new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Who's Asking? Simulating Role-Based Questions for Conversational AI Evaluation

Language model users often embed personal and social context in their questions. The asker's role -- implicit in how the question is framed -- creates specific needs for an appropriate response. However, most evaluations, while capturing the model's capability to respond, often ignore who is asking. This gap is especially critical in stigmatized domains such as opioid use disorder (OUD), where accounting for users' contexts is essential to provide accessible, stigma-free responses. We propose CoRUS (COmmunity-driven Roles for User-centric Question Simulation), a framework for simulating role-based questions. Drawing on role theory and posts from an online OUD recovery community (r/OpiatesRecovery), we first build a taxonomy of asker roles -- patients, caregivers, practitioners. Next, we use it to simulate 15,321 questions that embed each role's goals, behaviors, and experiences. Our evaluations show that these questions are both highly believable and comparable to real-world data. When used to evaluate five LLMs, for the same question but differing roles, we find systematic differences: vulnerable roles, such as patients and caregivers, elicit more supportive responses (+17%) and reduced knowledge content (-19%) in comparison to practitioners. Our work demonstrates how implicitly signaling a user's role shapes model responses, and provides a methodology for role-informed evaluation of conversational AI.

  • 6 authors
·
Oct 19, 2025

Decolonial AI: Decolonial Theory as Sociotechnical Foresight in Artificial Intelligence

This paper explores the important role of critical science, and in particular of post-colonial and decolonial theories, in understanding and shaping the ongoing advances in artificial intelligence. Artificial Intelligence (AI) is viewed as amongst the technological advances that will reshape modern societies and their relations. Whilst the design and deployment of systems that continually adapt holds the promise of far-reaching positive change, they simultaneously pose significant risks, especially to already vulnerable peoples. Values and power are central to this discussion. Decolonial theories use historical hindsight to explain patterns of power that shape our intellectual, political, economic, and social world. By embedding a decolonial critical approach within its technical practice, AI communities can develop foresight and tactics that can better align research and technology development with established ethical principles, centring vulnerable peoples who continue to bear the brunt of negative impacts of innovation and scientific progress. We highlight problematic applications that are instances of coloniality, and using a decolonial lens, submit three tactics that can form a decolonial field of artificial intelligence: creating a critical technical practice of AI, seeking reverse tutelage and reverse pedagogies, and the renewal of affective and political communities. The years ahead will usher in a wave of new scientific breakthroughs and technologies driven by AI research, making it incumbent upon AI communities to strengthen the social contract through ethical foresight and the multiplicity of intellectual perspectives available to us; ultimately supporting future technologies that enable greater well-being, with the goal of beneficence and justice for all.

  • 3 authors
·
Jul 8, 2020

Emotional RAG: Enhancing Role-Playing Agents through Emotional Retrieval

As LLMs exhibit a high degree of human-like capability, increasing attention has been paid to role-playing research areas in which responses generated by LLMs are expected to mimic human replies. This has promoted the exploration of role-playing agents in various applications, such as chatbots that can engage in natural conversations with users and virtual assistants that can provide personalized support and guidance. The crucial factor in the role-playing task is the effective utilization of character memory, which stores characters' profiles, experiences, and historical dialogues. Retrieval Augmented Generation (RAG) technology is used to access the related memory to enhance the response generation of role-playing agents. Most existing studies retrieve related information based on the semantic similarity of memory to maintain characters' personalized traits, and few attempts have been made to incorporate the emotional factor in the retrieval argument generation (RAG) of LLMs. Inspired by the Mood-Dependent Memory theory, which indicates that people recall an event better if they somehow reinstate during recall the original emotion they experienced during learning, we propose a novel emotion-aware memory retrieval framework, termed Emotional RAG, which recalls the related memory with consideration of emotional state in role-playing agents. Specifically, we design two kinds of retrieval strategies, i.e., combination strategy and sequential strategy, to incorporate both memory semantic and emotional states during the retrieval process. Extensive experiments on three representative role-playing datasets demonstrate that our Emotional RAG framework outperforms the method without considering the emotional factor in maintaining the personalities of role-playing agents. This provides evidence to further reinforce the Mood-Dependent Memory theory in psychology.

