result, modern models for predicting uncertainty in regression settings typically produce uncalibrated and overconfident estimates. To address these gaps, we present a calibration method for regression settings that does not assume a particular uncertainty distribution over the error: Calibrating Regression Uncertainty Distributions Empirically (CRUDE). CRUDE makes the weaker assumption that error distributions have a constant arbitrary shape across the output space, shifted by predicted mean and scaled by predicted standard deviation. We detail a theoretical connection between CRUDE and conformal inference. Across an extensive set of regression tasks, CRUDE demonstrates consistently sharper, better calibrated, and more accurate uncertainty estimates than state-of-the-art techniques.
AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks
In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms.
Teaching Models to Understand (but not Generate) High-risk Data
Language model developers typically filter out high-risk content -- such as toxic or copyrighted text -- from their pre-training data to prevent models from generating similar outputs. However, removing such data altogether limits models' ability to recognize and appropriately respond to harmful or sensitive content. In this paper, we introduce Selective Loss to Understand but Not Generate (SLUNG), a pre-training paradigm through which models learn to understand high-risk data without learning to generate it. Instead of uniformly applying the next-token prediction loss, SLUNG selectively avoids incentivizing the generation of high-risk tokens while ensuring they remain within the model's context window. As the model learns to predict low-risk tokens that follow high-risk ones, it is forced to understand the high-risk content. Through our experiments, we show that SLUNG consistently improves models' understanding of high-risk data (e.g., ability to recognize toxic content) without increasing its generation (e.g., toxicity of model responses). Overall, our SLUNG paradigm enables models to benefit from high-risk text that would otherwise be filtered out.
Ethical and social risks of harm from Language Models
This paper aims to help structure the risk landscape associated with large-scale Language Models (LMs). In order to foster advances in responsible innovation, an in-depth understanding of the potential risks posed by these models is needed. A wide range of established and anticipated risks are analysed in detail, drawing on multidisciplinary expertise and literature from computer science, linguistics, and social sciences. We outline six specific risk areas: I. Discrimination, Exclusion and Toxicity, II. Information Hazards, III. Misinformation Harms, V. Malicious Uses, V. Human-Computer Interaction Harms, VI. Automation, Access, and Environmental Harms. The first area concerns the perpetuation of stereotypes, unfair discrimination, exclusionary norms, toxic language, and lower performance by social group for LMs. The second focuses on risks from private data leaks or LMs correctly inferring sensitive information. The third addresses risks arising from poor, false or misleading information including in sensitive domains, and knock-on risks such as the erosion of trust in shared information. The fourth considers risks from actors who try to use LMs to cause harm. The fifth focuses on risks specific to LLMs used to underpin conversational agents that interact with human users, including unsafe use, manipulation or deception. The sixth discusses the risk of environmental harm, job automation, and other challenges that may have a disparate effect on different social groups or communities. In total, we review 21 risks in-depth. We discuss the points of origin of different risks and point to potential mitigation approaches. Lastly, we discuss organisational responsibilities in implementing mitigations, and the role of collaboration and participation. We highlight directions for further research, particularly on expanding the toolkit for assessing and evaluating the outlined risks in LMs.
Oyster-I: Beyond Refusal -- Constructive Safety Alignment for Responsible Language Models
Large language models (LLMs) typically deploy safety mechanisms to prevent harmful content generation. Most current approaches focus narrowly on risks posed by malicious actors, often framing risks as adversarial events and relying on defensive refusals. However, in real-world settings, risks also come from non-malicious users seeking help while under psychological distress (e.g., self-harm intentions). In such cases, the model's response can strongly influence the user's next actions. Simple refusals may lead them to repeat, escalate, or move to unsafe platforms, creating worse outcomes. We introduce Constructive Safety Alignment (CSA), a human-centric paradigm that protects against malicious misuse while actively guiding vulnerable users toward safe and helpful results. Implemented in Oyster-I (Oy1), CSA combines game-theoretic anticipation of user reactions, fine-grained risk boundary discovery, and interpretable reasoning control, turning safety into a trust-building process. Oy1 achieves state-of-the-art safety among open models while retaining high general capabilities. On our Constructive Benchmark, it shows strong constructive engagement, close to GPT-5, and unmatched robustness on the Strata-Sword jailbreak dataset, nearing GPT-o1 levels. By shifting from refusal-first to guidance-first safety, CSA redefines the model-user relationship, aiming for systems that are not just safe, but meaningfully helpful. We release Oy1, code, and the benchmark to support responsible, user-centered AI.
