1 FuxiMT: Sparsifying Large Language Models for Chinese-Centric Multilingual Machine Translation In this paper, we present FuxiMT, a novel Chinese-centric multilingual machine translation model powered by a sparsified large language model (LLM). We adopt a two-stage strategy to train FuxiMT. We first pre-train the model on a massive Chinese corpus and then conduct multilingual fine-tuning on a large parallel dataset encompassing 65 languages. FuxiMT incorporates Mixture-of-Experts (MoEs) and employs a curriculum learning strategy for robust performance across various resource levels. Experimental results demonstrate that FuxiMT significantly outperforms strong baselines, including state-of-the-art LLMs and machine translation models, particularly under low-resource scenarios. Furthermore, FuxiMT exhibits remarkable zero-shot translation capabilities for unseen language pairs, indicating its potential to bridge communication gaps where parallel data are scarce or unavailable. 4 authors · May 20 2
1 AP: Selective Activation for De-sparsifying Pruned Neural Networks The rectified linear unit (ReLU) is a highly successful activation function in neural networks as it allows networks to easily obtain sparse representations, which reduces overfitting in overparameterized networks. However, in network pruning, we find that the sparsity introduced by ReLU, which we quantify by a term called dynamic dead neuron rate (DNR), is not beneficial for the pruned network. Interestingly, the more the network is pruned, the smaller the dynamic DNR becomes during optimization. This motivates us to propose a method to explicitly reduce the dynamic DNR for the pruned network, i.e., de-sparsify the network. We refer to our method as Activating-while-Pruning (AP). We note that AP does not function as a stand-alone method, as it does not evaluate the importance of weights. Instead, it works in tandem with existing pruning methods and aims to improve their performance by selective activation of nodes to reduce the dynamic DNR. We conduct extensive experiments using popular networks (e.g., ResNet, VGG) via two classical and three state-of-the-art pruning methods. The experimental results on public datasets (e.g., CIFAR-10/100) suggest that AP works well with existing pruning methods and improves the performance by 3% - 4%. For larger scale datasets (e.g., ImageNet) and state-of-the-art networks (e.g., vision transformer), we observe an improvement of 2% - 3% with AP as opposed to without. Lastly, we conduct an ablation study to examine the effectiveness of the components comprising AP. 4 authors · Dec 9, 2022
1 Top-Theta Attention: Sparsifying Transformers by Compensated Thresholding We present Top-Theta (Top-theta) Attention, a training-free method for sparsifying transformer attention during inference. Our key insight is that static, per-head thresholds can be calibrated to retain the desired constant number of significant elements per attention row. This approach enables content-based sparsity without retraining, and it remains robust across data domains. We further introduce compensation techniques to preserve accuracy under aggressive sparsification, establishing attention thresholding as a practical and principled alternative to top-k attention. We provide extensive evaluation on natural language processing tasks, showing that Top-theta achieves 3-10x reduction in V-cache usage and up to 10x fewer attention elements during inference while degrading no more than 1% in accuracy. HUAWEI Computing Systems Lab · Feb 12