  • 5 authors
·
Oct 30, 2024

PHAnToM: Personality Has An Effect on Theory-of-Mind Reasoning in Large Language Models

Recent advances in large language models (LLMs) demonstrate that their capabilities are comparable, or even superior, to humans in many tasks in natural language processing. Despite this progress, LLMs are still inadequate at social-cognitive reasoning, which humans are naturally good at. Drawing inspiration from psychological research on the links between certain personality traits and Theory-of-Mind (ToM) reasoning, and from prompt engineering research on the hyper-sensitivity of prompts in affecting LLMs capabilities, this study investigates how inducing personalities in LLMs using prompts affects their ToM reasoning capabilities. Our findings show that certain induced personalities can significantly affect the LLMs' reasoning capabilities in three different ToM tasks. In particular, traits from the Dark Triad have a larger variable effect on LLMs like GPT-3.5, Llama 2, and Mistral across the different ToM tasks. We find that LLMs that exhibit a higher variance across personality prompts in ToM also tends to be more controllable in personality tests: personality traits in LLMs like GPT-3.5, Llama 2 and Mistral can be controllably adjusted through our personality prompts. In today's landscape where role-play is a common strategy when using LLMs, our research highlights the need for caution, as models that adopt specific personas with personalities potentially also alter their reasoning abilities in an unexpected manner.

  • 9 authors
·
Mar 4, 2024

Persuasion Should be Double-Blind: A Multi-Domain Dialogue Dataset With Faithfulness Based on Causal Theory of Mind

Persuasive dialogue plays a pivotal role in human communication, influencing various domains. Recent persuasive dialogue datasets often fail to align with real-world interpersonal interactions, leading to unfaithful representations. For instance, unrealistic scenarios may arise, such as when the persuadee explicitly instructs the persuader on which persuasion strategies to employ, with each of the persuadee's questions corresponding to a specific strategy for the persuader to follow. This issue can be attributed to a violation of the "Double Blind" condition, where critical information is fully shared between participants. In actual human interactions, however, key information such as the mental state of the persuadee and the persuasion strategies of the persuader is not directly accessible. The persuader must infer the persuadee's mental state using Theory of Mind capabilities and construct arguments that align with the persuadee's motivations. To address this gap, we introduce ToMMA, a novel multi-agent framework for dialogue generation that is guided by causal Theory of Mind. This framework ensures that information remains undisclosed between agents, preserving "double-blind" conditions, while causal ToM directs the persuader's reasoning, enhancing alignment with human-like persuasion dynamics. Consequently, we present CToMPersu, a multi-domain, multi-turn persuasive dialogue dataset that tackles both double-blind and logical coherence issues, demonstrating superior performance across multiple metrics and achieving better alignment with real human dialogues. Our dataset and prompts are available at https://github.com/DingyiZhang/ToMMA-CToMPersu .

  • 2 authors
·
Feb 28, 2025

Understanding the Role of Optimization in Double Descent

The phenomenon of model-wise double descent, where the test error peaks and then reduces as the model size increases, is an interesting topic that has attracted the attention of researchers due to the striking observed gap between theory and practice Belkin2018ReconcilingMM. Additionally, while double descent has been observed in various tasks and architectures, the peak of double descent can sometimes be noticeably absent or diminished, even without explicit regularization, such as weight decay and early stopping. In this paper, we investigate this intriguing phenomenon from the optimization perspective and propose a simple optimization-based explanation for why double descent sometimes occurs weakly or not at all. To the best of our knowledge, we are the first to demonstrate that many disparate factors contributing to model-wise double descent (initialization, normalization, batch size, learning rate, optimization algorithm) are unified from the viewpoint of optimization: model-wise double descent is observed if and only if the optimizer can find a sufficiently low-loss minimum. These factors directly affect the condition number of the optimization problem or the optimizer and thus affect the final minimum found by the optimizer, reducing or increasing the height of the double descent peak. We conduct a series of controlled experiments on random feature models and two-layer neural networks under various optimization settings, demonstrating this optimization-based unified view. Our results suggest the following implication: Double descent is unlikely to be a problem for real-world machine learning setups. Additionally, our results help explain the gap between weak double descent peaks in practice and strong peaks observable in carefully designed setups.