Predicting Rare Events by Shrinking Towards Proportional Odds
Training classifiers is difficult with severe class imbalance, but many rare events are the culmination of a sequence with much more common intermediate outcomes. For example, in online marketing a user first sees an ad, then may click on it, and finally may make a purchase; estimating the probability of purchases is difficult because of their rarity. We show both theoretically and through data experiments that the more abundant data in earlier steps may be leveraged to improve estimation of probabilities of rare events. We present PRESTO, a relaxation of the proportional odds model for ordinal regression. Instead of estimating weights for one separating hyperplane that is shifted by separate intercepts for each of the estimated Bayes decision boundaries between adjacent pairs of categorical responses, we estimate separate weights for each of these transitions. We impose an L1 penalty on the differences between weights for the same feature in adjacent weight vectors in order to shrink towards the proportional odds model. We prove that PRESTO consistently estimates the decision boundary weights under a sparsity assumption. Synthetic and real data experiments show that our method can estimate rare probabilities in this setting better than both logistic regression on the rare category, which fails to borrow strength from more abundant categories, and the proportional odds model, which is too inflexible.
A non-asymptotic approach for model selection via penalization in high-dimensional mixture of experts models
Mixture of experts (MoE) are a popular class of statistical and machine learning models that have gained attention over the years due to their flexibility and efficiency. In this work, we consider Gaussian-gated localized MoE (GLoME) and block-diagonal covariance localized MoE (BLoME) regression models to present nonlinear relationships in heterogeneous data with potential hidden graph-structured interactions between high-dimensional predictors. These models pose difficult statistical estimation and model selection questions, both from a computational and theoretical perspective. This paper is devoted to the study of the problem of model selection among a collection of GLoME or BLoME models characterized by the number of mixture components, the complexity of Gaussian mean experts, and the hidden block-diagonal structures of the covariance matrices, in a penalized maximum likelihood estimation framework. In particular, we establish non-asymptotic risk bounds that take the form of weak oracle inequalities, provided that lower bounds for the penalties hold. The good empirical behavior of our models is then demonstrated on synthetic and real datasets.
Dropout-Based Rashomon Set Exploration for Efficient Predictive Multiplicity Estimation
Predictive multiplicity refers to the phenomenon in which classification tasks may admit multiple competing models that achieve almost-equally-optimal performance, yet generate conflicting outputs for individual samples. This presents significant concerns, as it can potentially result in systemic exclusion, inexplicable discrimination, and unfairness in practical applications. Measuring and mitigating predictive multiplicity, however, is computationally challenging due to the need to explore all such almost-equally-optimal models, known as the Rashomon set, in potentially huge hypothesis spaces. To address this challenge, we propose a novel framework that utilizes dropout techniques for exploring models in the Rashomon set. We provide rigorous theoretical derivations to connect the dropout parameters to properties of the Rashomon set, and empirically evaluate our framework through extensive experimentation. Numerical results show that our technique consistently outperforms baselines in terms of the effectiveness of predictive multiplicity metric estimation, with runtime speedup up to 20times sim 5000times. With efficient Rashomon set exploration and metric estimation, mitigation of predictive multiplicity is then achieved through dropout ensemble and model selection.
An Actionable Framework for Assessing Bias and Fairness in Large Language Model Use Cases
Large language models (LLMs) can exhibit bias in a variety of ways. Such biases can create or exacerbate unfair outcomes for certain groups within a protected attribute, including, but not limited to sex, race, sexual orientation, or age. In this paper, we propose a decision framework that allows practitioners to determine which bias and fairness metrics to use for a specific LLM use case. To establish the framework, we define bias and fairness risks for LLMs, map those risks to a taxonomy of LLM use cases, and then define various metrics to assess each type of risk. Instead of focusing solely on the model itself, we account for both prompt-specific- and model-specific-risk by defining evaluations at the level of an LLM use case, characterized by a model and a population of prompts. Furthermore, because all of the evaluation metrics are calculated solely using the LLM output, our proposed framework is highly practical and easily actionable for practitioners. For streamlined implementation, all evaluation metrics included in the framework are offered in this paper's companion Python toolkit, LangFair. Finally, our experiments demonstrate substantial variation in bias and fairness across use cases, underscoring the importance of use-case-level assessments.
