gpad-v1-style16-taskA
This model is a fine-tuned version of microsoft/codebert-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0817
- Accuracy: 0.9878
- F1 Macro: 0.9882
- F1 Weighted: 0.9878
- Precision Macro: 0.9910
- Recall Macro: 0.9855
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 Macro | F1 Weighted | Precision Macro | Recall Macro |
|---|---|---|---|---|---|---|---|---|
| 0.2505 | 1.0 | 7813 | 0.1224 | 0.9830 | 0.9837 | 0.9830 | 0.9852 | 0.9823 |
| 0.0979 | 2.0 | 15626 | 0.0921 | 0.9868 | 0.9873 | 0.9868 | 0.9881 | 0.9865 |
| 0.0777 | 3.0 | 23439 | 0.0817 | 0.9878 | 0.9882 | 0.9878 | 0.9910 | 0.9855 |
Framework versions
- Transformers 4.53.3
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ranjan56cse/gpad-v1-style16-taskA
Base model
microsoft/codebert-base