  • 2 authors
·
Dec 6, 2023

The Principles of Deep Learning Theory

This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.

  • 3 authors
·
Jun 18, 2021

What's the Magic Word? A Control Theory of LLM Prompting

Prompt engineering is crucial for deploying LLMs but is poorly understood mathematically. We formalize LLM systems as a class of discrete stochastic dynamical systems to explore prompt engineering through the lens of control theory. We investigate the reachable set of output token sequences R_y(mathbf x_0) for which there exists a control input sequence mathbf u for each mathbf y in R_y(mathbf x_0) that steers the LLM to output mathbf y from initial state sequence mathbf x_0. We offer analytic analysis on the limitations on the controllability of self-attention in terms of reachable set, where we prove an upper bound on the reachable set of outputs R_y(mathbf x_0) as a function of the singular values of the parameter matrices. We present complementary empirical analysis on the controllability of a panel of LLMs, including Falcon-7b, Llama-7b, and Falcon-40b. Our results demonstrate a lower bound on the reachable set of outputs R_y(mathbf x_0) w.r.t. initial state sequences mathbf x_0 sampled from the Wikitext dataset. We find that the correct next Wikitext token following sequence mathbf x_0 is reachable over 97% of the time with prompts of kleq 10 tokens. We also establish that the top 75 most likely next tokens, as estimated by the LLM itself, are reachable at least 85% of the time with prompts of kleq 10 tokens. Intriguingly, short prompt sequences can dramatically alter the likelihood of specific outputs, even making the least likely tokens become the most likely ones. This control-centric analysis of LLMs demonstrates the significant and poorly understood role of input sequences in steering output probabilities, offering a foundational perspective for enhancing language model system capabilities.

  • 4 authors
·
Oct 2, 2023

ICLR: In-Context Learning of Representations

Recent work has demonstrated that semantics specified by pretraining data influence how representations of different concepts are organized in a large language model (LLM). However, given the open-ended nature of LLMs, e.g., their ability to in-context learn, we can ask whether models alter these pretraining semantics to adopt alternative, context-specified ones. Specifically, if we provide in-context exemplars wherein a concept plays a different role than what the pretraining data suggests, do models reorganize their representations in accordance with these novel semantics? To answer this question, we take inspiration from the theory of conceptual role semantics and define a toy "graph tracing" task wherein the nodes of the graph are referenced via concepts seen during training (e.g., apple, bird, etc.) and the connectivity of the graph is defined via some predefined structure (e.g., a square grid). Given exemplars that indicate traces of random walks on the graph, we analyze intermediate representations of the model and find that as the amount of context is scaled, there is a sudden re-organization from pretrained semantic representations to in-context representations aligned with the graph structure. Further, we find that when reference concepts have correlations in their semantics (e.g., Monday, Tuesday, etc.), the context-specified graph structure is still present in the representations, but is unable to dominate the pretrained structure. To explain these results, we analogize our task to energy minimization for a predefined graph topology, providing evidence towards an implicit optimization process to infer context-specified semantics. Overall, our findings indicate scaling context-size can flexibly re-organize model representations, possibly unlocking novel capabilities.