How Predictable Are Large Language Model Capabilities? A Case Study on BIG-bench
We investigate the predictability of large language model (LLM) capabilities: given records of past experiments using different model families, numbers of parameters, tasks, and numbers of in-context examples, can we accurately predict LLM performance on new experiment configurations? Answering this question has practical implications for LLM users (e.g., deciding which models to try), developers (e.g., prioritizing evaluation on representative tasks), and the research community (e.g., identifying hard-to-predict capabilities that warrant further investigation). We study the performance prediction problem on experiment records from BIG-bench. On a random train-test split, an MLP-based predictor achieves an R^2 score greater than 95%, indicating the presence of learnable patterns within the experiment records. We then formulate the problem of searching for "small-bench," an informative subset of BIG-bench tasks from which the performance on the full set can be maximally recovered. We find a subset as informative as BIG-bench Hard for evaluating new model families, while being 3times smaller. Additionally, we find competitive subsets by clustering task representations learned by our MLP-based predictor and selecting tasks close to cluster centroids, highlighting the importance of task diversity in constructing "small-bench."
Foresight -- Generative Pretrained Transformer (GPT) for Modelling of Patient Timelines using EHRs
Background: Electronic Health Records hold detailed longitudinal information about each patient's health status and general clinical history, a large portion of which is stored within the unstructured text. Existing approaches focus mostly on structured data and a subset of single-domain outcomes. We explore how temporal modelling of patients from free text and structured data, using deep generative transformers can be used to forecast a wide range of future disorders, substances, procedures or findings. Methods: We present Foresight, a novel transformer-based pipeline that uses named entity recognition and linking tools to convert document text into structured, coded concepts, followed by providing probabilistic forecasts for future medical events such as disorders, substances, procedures and findings. We processed the entire free-text portion from three different hospital datasets totalling 811336 patients covering both physical and mental health. Findings: On tests in two UK hospitals (King's College Hospital, South London and Maudsley) and the US MIMIC-III dataset precision@10 0.68, 0.76 and 0.88 was achieved for forecasting the next disorder in a patient timeline, while precision@10 of 0.80, 0.81 and 0.91 was achieved for forecasting the next biomedical concept. Foresight was also validated on 34 synthetic patient timelines by five clinicians and achieved relevancy of 97% for the top forecasted candidate disorder. As a generative model, it can forecast follow-on biomedical concepts for as many steps as required. Interpretation: Foresight is a general-purpose model for biomedical concept modelling that can be used for real-world risk forecasting, virtual trials and clinical research to study the progression of disorders, simulate interventions and counterfactuals, and educational purposes.
Prediction without Preclusion: Recourse Verification with Reachable Sets
Machine learning models are often used to decide who will receive a loan, a job interview, or a public benefit. Standard techniques to build these models use features about people but overlook their actionability. In turn, models can assign predictions that are fixed, meaning that consumers who are denied loans, interviews, or benefits may be permanently locked out from access to credit, employment, or assistance. In this work, we introduce a formal testing procedure to flag models that assign fixed predictions that we call recourse verification. We develop machinery to reliably determine if a given model can provide recourse to its decision subjects from a set of user-specified actionability constraints. We demonstrate how our tools can ensure recourse and adversarial robustness in real-world datasets and use them to study the infeasibility of recourse in real-world lending datasets. Our results highlight how models can inadvertently assign fixed predictions that permanently bar access, and we provide tools to design algorithms that account for actionability when developing models.
Oracle Efficient Algorithms for Groupwise Regret
We study the problem of online prediction, in which at each time step t, an individual x_t arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.
