TRELLIS / app.py
meancat's picture
Update app.py
4ff618c verified
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
import shutil
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp')
os.makedirs(TMP_DIR, exist_ok=True)
def start_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
os.makedirs(user_dir, exist_ok=True)
def end_session(req: gr.Request):
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
shutil.rmtree(user_dir)
def preprocess_image(image: Image.Image) -> Image.Image:
"""
Preprocess the input image for 3D generation.
This function is called when a user uploads an image or selects an example.
It applies background removal and other preprocessing steps necessary for
optimal 3D model generation.
Args:
image (Image.Image): The input image from the user
Returns:
Image.Image: The preprocessed image ready for 3D generation
"""
processed_image = pipeline.preprocess_image(image)
return processed_image
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]:
"""
Preprocess a list of input images for multi-image 3D generation.
This function is called when users upload multiple images in the gallery.
It processes each image to prepare them for the multi-image 3D generation pipeline.
Args:
images (List[Tuple[Image.Image, str]]): The input images from the gallery
Returns:
List[Image.Image]: The preprocessed images ready for 3D generation
"""
images = [image[0] for image in images]
processed_images = [pipeline.preprocess_image(image) for image in images]
return processed_images
def get_seed(randomize_seed: bool, seed: int) -> int:
"""
Get the random seed for generation.
This function is called by the generate button to determine whether to use
a random seed or the user-specified seed value.
Args:
randomize_seed (bool): Whether to generate a random seed
seed (int): The user-specified seed value
Returns:
int: The seed to use for generation
"""
return np.random.randint(0, MAX_SEED) if randomize_seed else seed
@spaces.GPU(duration=120)
def generate_and_extract_glb(
image: Image.Image,
multiimages: List[Tuple[Image.Image, str]],
is_multiimage: bool,
seed: int,
ss_guidance_strength: float,
ss_sampling_steps: int,
slat_guidance_strength: float,
slat_sampling_steps: int,
multiimage_algo: Literal["multidiffusion", "stochastic"],
mesh_simplify: float,
texture_size: int,
req: gr.Request,
) -> Tuple[str, str, str]:
"""
Convert an image to a 3D model and extract GLB file.
Args:
image (Image.Image): The input image.
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode.
is_multiimage (bool): Whether is in multi-image mode.
seed (int): The random seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the video of the 3D model.
str: The path to the extracted GLB file.
str: The path to the extracted GLB file (for download).
"""
user_dir = os.path.join(TMP_DIR, str(req.session_hash))
# Generate 3D model
if not is_multiimage:
outputs = pipeline.run(
image,
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
else:
outputs = pipeline.run_multi_image(
[image[0] for image in multiimages],
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
mode=multiimage_algo,
)
# Render video
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
video_path = os.path.join(user_dir, 'sample.mp4')
imageio.mimsave(video_path, video, fps=15)
# Extract GLB
gs = outputs['gaussian'][0]
mesh = outputs['mesh'][0]
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = os.path.join(user_dir, 'sample.glb')
glb.export(glb_path)
torch.cuda.empty_cache()
return video_path, glb_path, glb_path
theme = gr.themes.Base().set(
body_background_fill="#1A1A1A",
body_background_fill_dark="#1A1A1A",
body_text_color="#CCCCCC",
body_text_color_dark="#CCCCCC",
block_background_fill="#2C2C2C",
block_background_fill_dark="#2C2C2C",
block_border_color="#3C3C3C",
block_border_color_dark="#3C3C3C",
button_primary_background_fill="#FF8C00",
button_primary_background_fill_dark="#FF8C00",
button_primary_background_fill_hover="#FF9F33",
button_primary_border_color="*primary_500",
button_primary_text_color="white",
button_primary_text_color_dark="white",
block_border_width="1px",
block_radius="8px"
)
with gr.Blocks(
theme=theme,
css="""
.gradio-container {
background: #1A1A1A !important;
color: #CCCCCC !important;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important;
}
.gradio-container .footer,
.gradio-container footer,
.gradio-container [data-testid="footer"],
.gradio-container .gradio-footer {
display: none !important;
}
.gradio-container .gradio-container {
padding-bottom: 0 !important;
}
.gradio-container h1, .gradio-container h2, .gradio-container h3 {
color: #FFFFFF !important;
font-weight: bold !important;
}
.gradio-container .markdown {
color: #CCCCCC !important;
}
.gradio-container .tab-nav {
background: #2C2C2C !important;
border: none !important;
}
.gradio-container .tab-nav button {
background: #2C2C2C !important;
color: #CCCCCC !important;
border: none !important;
border-radius: 8px 8px 0 0 !important;
}
.gradio-container .tab-nav button.selected {
background: #FF8C00 !important;
color: #FFFFFF !important;
}
.gradio-container .tab-nav button:hover {
background: #3C3C3C !important;
}
.gradio-container .tab-nav button.selected:hover {
background: #FF8C00 !important;
}
.gradio-container .tab-content {
background: #2C2C2C !important;
border: none !important;
border-radius: 0 0 8px 8px !important;
padding: 20px !important;
}