  • 8 authors
·
Dec 29, 2024

Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G

Building future wireless systems that support services like digital twins (DTs) is challenging to achieve through advances to conventional technologies like meta-surfaces. While artificial intelligence (AI)-native networks promise to overcome some limitations of wireless technologies, developments still rely on AI tools like neural networks. Such tools struggle to cope with the non-trivial challenges of the network environment and the growing demands of emerging use cases. In this paper, we revisit the concept of AI-native wireless systems, equipping them with the common sense necessary to transform them into artificial general intelligence (AGI)-native systems. These systems acquire common sense by exploiting different cognitive abilities such as perception, analogy, and reasoning, that enable them to generalize and deal with unforeseen scenarios. Towards developing the components of such a system, we start by showing how the perception module can be built through abstracting real-world elements into generalizable representations. These representations are then used to create a world model, founded on principles of causality and hyper-dimensional (HD) computing, that aligns with intuitive physics and enables analogical reasoning, that define common sense. Then, we explain how methods such as integrated information theory play a role in the proposed intent-driven and objective-driven planning methods that maneuver the AGI-native network to take actions. Next, we discuss how an AGI-native network can enable use cases related to human and autonomous agents: a) analogical reasoning for next-generation DTs, b) synchronized and resilient experiences for cognitive avatars, and c) brain-level metaverse experiences like holographic teleportation. Finally, we conclude with a set of recommendations to build AGI-native systems. Ultimately, we envision this paper as a roadmap for the beyond 6G era.

  • 7 authors
·
Apr 29, 2024

Understanding Hessian Alignment for Domain Generalization

Out-of-distribution (OOD) generalization is a critical ability for deep learning models in many real-world scenarios including healthcare and autonomous vehicles. Recently, different techniques have been proposed to improve OOD generalization. Among these methods, gradient-based regularizers have shown promising performance compared with other competitors. Despite this success, our understanding of the role of Hessian and gradient alignment in domain generalization is still limited. To address this shortcoming, we analyze the role of the classifier's head Hessian matrix and gradient in domain generalization using recent OOD theory of transferability. Theoretically, we show that spectral norm between the classifier's head Hessian matrices across domains is an upper bound of the transfer measure, a notion of distance between target and source domains. Furthermore, we analyze all the attributes that get aligned when we encourage similarity between Hessians and gradients. Our analysis explains the success of many regularizers like CORAL, IRM, V-REx, Fish, IGA, and Fishr as they regularize part of the classifier's head Hessian and/or gradient. Finally, we propose two simple yet effective methods to match the classifier's head Hessians and gradients in an efficient way, based on the Hessian Gradient Product (HGP) and Hutchinson's method (Hutchinson), and without directly calculating Hessians. We validate the OOD generalization ability of proposed methods in different scenarios, including transferability, severe correlation shift, label shift and diversity shift. Our results show that Hessian alignment methods achieve promising performance on various OOD benchmarks. The code is available at https://github.com/huawei-noah/Federated-Learning/tree/main/HessianAlignment.

  • 4 authors
·
Aug 22, 2023

The Open Catalyst 2025 (OC25) Dataset and Models for Solid-Liquid Interfaces

Catalysis at solid-liquid interfaces plays a central role in the advancement of energy storage and sustainable chemical production technologies. By enabling accurate, long-time scale simulations, machine learning (ML) models have the potential to accelerate the discovery of (electro)catalysts. While prior Open Catalyst datasets (OC20 and OC22) have advanced the field by providing large-scale density functional theory (DFT) data of adsorbates on surfaces at solid-gas interfaces, they do not capture the critical role of solvent and electrolyte effects at solid-liquid interfaces. To bridge this gap, we introduce the Open Catalyst 2025 (OC25) dataset, consisting of 7,801,261 calculations across 1,511,270 unique explicit solvent environments. OC25 constitutes the largest and most diverse solid-liquid interface dataset that is currently available and provides configurational and elemental diversity: spanning 88 elements, commonly used solvents/ions, varying solvent layers, and off-equilibrium sampling. State-of-the-art models trained on the OC25 dataset exhibit energy, force, and solvation energy errors as low as 0.1 eV, 0.015 eV/A, and 0.04 eV, respectively; significantly lower than than the recently released Universal Models for Atoms (UMA-OC20). Additionally, we discuss the impact of the quality of DFT-calculated forces on model training and performance. The dataset and accompanying baseline models are made openly available for the community. We anticipate the dataset to facilitate large length-scale and long-timescale simulations of catalytic transformations at solid-liquid interfaces, advancing molecular-level insights into functional interfaces and enabling the discovery of next-generation energy storage and conversion technologies.