MV-MLM: Bridging Multi-View Mammography and Language for Breast Cancer Diagnosis and Risk Prediction
Large annotated datasets are essential for training robust Computer-Aided Diagnosis (CAD) models for breast cancer detection or risk prediction. However, acquiring such datasets with fine-detailed annotation is both costly and time-consuming. Vision-Language Models (VLMs), such as CLIP, which are pre-trained on large image-text pairs, offer a promising solution by enhancing robustness and data efficiency in medical imaging tasks. This paper introduces a novel Multi-View Mammography and Language Model for breast cancer classification and risk prediction, trained on a dataset of paired mammogram images and synthetic radiology reports. Our MV-MLM leverages multi-view supervision to learn rich representations from extensive radiology data by employing cross-modal self-supervision across image-text pairs. This includes multiple views and the corresponding pseudo-radiology reports. We propose a novel joint visual-textual learning strategy to enhance generalization and accuracy performance over different data types and tasks to distinguish breast tissues or cancer characteristics(calcification, mass) and utilize these patterns to understand mammography images and predict cancer risk. We evaluated our method on both private and publicly available datasets, demonstrating that the proposed model achieves state-of-the-art performance in three classification tasks: (1) malignancy classification, (2) subtype classification, and (3) image-based cancer risk prediction. Furthermore, the model exhibits strong data efficiency, outperforming existing fully supervised or VLM baselines while trained on synthetic text reports and without the need for actual radiology reports.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Beyond Eviction Prediction: Leveraging Local Spatiotemporal Public Records to Inform Action
There has been considerable recent interest in scoring properties on the basis of eviction risk. The success of methods for eviction prediction is typically evaluated using different measures of predictive accuracy. However, the underlying goal of such prediction is to direct appropriate assistance to households that may be at greater risk so they remain stably housed. Thus, we must ask the question of how useful such predictions are in targeting outreach efforts - informing action. In this paper, we investigate this question using a novel dataset that matches information on properties, evictions, and owners. We perform an eviction prediction task to produce risk scores and then use these risk scores to plan targeted outreach policies. We show that the risk scores are, in fact, useful, enabling a theoretical team of caseworkers to reach more eviction-prone properties in the same amount of time, compared to outreach policies that are either neighborhood-based or focus on buildings with a recent history of evictions. We also discuss the importance of neighborhood and ownership features in both risk prediction and targeted outreach.
Transfer Learning for Portfolio Optimization
In this work, we explore the possibility of utilizing transfer learning techniques to address the financial portfolio optimization problem. We introduce a novel concept called "transfer risk", within the optimization framework of transfer learning. A series of numerical experiments are conducted from three categories: cross-continent transfer, cross-sector transfer, and cross-frequency transfer. In particular, 1. a strong correlation between the transfer risk and the overall performance of transfer learning methods is established, underscoring the significance of transfer risk as a viable indicator of "transferability"; 2. transfer risk is shown to provide a computationally efficient way to identify appropriate source tasks in transfer learning, enhancing the efficiency and effectiveness of the transfer learning approach; 3. additionally, the numerical experiments offer valuable new insights for portfolio management across these different settings.
Machine Learning and Deep Learning -- A review for Ecologists
1. The popularity of Machine learning (ML), Deep learning (DL), and Artificial intelligence (AI) has risen sharply in recent years. Despite this spike in popularity, the inner workings of ML and DL algorithms are often perceived as opaque, and their relationship to classical data analysis tools remains debated. 2. Although it is often assumed that ML and DL excel primarily at making predictions, ML and DL can also be used for analytical tasks traditionally addressed with statistical models. Moreover, most recent discussions and reviews on ML focus mainly on DL, missing out on synthesizing the wealth of ML algorithms with different advantages and general principles. 3. Here, we provide a comprehensive overview of the field of ML and DL, starting by summarizing its historical developments, existing algorithm families, differences to traditional statistical tools, and universal ML principles. We then discuss why and when ML and DL models excel at prediction tasks and where they could offer alternatives to traditional statistical methods for inference, highlighting current and emerging applications for ecological problems. Finally, we summarize emerging trends such as scientific and causal ML, explainable AI, and responsible AI that may significantly impact ecological data analysis in the future. 4. We conclude that ML and DL are powerful new tools for predictive modeling and data analysis. The superior performance of ML and DL algorithms compared to statistical models can be explained by their higher flexibility and automatic data-dependent complexity optimization. However, their use for causal inference is still disputed as the focus of ML and DL methods on predictions creates challenges for the interpretation of these models. Nevertheless, we expect ML and DL to become an indispensable tool in E&E, comparable to other traditional statistical tools.
