EfficientViT-l2-cls: Optimized for Qualcomm Devices

EfficientViT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.

This is based on the implementation of EfficientViT-l2-cls found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.

Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.

Getting Started

There are two ways to deploy this model on your device:

Option 1: Download Pre-Exported Models

Below are pre-exported model assets ready for deployment.

Runtime Precision Chipset SDK Versions Download
ONNX float Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
ONNX w8a16 Universal QAIRT 2.37, ONNX Runtime 1.23.0 Download
QNN_DLC float Universal QAIRT 2.42 Download
TFLITE float Universal QAIRT 2.42, TFLite 2.17.0 Download

For more device-specific assets and performance metrics, visit EfficientViT-l2-cls on Qualcomm® AI Hub.

Option 2: Export with Custom Configurations

Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:

  • Custom weights (e.g., fine-tuned checkpoints)
  • Custom input shapes
  • Target device and runtime configurations

This option is ideal if you need to customize the model beyond the default configuration provided here.

See our repository for EfficientViT-l2-cls on GitHub for usage instructions.

Model Details

Model Type: Model_use_case.image_classification

Model Stats:

  • Model checkpoint: Imagenet
  • Input resolution: 224x224
  • Number of parameters: 63.7M
  • Model size (float): 243 MB

Performance Summary

Model Runtime Precision Chipset Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit
EfficientViT-l2-cls ONNX float Snapdragon® X Elite 7.908 ms 132 - 132 MB NPU
EfficientViT-l2-cls ONNX float Snapdragon® 8 Gen 3 Mobile 5.393 ms 0 - 282 MB NPU
EfficientViT-l2-cls ONNX float Qualcomm® QCS8550 (Proxy) 7.558 ms 0 - 162 MB NPU
EfficientViT-l2-cls ONNX float Qualcomm® QCS9075 8.774 ms 0 - 4 MB NPU
EfficientViT-l2-cls ONNX float Snapdragon® 8 Elite For Galaxy Mobile 4.115 ms 0 - 272 MB NPU
EfficientViT-l2-cls ONNX float Snapdragon® 8 Elite Gen 5 Mobile 3.462 ms 0 - 192 MB NPU
EfficientViT-l2-cls QNN_DLC float Snapdragon® X Elite 8.198 ms 1 - 1 MB NPU
EfficientViT-l2-cls QNN_DLC float Snapdragon® 8 Gen 3 Mobile 5.405 ms 0 - 234 MB NPU
EfficientViT-l2-cls QNN_DLC float Qualcomm® QCS8275 (Proxy) 24.607 ms 1 - 139 MB NPU
EfficientViT-l2-cls QNN_DLC float Qualcomm® QCS8550 (Proxy) 7.536 ms 1 - 250 MB NPU
EfficientViT-l2-cls QNN_DLC float Qualcomm® QCS9075 8.599 ms 1 - 3 MB NPU
EfficientViT-l2-cls QNN_DLC float Qualcomm® QCS8450 (Proxy) 14.884 ms 0 - 221 MB NPU
EfficientViT-l2-cls QNN_DLC float Snapdragon® 8 Elite For Galaxy Mobile 3.997 ms 0 - 219 MB NPU
EfficientViT-l2-cls QNN_DLC float Snapdragon® 8 Elite Gen 5 Mobile 3.262 ms 1 - 144 MB NPU
EfficientViT-l2-cls TFLITE float Snapdragon® 8 Gen 3 Mobile 5.345 ms 0 - 372 MB NPU
EfficientViT-l2-cls TFLITE float Qualcomm® QCS8275 (Proxy) 24.563 ms 0 - 274 MB NPU
EfficientViT-l2-cls TFLITE float Qualcomm® QCS8550 (Proxy) 7.475 ms 0 - 3 MB NPU
EfficientViT-l2-cls TFLITE float Qualcomm® QCS9075 8.565 ms 0 - 134 MB NPU
EfficientViT-l2-cls TFLITE float Qualcomm® QCS8450 (Proxy) 14.822 ms 0 - 348 MB NPU
EfficientViT-l2-cls TFLITE float Snapdragon® 8 Elite For Galaxy Mobile 3.984 ms 0 - 275 MB NPU
EfficientViT-l2-cls TFLITE float Snapdragon® 8 Elite Gen 5 Mobile 3.239 ms 0 - 278 MB NPU

License

  • The license for the original implementation of EfficientViT-l2-cls can be found here.

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Paper for qualcomm/EfficientViT-l2-cls