  • 9 authors
·
Sep 22, 2025

Better Zero-Shot Reasoning with Role-Play Prompting

Modern large language models (LLMs), such as ChatGPT, exhibit a remarkable capacity for role-playing, enabling them to embody not only human characters but also non-human entities like a Linux terminal. This versatility allows them to simulate complex human-like interactions and behaviors within various contexts, as well as to emulate specific objects or systems. While these capabilities have enhanced user engagement and introduced novel modes of interaction, the influence of role-playing on LLMs' reasoning abilities remains underexplored. In this study, we introduce a strategically designed role-play prompting methodology and assess its performance under the zero-shot setting across twelve diverse reasoning benchmarks, encompassing arithmetic, commonsense reasoning, symbolic reasoning, and more. Leveraging models such as ChatGPT and Llama 2, our empirical results illustrate that role-play prompting consistently surpasses the standard zero-shot approach across most datasets. Notably, accuracy on AQuA rises from 53.5% to 63.8%, and on Last Letter from 23.8% to 84.2%. Beyond enhancing contextual understanding, we posit that role-play prompting serves as an implicit Chain-of-Thought (CoT) trigger, thereby improving the quality of reasoning. By comparing our approach with the Zero-Shot-CoT technique, which prompts the model to "think step by step", we further demonstrate that role-play prompting can generate a more effective CoT. This highlights its potential to augment the reasoning capabilities of LLMs.

  • 7 authors
·
Aug 15, 2023

RoleMRC: A Fine-Grained Composite Benchmark for Role-Playing and Instruction-Following

Role-playing is important for Large Language Models (LLMs) to follow diverse instructions while maintaining role identity and the role's pre-defined ability limits. Existing role-playing datasets mostly contribute to controlling role style and knowledge boundaries, but overlook role-playing in instruction-following scenarios. We introduce a fine-grained role-playing and instruction-following composite benchmark, named RoleMRC, including: (1) Multi-turn dialogues between ideal roles and humans, including free chats or discussions upon given passages; (2) Role-playing machine reading comprehension, involving response, refusal, and attempts according to passage answerability and role ability; (3) More complex scenarios with nested, multi-turn and prioritized instructions. The final RoleMRC features a 10.2k role profile meta-pool, 37.9k well-synthesized role-playing instructions, and 1.4k testing samples. We develop a pipeline to quantitatively evaluate the fine-grained role-playing and instruction-following capabilities of several mainstream LLMs, as well as models that are fine-tuned on our data. Moreover, cross-evaluation on external role-playing datasets confirms that models fine-tuned on RoleMRC enhances instruction-following without compromising general role-playing and reasoning capabilities. We also probe the neural-level activation maps of different capabilities over post-tuned LLMs. Access to our RoleMRC, RoleMRC-mix and Codes: https://github.com/LuJunru/RoleMRC.

