- Howl: A Deployed, Open-Source Wake Word Detection System We describe Howl, an open-source wake word detection toolkit with native support for open speech datasets, like Mozilla Common Voice and Google Speech Commands. We report benchmark results on Speech Commands and our own freely available wake word detection dataset, built from MCV. We operationalize our system for Firefox Voice, a plugin enabling speech interactivity for the Firefox web browser. Howl represents, to the best of our knowledge, the first fully productionized yet open-source wake word detection toolkit with a web browser deployment target. Our codebase is at https://github.com/castorini/howl. 7 authors · Aug 21, 2020
- TSST: A Benchmark and Evaluation Models for Text Speech-Style Transfer Text style is highly abstract, as it encompasses various aspects of a speaker's characteristics, habits, logical thinking, and the content they express. However, previous text-style transfer tasks have primarily focused on data-driven approaches, lacking in-depth analysis and research from the perspectives of linguistics and cognitive science. In this paper, we introduce a novel task called Text Speech-Style Transfer (TSST). The main objective is to further explore topics related to human cognition, such as personality and emotion, based on the capabilities of existing LLMs. Considering the objective of our task and the distinctive characteristics of oral speech in real-life scenarios, we trained multi-dimension (i.e. filler words, vividness, interactivity, emotionality) evaluation models for the TSST and validated their correlation with human assessments. We thoroughly analyze the performance of several large language models (LLMs) and identify areas where further improvement is needed. Moreover, driven by our evaluation models, we have released a new corpus that improves the capabilities of LLMs in generating text with speech-style characteristics. In summary, we present the TSST task, a new benchmark for style transfer and emphasizing human-oriented evaluation, exploring and advancing the performance of current LLMs. 6 authors · Nov 14, 2023