DETR-ResNet101-DC5: Optimized for Qualcomm Devices
DETR is a machine learning model that can detect objects (trained on COCO dataset).
This is based on the implementation of DETR-ResNet101-DC5 found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit DETR-ResNet101-DC5 on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for DETR-ResNet101-DC5 on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.object_detection
Model Stats:
- Model checkpoint: ResNet101-DC5
- Input resolution: 480x480
- Model size (float): 232 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| DETR-ResNet101-DC5 | ONNX | float | Snapdragon® X Elite | 50.19 ms | 116 - 116 MB | NPU |
| DETR-ResNet101-DC5 | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 36.327 ms | 7 - 634 MB | NPU |
| DETR-ResNet101-DC5 | ONNX | float | Qualcomm® QCS8550 (Proxy) | 49.085 ms | 0 - 126 MB | NPU |
| DETR-ResNet101-DC5 | ONNX | float | Qualcomm® QCS9075 | 71.995 ms | 5 - 12 MB | NPU |
| DETR-ResNet101-DC5 | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 27.503 ms | 2 - 406 MB | NPU |
| DETR-ResNet101-DC5 | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 21.467 ms | 1 - 494 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Snapdragon® X Elite | 54.381 ms | 5 - 5 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 39.11 ms | 5 - 719 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 219.013 ms | 2 - 531 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 53.499 ms | 5 - 7 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® SA8775P | 72.159 ms | 2 - 528 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® QCS9075 | 81.376 ms | 5 - 11 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 88.126 ms | 3 - 490 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® SA7255P | 219.013 ms | 2 - 531 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Qualcomm® SA8295P | 76.367 ms | 0 - 338 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 28.632 ms | 5 - 558 MB | NPU |
| DETR-ResNet101-DC5 | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 23.02 ms | 5 - 534 MB | NPU |
License
- The license for the original implementation of DETR-ResNet101-DC5 can be found here.
References
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