  • 8 authors
·
Feb 16, 2025

RoleEval: A Bilingual Role Evaluation Benchmark for Large Language Models

The rapid evolution of large language models (LLMs) necessitates effective benchmarks for evaluating their role knowledge, which is essential for establishing connections with the real world and providing more immersive interactions. This paper introduces RoleEval, a bilingual benchmark designed to assess the memorization, utilization, and reasoning capabilities of role knowledge. RoleEval comprises RoleEval-Global (including internationally recognized characters) and RoleEval-Chinese (including characters popular in China), with 6,000 Chinese-English parallel multiple-choice questions focusing on 300 influential people and fictional characters drawn from a variety of domains including celebrities, anime, comics, movies, TV series, games, and fiction. These questions cover basic knowledge and multi-hop reasoning abilities, aiming to systematically probe various aspects such as personal information, relationships, abilities, and experiences of the characters. To maintain high standards, we perform a hybrid quality check process combining automatic and human verification, ensuring that the questions are diverse, challenging, and discriminative. Our extensive evaluations of RoleEval across various open-source and proprietary large language models, under both the zero- and few-shot settings, reveal insightful findings. Notably, while GPT-4 outperforms other models on RoleEval-Global, Chinese LLMs excel on RoleEval-Chinese, highlighting significant knowledge distribution differences. We expect that RoleEval will highlight the significance of assessing role knowledge for foundation models across various languages and cultural settings.

  • 3 authors
·
Dec 26, 2023

Concept Incongruence: An Exploration of Time and Death in Role Playing

Consider this prompt "Draw a unicorn with two horns". Should large language models (LLMs) recognize that a unicorn has only one horn by definition and ask users for clarifications, or proceed to generate something anyway? We introduce concept incongruence to capture such phenomena where concept boundaries clash with each other, either in user prompts or in model representations, often leading to under-specified or mis-specified behaviors. In this work, we take the first step towards defining and analyzing model behavior under concept incongruence. Focusing on temporal boundaries in the Role-Play setting, we propose three behavioral metrics--abstention rate, conditional accuracy, and answer rate--to quantify model behavior under incongruence due to the role's death. We show that models fail to abstain after death and suffer from an accuracy drop compared to the Non-Role-Play setting. Through probing experiments, we identify two main causes: (i) unreliable encoding of the "death" state across different years, leading to unsatisfactory abstention behavior, and (ii) role playing causes shifts in the model's temporal representations, resulting in accuracy drops. We leverage these insights to improve consistency in the model's abstention and answer behaviors. Our findings suggest that concept incongruence leads to unexpected model behaviors and point to future directions on improving model behavior under concept incongruence.

  • 4 authors
·
May 20, 2025

Persona is a Double-edged Sword: Enhancing the Zero-shot Reasoning by Ensembling the Role-playing and Neutral Prompts

Recent studies demonstrate that prompting an appropriate role-playing persona to an LLM improves its reasoning capability. However, assigning a proper persona is difficult since an LLM's performance is extremely sensitive to assigned prompts; therefore, personas sometimes hinder LLMs and degrade their reasoning capabilities. In this paper, we propose a novel framework, Jekyll \& Hyde, which ensembles the results of role-playing and neutral prompts to eradicate performance degradation via unilateral use of role-playing prompted LLM and enhance the robustness of an LLM's reasoning ability. Specifically, Jekyll \& Hyde collects two potential solutions from both role-playing and neutral prompts and selects a better solution after cross-checking via an LLM evaluator. However, LLM-based evaluators tend to be affected by the order of those potential solutions within the prompt when selecting the proper solution; thus, we also propose a robust LLM evaluator to mitigate the position bias. The experimental analysis demonstrates that role-playing prompts distract LLMs and degrade their reasoning abilities in 4 out of 12 datasets, even when using GPT-4. In addition, we reveal that Jekyll \& Hyde improves reasoning capabilities by selecting better choices among the potential solutions on twelve widely-used reasoning datasets. We further show that our proposed LLM evaluator outperforms other baselines, proving the LLMs' position bias is successfully mitigated.

  • 3 authors
·
Aug 16, 2024

Large Language Models are Superpositions of All Characters: Attaining Arbitrary Role-play via Self-Alignment

