EfficientViT-l2-cls: Optimized for Qualcomm Devices
EfficientViT is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
This is based on the implementation of EfficientViT-l2-cls found here. This repository contains pre-exported model files optimized for Qualcomm® devices. You can use the Qualcomm® AI Hub Models library to export with custom configurations. More details on model performance across various devices, can be found here.
Qualcomm AI Hub Models uses Qualcomm AI Hub Workbench to compile, profile, and evaluate this model. Sign up to run these models on a hosted Qualcomm® device.
Getting Started
There are two ways to deploy this model on your device:
Option 1: Download Pre-Exported Models
Below are pre-exported model assets ready for deployment.
| Runtime | Precision | Chipset | SDK Versions | Download |
|---|---|---|---|---|
| ONNX | float | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| ONNX | w8a16 | Universal | QAIRT 2.37, ONNX Runtime 1.23.0 | Download |
| QNN_DLC | float | Universal | QAIRT 2.42 | Download |
| TFLITE | float | Universal | QAIRT 2.42, TFLite 2.17.0 | Download |
For more device-specific assets and performance metrics, visit EfficientViT-l2-cls on Qualcomm® AI Hub.
Option 2: Export with Custom Configurations
Use the Qualcomm® AI Hub Models Python library to compile and export the model with your own:
- Custom weights (e.g., fine-tuned checkpoints)
- Custom input shapes
- Target device and runtime configurations
This option is ideal if you need to customize the model beyond the default configuration provided here.
See our repository for EfficientViT-l2-cls on GitHub for usage instructions.
Model Details
Model Type: Model_use_case.image_classification
Model Stats:
- Model checkpoint: Imagenet
- Input resolution: 224x224
- Number of parameters: 63.7M
- Model size (float): 243 MB
Performance Summary
| Model | Runtime | Precision | Chipset | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit |
|---|---|---|---|---|---|---|
| EfficientViT-l2-cls | ONNX | float | Snapdragon® X Elite | 7.908 ms | 132 - 132 MB | NPU |
| EfficientViT-l2-cls | ONNX | float | Snapdragon® 8 Gen 3 Mobile | 5.393 ms | 0 - 282 MB | NPU |
| EfficientViT-l2-cls | ONNX | float | Qualcomm® QCS8550 (Proxy) | 7.558 ms | 0 - 162 MB | NPU |
| EfficientViT-l2-cls | ONNX | float | Qualcomm® QCS9075 | 8.774 ms | 0 - 4 MB | NPU |
| EfficientViT-l2-cls | ONNX | float | Snapdragon® 8 Elite For Galaxy Mobile | 4.115 ms | 0 - 272 MB | NPU |
| EfficientViT-l2-cls | ONNX | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.462 ms | 0 - 192 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Snapdragon® X Elite | 8.198 ms | 1 - 1 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Snapdragon® 8 Gen 3 Mobile | 5.405 ms | 0 - 234 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Qualcomm® QCS8275 (Proxy) | 24.607 ms | 1 - 139 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Qualcomm® QCS8550 (Proxy) | 7.536 ms | 1 - 250 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Qualcomm® QCS9075 | 8.599 ms | 1 - 3 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Qualcomm® QCS8450 (Proxy) | 14.884 ms | 0 - 221 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Snapdragon® 8 Elite For Galaxy Mobile | 3.997 ms | 0 - 219 MB | NPU |
| EfficientViT-l2-cls | QNN_DLC | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.262 ms | 1 - 144 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Snapdragon® 8 Gen 3 Mobile | 5.345 ms | 0 - 372 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Qualcomm® QCS8275 (Proxy) | 24.563 ms | 0 - 274 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Qualcomm® QCS8550 (Proxy) | 7.475 ms | 0 - 3 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Qualcomm® QCS9075 | 8.565 ms | 0 - 134 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Qualcomm® QCS8450 (Proxy) | 14.822 ms | 0 - 348 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Snapdragon® 8 Elite For Galaxy Mobile | 3.984 ms | 0 - 275 MB | NPU |
| EfficientViT-l2-cls | TFLITE | float | Snapdragon® 8 Elite Gen 5 Mobile | 3.239 ms | 0 - 278 MB | NPU |
License
- The license for the original implementation of EfficientViT-l2-cls can be found here.
References
- EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
- Source Model Implementation
Community
- Join our AI Hub Slack community to collaborate, post questions and learn more about on-device AI.
- For questions or feedback please reach out to us.