.gradio-container .accordion {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
margin: 10px 0 !important;
}
.gradio-container .accordion .accordion-header {
background: #2C2C2C !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
}
.gradio-container .accordion .accordion-content {
background: #2C2C2C !important;
color: #CCCCCC !important;
border: none !important;
border-radius: 0 0 8px 8px !important;
}
.gradio-container .button {
background: #FF8C00 !important;
color: #FFFFFF !important;
border: none !important;
border-radius: 8px !important;
font-weight: bold !important;
padding: 12px 24px !important;
}
.gradio-container .button:hover {
background: #FF9F33 !important;
}
.gradio-container .button.secondary {
background: #3C3C3C !important;
color: #CCCCCC !important;
}
.gradio-container .button.secondary:hover {
background: #4C4C4C !important;
}
.gradio-container .slider {
background: #3C3C3C !important;
}
.gradio-container .slider .slider-handle {
background: #FF8C00 !important;
border: 2px solid #FFFFFF !important;
}
.gradio-container .slider .slider-track {
background: #3C3C3C !important;
}
.gradio-container .slider .slider-track-fill {
background: #FF8C00 !important;
}
.gradio-container .checkbox {
color: #CCCCCC !important;
}
.gradio-container .radio {
color: #CCCCCC !important;
}
.gradio-container .gallery {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .image {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .video {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .model3d {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
}
.gradio-container .row {
gap: 20px !important;
}
.gradio-container .column {
background: #2C2C2C !important;
border: 1px solid #3C3C3C !important;
border-radius: 8px !important;
padding: 20px !important;
}
.gradio-container .row {
align-items: flex-start !important;
justify-content: center !important;
}
.gradio-container .container {
max-width: 1200px !important;
margin: 0 auto !important;
padding: 20px !important;
}
"""
) as demo:
gr.Markdown("""
<div style="text-align: center; margin-bottom: 30px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Instructions</h3>
<p style="color: #CCCCCC; margin-bottom: 10px;">
• Upload an image and click "Generate 3D Asset" to create a 3D model
</p>
<p style="color: #CCCCCC; margin-bottom: 10px;">
• Images with alpha channels will use the existing mask, otherwise background removal is applied automatically
</p>
<p style="color: #CCCCCC;">
• Multi-image mode supports multiple views for enhanced 3D reconstruction
</p>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">3D Model Generation</h3>
<p style="color: #CCCCCC; margin-bottom: 20px;">Generate 3D models and textures from image or text using AI technology.</p>
</div>
""")
with gr.Tabs() as input_tabs:
with gr.Tab(label="Single Image", id=0) as single_image_input_tab:
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300)
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab:
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3)
gr.Markdown("""
**Multi-Image Mode:** Upload different views of the same object for enhanced 3D reconstruction.
*Note: For best results, ensure consistent lighting and object positioning across views.*
""")
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("**Stage 1: Sparse Structure Generation**")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("**Stage 2: Structured Latent Generation**")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic")
with gr.Accordion(label="Output Settings", open=False):
mesh_simplify = gr.Slider(0.3, 0.98, label="Mesh Simplification", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Resolution", value=1024, step=512)
generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("""
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;">
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Generated 3D Asset</h3>
<p style="color: #CCCCCC; margin-bottom: 20px;">Preview and download your generated 3D model.</p>
</div>
""")
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="3D Model Preview", exposure=10.0, height=300)
download_glb = gr.DownloadButton(label="Download 3D Asset", interactive=False, variant="secondary")
is_multiimage = gr.State(False)
# Handlers
demo.load(start_session)
demo.unload(end_session)
single_image_input_tab.select(
lambda: False,
outputs=[is_multiimage]
)
multiimage_input_tab.select(
lambda: True,
outputs=[is_multiimage]
)
image_prompt.upload(
preprocess_image,
inputs=[image_prompt],
outputs=[image_prompt],
)
multiimage_prompt.upload(
preprocess_images,
inputs=[multiimage_prompt],
outputs=[multiimage_prompt],
)
generate_btn.click(
get_seed,
inputs=[randomize_seed, seed],
outputs=[seed],
).then(
generate_and_extract_glb,
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size],
outputs=[video_output, model_output, download_glb],
).then(
lambda: gr.Button(interactive=True),
outputs=[download_glb],
)
video_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
model_output.clear(
lambda: gr.Button(interactive=False),
outputs=[download_glb],
)
gr.Markdown("""
<div style="text-align: center; margin-top: 40px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;">
<p style="color: #CCCCCC; font-size: 0.9rem; margin: 0;">
Powered by <span style="color: #FF8C00;">Mean Cat Entertainment</span> • Built for the future of VFX
</p>
</div>
""")
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch(mcp_server=True)