Considerable efforts have been invested in augmenting the role-playing proficiency of open-source large language models (LLMs) by emulating proprietary counterparts. Nevertheless, we posit that LLMs inherently harbor role-play capabilities, owing to the extensive knowledge of characters and potential dialogues ingrained in their vast training corpora. Thus, in this study, we introduce Ditto, a self-alignment method for role-play. Ditto capitalizes on character knowledge, encouraging an instruction-following LLM to simulate role-play dialogues as a variant of reading comprehension. This method creates a role-play training set comprising 4,000 characters, surpassing the scale of currently available datasets by tenfold regarding the number of roles. Subsequently, we fine-tune the LLM using this self-generated dataset to augment its role-playing capabilities. Upon evaluating our meticulously constructed and reproducible role-play benchmark and the roleplay subset of MT-Bench, Ditto, in various parameter scales, consistently maintains a consistent role identity and provides accurate role-specific knowledge in multi-turn role-play conversations. Notably, it outperforms all open-source role-play baselines, showcasing performance levels comparable to advanced proprietary chatbots. Furthermore, we present the first comprehensive cross-supervision alignment experiment in the role-play domain, revealing that the intrinsic capabilities of LLMs confine the knowledge within role-play. Meanwhile, the role-play styles can be easily acquired with the guidance of smaller models. We open-source related resources at https://github.com/OFA-Sys/Ditto.

  • 4 authors
·
Jan 22, 2024 1

Self-Prompt Tuning: Enable Autonomous Role-Playing in LLMs

Recent advancements in LLMs have showcased their remarkable role-playing capabilities, able to accurately simulate the dialogue styles and cognitive processes of various roles based on different instructions and contexts. Studies indicate that assigning LLMs the roles of experts, a strategy known as role-play prompting, can enhance their performance in the corresponding domains. However, the prompt needs to be manually designed for the given problem, requiring certain expertise and iterative modifications. To this end, we propose self-prompt tuning, making LLMs themselves generate role-play prompts through fine-tuning. Leveraging the LIMA dataset as our foundational corpus, we employ GPT-4 to annotate role-play prompts for each data points, resulting in the creation of the LIMA-Role dataset. We then fine-tune LLMs like Llama-2-7B and Mistral-7B on LIMA-Role. Consequently, the self-prompt tuned LLMs can automatically generate expert role prompts for any given question. We extensively evaluate self-prompt tuned LLMs on widely used NLP benchmarks and open-ended question test. Our empirical results illustrate that self-prompt tuned LLMs outperform standard instruction tuned baselines across most datasets. This highlights the great potential of utilizing fine-tuning to enable LLMs to self-prompt, thereby automating complex prompting strategies. We release the dataset, models, and code at this https://anonymous.4open.science/r/Self-Prompt-Tuning-739E/{url}.

  • 9 authors
·
Jul 12, 2024

DailyDilemmas: Revealing Value Preferences of LLMs with Quandaries of Daily Life

As we increasingly seek guidance from LLMs for decision-making in daily life, many of these decisions are not clear-cut and depend significantly on the personal values and ethical standards of the users. We present DailyDilemmas, a dataset of 1,360 moral dilemmas encountered in everyday life. Each dilemma includes two possible actions and with each action, the affected parties and human values invoked. Based on these dilemmas, we consolidated a set of human values across everyday topics e.g., interpersonal relationships, workplace, and environmental issues. We evaluated LLMs on these dilemmas to determine what action they will take and the values represented by these actions. Then, we analyzed these values through the lens of five popular theories inspired by sociology, psychology and philosophy. These theories are: World Value Survey, Moral Foundation Theory, Maslow's Hierarchy of Needs, Aristotle's Virtues, and Plutchik Wheel of Emotion. We find that LLMs are most aligned with the self-expression over survival values in terms of World Value Survey, care over loyalty in Moral Foundation Theory. Interestingly, we find large preferences differences in models for some core values such as truthfulness e.g., Mixtral-8x7B model tends to neglect it by 9.7% while GPT-4-turbo model tends to select it by 9.4%. We also study the recent guidance released by OpenAI (ModelSpec), and Anthropic (Constitutional AI) to understand how their released principles reflect their actual value prioritization when facing nuanced moral reasoning in daily-life settings. We find that end users cannot effectively steer such prioritization using system prompts.

