|
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
|
|
from datasets import load_dataset
|
|
|
|
|
|
|
|
|
model_name = "distilbert-base-uncased"
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2)
|
|
|
|
|
|
|
|
|
dataset = load_dataset("sst2")
|
|
|
def tokenize_function(examples):
|
|
|
return tokenizer(examples["sentence"], padding="max_length", truncation=True)
|
|
|
|
|
|
|
|
|
tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
|
|
|
|
|
|
|
|
training_args = TrainingArguments(
|
|
|
output_dir="./results",
|
|
|
evaluation_strategy="epoch",
|
|
|
logging_dir="./logs",
|
|
|
num_train_epochs=1,
|
|
|
per_device_train_batch_size=8,
|
|
|
per_device_eval_batch_size=8,
|
|
|
)
|
|
|
|
|
|
|
|
|
trainer = Trainer(
|
|
|
model=model,
|
|
|
args=training_args,
|
|
|
train_dataset=tokenized_datasets["train"].shuffle(seed=42).select(range(1000)),
|
|
|
eval_dataset=tokenized_datasets["validation"].select(range(100)),
|
|
|
)
|
|
|
|
|
|
|
|
|
trainer.train()
|
|
|
|
|
|
|
|
|
model.save_pretrained("my-small-model")
|
|
|
tokenizer.save_pretrained("my-small-model")
|
|
|
|