|
|
import gradio as gr |
|
|
import spaces |
|
|
from gradio_litmodel3d import LitModel3D |
|
|
|
|
|
import os |
|
|
import shutil |
|
|
os.environ['SPCONV_ALGO'] = 'native' |
|
|
from typing import * |
|
|
import torch |
|
|
import numpy as np |
|
|
import imageio |
|
|
from PIL import Image |
|
|
from trellis.pipelines import TrellisImageTo3DPipeline |
|
|
from trellis.representations import MeshExtractResult |
|
|
from trellis.utils import render_utils, postprocessing_utils |
|
|
|
|
|
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
TMP_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'tmp') |
|
|
os.makedirs(TMP_DIR, exist_ok=True) |
|
|
|
|
|
|
|
|
def start_session(req: gr.Request): |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
os.makedirs(user_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
def end_session(req: gr.Request): |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
shutil.rmtree(user_dir) |
|
|
|
|
|
|
|
|
def preprocess_image(image: Image.Image) -> Image.Image: |
|
|
""" |
|
|
Preprocess the input image for 3D generation. |
|
|
|
|
|
This function is called when a user uploads an image or selects an example. |
|
|
It applies background removal and other preprocessing steps necessary for |
|
|
optimal 3D model generation. |
|
|
|
|
|
Args: |
|
|
image (Image.Image): The input image from the user |
|
|
|
|
|
Returns: |
|
|
Image.Image: The preprocessed image ready for 3D generation |
|
|
""" |
|
|
processed_image = pipeline.preprocess_image(image) |
|
|
return processed_image |
|
|
|
|
|
|
|
|
def preprocess_images(images: List[Tuple[Image.Image, str]]) -> List[Image.Image]: |
|
|
""" |
|
|
Preprocess a list of input images for multi-image 3D generation. |
|
|
|
|
|
This function is called when users upload multiple images in the gallery. |
|
|
It processes each image to prepare them for the multi-image 3D generation pipeline. |
|
|
|
|
|
Args: |
|
|
images (List[Tuple[Image.Image, str]]): The input images from the gallery |
|
|
|
|
|
Returns: |
|
|
List[Image.Image]: The preprocessed images ready for 3D generation |
|
|
""" |
|
|
images = [image[0] for image in images] |
|
|
processed_images = [pipeline.preprocess_image(image) for image in images] |
|
|
return processed_images |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_seed(randomize_seed: bool, seed: int) -> int: |
|
|
""" |
|
|
Get the random seed for generation. |
|
|
|
|
|
This function is called by the generate button to determine whether to use |
|
|
a random seed or the user-specified seed value. |
|
|
|
|
|
Args: |
|
|
randomize_seed (bool): Whether to generate a random seed |
|
|
seed (int): The user-specified seed value |
|
|
|
|
|
Returns: |
|
|
int: The seed to use for generation |
|
|
""" |
|
|
return np.random.randint(0, MAX_SEED) if randomize_seed else seed |
|
|
|
|
|
|
|
|
@spaces.GPU(duration=120) |
|
|
def generate_and_extract_glb( |
|
|
image: Image.Image, |
|
|
multiimages: List[Tuple[Image.Image, str]], |
|
|
is_multiimage: bool, |
|
|
seed: int, |
|
|
ss_guidance_strength: float, |
|
|
ss_sampling_steps: int, |
|
|
slat_guidance_strength: float, |
|
|
slat_sampling_steps: int, |
|
|
multiimage_algo: Literal["multidiffusion", "stochastic"], |
|
|
mesh_simplify: float, |
|
|
texture_size: int, |
|
|
req: gr.Request, |
|
|
) -> Tuple[str, str, str]: |
|
|
""" |
|
|
Convert an image to a 3D model and extract GLB file. |
|
|
|
|
|
Args: |
|
|
image (Image.Image): The input image. |
|
|
multiimages (List[Tuple[Image.Image, str]]): The input images in multi-image mode. |