  • 3 authors
·
Oct 3, 2024

EvolvTrip: Enhancing Literary Character Understanding with Temporal Theory-of-Mind Graphs

A compelling portrayal of characters is essential to the success of narrative writing. For readers, appreciating a character's traits requires the ability to infer their evolving beliefs, desires, and intentions over the course of a complex storyline, a cognitive skill known as Theory-of-Mind (ToM). Performing ToM reasoning in prolonged narratives requires readers to integrate historical context with current narrative information, a task at which humans excel but Large Language Models (LLMs) often struggle. To systematically evaluate LLMs' ToM reasoning capability in long narratives, we construct LitCharToM, a benchmark of character-centric questions across four ToM dimensions from classic literature. Further, we introduce EvolvTrip, a perspective-aware temporal knowledge graph that tracks psychological development throughout narratives. Our experiments demonstrate that EvolvTrip consistently enhances performance of LLMs across varying scales, even in challenging extended-context scenarios. EvolvTrip proves to be particularly valuable for smaller models, partially bridging the performance gap with larger LLMs and showing great compatibility with lengthy narratives. Our findings highlight the importance of explicit representation of temporal character mental states in narrative comprehension and offer a foundation for more sophisticated character understanding. Our data and code are publicly available at https://github.com/Bernard-Yang/EvolvTrip.

  • 6 authors
·
Jun 16, 2025

PersonaEval: Are LLM Evaluators Human Enough to Judge Role-Play?

Current role-play studies often rely on unvalidated LLM-as-a-judge paradigms, which may fail to reflect how humans perceive role fidelity. A key prerequisite for human-aligned evaluation is role identification, the ability to recognize who is speaking based on dialogue context. We argue that any meaningful judgment of role-playing quality (how well a character is played) fundamentally depends on first correctly attributing words and actions to the correct persona (who is speaking). We present PersonaEval, the first benchmark designed to test whether LLM evaluators can reliably identify human roles. PersonaEval uses human-authored dialogues from novels, scripts, and video transcripts, challenging models to determine the correct persona according to the conversation context. Our experiments, including a human study, show that even the best-performing LLMs reach only around 69% accuracy, well below the level needed for reliable evaluation. In contrast, human participants perform near ceiling with 90.8% accuracy, highlighting that current LLM evaluators are still not human enough to effectively judge role-play scenarios. To better understand this gap, we examine training-time adaptation and test-time compute, suggesting that reliable evaluation requires more than task-specific tuning, but depends on strong, human-like reasoning abilities in LLM evaluators. We release our benchmark at https://github.com/maple-zhou/PersonaEval.

  • 5 authors
·
Aug 6, 2025

CharacterBox: Evaluating the Role-Playing Capabilities of LLMs in Text-Based Virtual Worlds

Role-playing is a crucial capability of Large Language Models (LLMs), enabling a wide range of practical applications, including intelligent non-player characters, digital twins, and emotional companions. Evaluating this capability in LLMs is challenging due to the complex dynamics involved in role-playing, such as maintaining character fidelity throughout a storyline and navigating open-ended narratives without a definitive ground truth. Current evaluation methods, which primarily focus on question-answering or conversational snapshots, fall short of adequately capturing the nuanced character traits and behaviors essential for authentic role-playing. In this paper, we propose CharacterBox, which is a simulation sandbox designed to generate situational fine-grained character behavior trajectories. These behavior trajectories enable a more comprehensive and in-depth evaluation of role-playing capabilities. CharacterBox consists of two main components: the character agent and the narrator agent. The character agent, grounded in psychological and behavioral science, exhibits human-like behaviors, while the narrator agent coordinates interactions between character agents and environmental changes. Additionally, we introduce two trajectory-based methods that leverage CharacterBox to enhance LLM performance. To reduce costs and facilitate the adoption of CharacterBox by public communities, we fine-tune two smaller models, CharacterNR and CharacterRM, as substitutes for GPT API calls, and demonstrate their competitive performance compared to advanced GPT APIs.

  • 8 authors
·
Dec 7, 2024