Risk forecasting using Long Short-Term Memory Mixture Density Networks
This work aims to implement Long Short-Term Memory mixture density networks (LSTM-MDNs) for Value-at-Risk forecasting and compare their performance with established models (historical simulation, CMM, and GARCH) using a defined backtesting procedure. The focus was on the neural network's ability to capture volatility clustering and its real-world applicability. Three architectures were tested: a 2-component mixture density network, a regularized 2-component model (Arimond et al., 2020), and a 3-component mixture model, the latter being tested for the first time in Value-at-Risk forecasting. Backtesting was performed on three stock indices (FTSE 100, S&P 500, EURO STOXX 50) over two distinct two-year periods (2017-2018 as a calm period, 2021-2022 as turbulent). Model performance was assessed through unconditional coverage and independence assumption tests. The neural network's ability to handle volatility clustering was validated via correlation analysis and graphical evaluation. Results show limited success for the neural network approach. LSTM-MDNs performed poorly for 2017/2018 but outperformed benchmark models in 2021/2022. The LSTM mechanism allowed the neural network to capture volatility clustering similarly to GARCH models. However, several issues were identified: the need for proper model initialization and reliance on large datasets for effective learning. The findings suggest that while LSTM-MDNs provide adequate risk forecasts, further research and adjustments are necessary for stable performance.
Benchmarking emergency department triage prediction models with machine learning and large public electronic health records
The demand for emergency department (ED) services is increasing across the globe, particularly during the current COVID-19 pandemic. Clinical triage and risk assessment have become increasingly challenging due to the shortage of medical resources and the strain on hospital infrastructure caused by the pandemic. As a result of the widespread use of electronic health records (EHRs), we now have access to a vast amount of clinical data, which allows us to develop predictive models and decision support systems to address these challenges. To date, however, there are no widely accepted benchmark ED triage prediction models based on large-scale public EHR data. An open-source benchmarking platform would streamline research workflows by eliminating cumbersome data preprocessing, and facilitate comparisons among different studies and methodologies. In this paper, based on the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) database, we developed a publicly available benchmark suite for ED triage predictive models and created a benchmark dataset that contains over 400,000 ED visits from 2011 to 2019. We introduced three ED-based outcomes (hospitalization, critical outcomes, and 72-hour ED reattendance) and implemented a variety of popular methodologies, ranging from machine learning methods to clinical scoring systems. We evaluated and compared the performance of these methods against benchmark tasks. Our codes are open-source, allowing anyone with MIMIC-IV-ED data access to perform the same steps in data processing, benchmark model building, and experiments. This study provides future researchers with insights, suggestions, and protocols for managing raw data and developing risk triaging tools for emergency care.
Advanced User Credit Risk Prediction Model using LightGBM, XGBoost and Tabnet with SMOTEENN
Bank credit risk is a significant challenge in modern financial transactions, and the ability to identify qualified credit card holders among a large number of applicants is crucial for the profitability of a bank'sbank's credit card business. In the past, screening applicants'applicants' conditions often required a significant amount of manual labor, which was time-consuming and labor-intensive. Although the accuracy and reliability of previously used ML models have been continuously improving, the pursuit of more reliable and powerful AI intelligent models is undoubtedly the unremitting pursuit by major banks in the financial industry. In this study, we used a dataset of over 40,000 records provided by a commercial bank as the research object. We compared various dimensionality reduction techniques such as PCA and T-SNE for preprocessing high-dimensional datasets and performed in-depth adaptation and tuning of distributed models such as LightGBM and XGBoost, as well as deep models like Tabnet. After a series of research and processing, we obtained excellent research results by combining SMOTEENN with these techniques. The experiments demonstrated that LightGBM combined with PCA and SMOTEENN techniques can assist banks in accurately predicting potential high-quality customers, showing relatively outstanding performance compared to other models.
AgentMD: Empowering Language Agents for Risk Prediction with Large-Scale Clinical Tool Learning
Clinical calculators play a vital role in healthcare by offering accurate evidence-based predictions for various purposes such as prognosis. Nevertheless, their widespread utilization is frequently hindered by usability challenges, poor dissemination, and restricted functionality. Augmenting large language models with extensive collections of clinical calculators presents an opportunity to overcome these obstacles and improve workflow efficiency, but the scalability of the manual curation process poses a significant challenge. In response, we introduce AgentMD, a novel language agent capable of curating and applying clinical calculators across various clinical contexts. Using the published literature, AgentMD has automatically curated a collection of 2,164 diverse clinical calculators with executable functions and structured documentation, collectively named RiskCalcs. Manual evaluations show that RiskCalcs tools achieve an accuracy of over 80% on three quality metrics. At inference time, AgentMD can automatically select and apply the relevant RiskCalcs tools given any patient description. On the newly established RiskQA benchmark, AgentMD significantly outperforms chain-of-thought prompting with GPT-4 (87.7% vs. 40.9% in accuracy). Additionally, we also applied AgentMD to real-world clinical notes for analyzing both population-level and risk-level patient characteristics. In summary, our study illustrates the utility of language agents augmented with clinical calculators for healthcare analytics and patient care.
Forecasting Thermoacoustic Instabilities in Liquid Propellant Rocket Engines Using Multimodal Bayesian Deep Learning
The 100 MW cryogenic liquid oxygen/hydrogen multi-injector combustor BKD operated by the DLR Institute of Space Propulsion is a research platform that allows the study of thermoacoustic instabilities under realistic conditions, representative of small upper stage rocket engines. We use data from BKD experimental campaigns in which the static chamber pressure and fuel-oxidizer ratio are varied such that the first tangential mode of the combustor is excited under some conditions. We train an autoregressive Bayesian neural network model to forecast the amplitude of the dynamic pressure time series, inputting multiple sensor measurements (injector pressure/ temperature measurements, static chamber pressure, high-frequency dynamic pressure measurements, high-frequency OH* chemiluminescence measurements) and future flow rate control signals. The Bayesian nature of our algorithms allows us to work with a dataset whose size is restricted by the expense of each experimental run, without making overconfident extrapolations. We find that the networks are able to accurately forecast the evolution of the pressure amplitude and anticipate instability events on unseen experimental runs 500 milliseconds in advance. We compare the predictive accuracy of multiple models using different combinations of sensor inputs. We find that the high-frequency dynamic pressure signal is particularly informative. We also use the technique of integrated gradients to interpret the influence of different sensor inputs on the model prediction. The negative log-likelihood of data points in the test dataset indicates that predictive uncertainties are well-characterized by our Bayesian model and simulating a sensor failure event results as expected in a dramatic increase in the epistemic component of the uncertainty.
Accelerating Neural Architecture Search using Performance Prediction
Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series validation performance data. We empirically show that our performance prediction models are much more effective than prominent Bayesian counterparts, are simpler to implement, and are faster to train. Our models can predict final performance in both visual classification and language modeling domains, are effective for predicting performance of drastically varying model architectures, and can even generalize between model classes. Using these prediction models, we also propose an early stopping method for hyperparameter optimization and meta-modeling, which obtains a speedup of a factor up to 6x in both hyperparameter optimization and meta-modeling. Finally, we empirically show that our early stopping method can be seamlessly incorporated into both reinforcement learning-based architecture selection algorithms and bandit based search methods. Through extensive experimentation, we empirically show our performance prediction models and early stopping algorithm are state-of-the-art in terms of prediction accuracy and speedup achieved while still identifying the optimal model configurations.
Internal Causal Mechanisms Robustly Predict Language Model Out-of-Distribution Behaviors
Interpretability research now offers a variety of techniques for identifying abstract internal mechanisms in neural networks. Can such techniques be used to predict how models will behave on out-of-distribution examples? In this work, we provide a positive answer to this question. Through a diverse set of language modeling tasks--including symbol manipulation, knowledge retrieval, and instruction following--we show that the most robust features for correctness prediction are those that play a distinctive causal role in the model's behavior. Specifically, we propose two methods that leverage causal mechanisms to predict the correctness of model outputs: counterfactual simulation (checking whether key causal variables are realized) and value probing (using the values of those variables to make predictions). Both achieve high AUC-ROC in distribution and outperform methods that rely on causal-agnostic features in out-of-distribution settings, where predicting model behaviors is more crucial. Our work thus highlights a novel and significant application for internal causal analysis of language models.
Empirical Analysis of Model Selection for Heterogeneous Causal Effect Estimation
We study the problem of model selection in causal inference, specifically for the case of conditional average treatment effect (CATE) estimation under binary treatments. Unlike model selection in machine learning, there is no perfect analogue of cross-validation as we do not observe the counterfactual potential outcome for any data point. Towards this, there have been a variety of proxy metrics proposed in the literature, that depend on auxiliary nuisance models estimated from the observed data (propensity score model, outcome regression model). However, the effectiveness of these metrics has only been studied on synthetic datasets as we can access the counterfactual data for them. We conduct an extensive empirical analysis to judge the performance of these metrics introduced in the literature, and novel ones introduced in this work, where we utilize the latest advances in generative modeling to incorporate multiple realistic datasets. Our analysis suggests novel model selection strategies based on careful hyperparameter tuning of CATE estimators and causal ensembling.
Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) for Diabetes Risk Prediction
The Quantum-Inspired Stacked Integrated Concept Graph Model (QISICGM) is an innovative machine learning framework that harnesses quantum-inspired techniques to predict diabetes risk with exceptional accuracy and efficiency. Utilizing the PIMA Indians Diabetes dataset augmented with 2,000 synthetic samples to mitigate class imbalance (total: 2,768 samples, 1,949 positives), QISICGM integrates a self-improving concept graph with a stacked ensemble comprising Random Forests (RF), Extra Trees (ET), transformers, convolutional neural networks (CNNs), and feed-forward neural networks (FFNNs). This approach achieves an out-of-fold (OOF) F1 score of 0.8933 and an AUC of 0.8699, outperforming traditional methods. Quantum inspired elements, such as phase feature mapping and neighborhood sequence modeling, enrich feature representations, enabling CPU-efficient inference at 8.5 rows per second. This paper presents a detailed architecture, theoretical foundations, code insights, and performance evaluations, including visualizations from the outputs subfolder. The open-source implementation (v1.0.0) is available at https://github.com/keninayoung/QISICGM, positioning QISICGM as a potential benchmark for AI-assisted clinical triage in diabetes and beyond. Ultimately, this work emphasizes trustworthy AI through calibration, interpretability, and open-source reproducibility.
Language Model Cascades
Prompted models have demonstrated impressive few-shot learning abilities. Repeated interactions at test-time with a single model, or the composition of multiple models together, further expands capabilities. These compositions are probabilistic models, and may be expressed in the language of graphical models with random variables whose values are complex data types such as strings. Cases with control flow and dynamic structure require techniques from probabilistic programming, which allow implementing disparate model structures and inference strategies in a unified language. We formalize several existing techniques from this perspective, including scratchpads / chain of thought, verifiers, STaR, selection-inference, and tool use. We refer to the resulting programs as language model cascades.
Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models
We examine the potential of ChatGPT and other large language models in predicting stock market returns using news headlines. We use ChatGPT to assess whether each headline is good, bad, or neutral for firms' stock prices. We document a significantly positive correlation between ChatGPT scores and subsequent daily stock returns. We find that ChatGPT outperforms traditional sentiment analysis methods. More basic models such as GPT-1, GPT-2, and BERT cannot accurately forecast returns, indicating return predictability is an emerging capacity of complex language models. Long-short strategies based on ChatGPT-4 deliver the highest Sharpe ratio. Furthermore, we find predictability in both small and large stocks, suggesting market underreaction to company news. Predictability is stronger among smaller stocks and stocks with bad news, consistent with limits-to-arbitrage also playing an important role. Finally, we propose a new method to evaluate and understand the models' reasoning capabilities. Overall, our results suggest that incorporating advanced language models into the investment decision-making process can yield more accurate predictions and enhance the performance of quantitative trading strategies.
Invariant Risk Minimization
We introduce Invariant Risk Minimization (IRM), a learning paradigm to estimate invariant correlations across multiple training distributions. To achieve this goal, IRM learns a data representation such that the optimal classifier, on top of that data representation, matches for all training distributions. Through theory and experiments, we show how the invariances learned by IRM relate to the causal structures governing the data and enable out-of-distribution generalization.
Sector Rotation by Factor Model and Fundamental Analysis
This study presents an analytical approach to sector rotation, leveraging both factor models and fundamental metrics. We initiate with a systematic classification of sectors, followed by an empirical investigation into their returns. Through factor analysis, the paper underscores the significance of momentum and short-term reversion in dictating sectoral shifts. A subsequent in-depth fundamental analysis evaluates metrics such as PE, PB, EV-to-EBITDA, Dividend Yield, among others. Our primary contribution lies in developing a predictive framework based on these fundamental indicators. The constructed models, post rigorous training, exhibit noteworthy predictive capabilities. The findings furnish a nuanced understanding of sector rotation strategies, with implications for asset management and portfolio construction in the financial domain.