|
|
is_multiimage (bool): Whether is in multi-image mode. |
|
|
seed (int): The random seed. |
|
|
ss_guidance_strength (float): The guidance strength for sparse structure generation. |
|
|
ss_sampling_steps (int): The number of sampling steps for sparse structure generation. |
|
|
slat_guidance_strength (float): The guidance strength for structured latent generation. |
|
|
slat_sampling_steps (int): The number of sampling steps for structured latent generation. |
|
|
multiimage_algo (Literal["multidiffusion", "stochastic"]): The algorithm for multi-image generation. |
|
|
mesh_simplify (float): The mesh simplification factor. |
|
|
texture_size (int): The texture resolution. |
|
|
|
|
|
Returns: |
|
|
str: The path to the video of the 3D model. |
|
|
str: The path to the extracted GLB file. |
|
|
str: The path to the extracted GLB file (for download). |
|
|
""" |
|
|
user_dir = os.path.join(TMP_DIR, str(req.session_hash)) |
|
|
|
|
|
|
|
|
if not is_multiimage: |
|
|
outputs = pipeline.run( |
|
|
image, |
|
|
seed=seed, |
|
|
formats=["gaussian", "mesh"], |
|
|
preprocess_image=False, |
|
|
sparse_structure_sampler_params={ |
|
|
"steps": ss_sampling_steps, |
|
|
"cfg_strength": ss_guidance_strength, |
|
|
}, |
|
|
slat_sampler_params={ |
|
|
"steps": slat_sampling_steps, |
|
|
"cfg_strength": slat_guidance_strength, |
|
|
}, |
|
|
) |
|
|
else: |
|
|
outputs = pipeline.run_multi_image( |
|
|
[image[0] for image in multiimages], |
|
|
seed=seed, |
|
|
formats=["gaussian", "mesh"], |
|
|
preprocess_image=False, |
|
|
sparse_structure_sampler_params={ |
|
|
"steps": ss_sampling_steps, |
|
|
"cfg_strength": ss_guidance_strength, |
|
|
}, |
|
|
slat_sampler_params={ |
|
|
"steps": slat_sampling_steps, |
|
|
"cfg_strength": slat_guidance_strength, |
|
|
}, |
|
|
mode=multiimage_algo, |
|
|
) |
|
|
|
|
|
|
|
|
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color'] |
|
|
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal'] |
|
|
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))] |
|
|
video_path = os.path.join(user_dir, 'sample.mp4') |
|
|
imageio.mimsave(video_path, video, fps=15) |
|
|
|
|
|
|
|
|
gs = outputs['gaussian'][0] |
|
|
mesh = outputs['mesh'][0] |
|
|
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False) |
|
|
glb_path = os.path.join(user_dir, 'sample.glb') |
|
|
glb.export(glb_path) |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
return video_path, glb_path, glb_path |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
theme = gr.themes.Base().set( |
|
|
body_background_fill="#1A1A1A", |
|
|
body_background_fill_dark="#1A1A1A", |
|
|
body_text_color="#CCCCCC", |
|
|
body_text_color_dark="#CCCCCC", |
|
|
block_background_fill="#2C2C2C", |
|
|
block_background_fill_dark="#2C2C2C", |
|
|
block_border_color="#3C3C3C", |
|
|
block_border_color_dark="#3C3C3C", |
|
|
button_primary_background_fill="#FF8C00", |
|
|
button_primary_background_fill_dark="#FF8C00", |
|
|
button_primary_background_fill_hover="#FF9F33", |
|
|
button_primary_border_color="*primary_500", |
|
|
button_primary_text_color="white", |
|
|
button_primary_text_color_dark="white", |
|
|
block_border_width="1px", |
|
|
block_radius="8px" |
|
|
) |
|
|
|
|
|
with gr.Blocks( |
|
|
theme=theme, |
|
|
css=""" |
|
|
.gradio-container { |
|
|
background: #1A1A1A !important; |
|
|
color: #CCCCCC !important; |
|
|
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif !important; |
|
|
} |
|
|
|
|
|
.gradio-container .footer, |
|
|
.gradio-container footer, |
|
|
.gradio-container [data-testid="footer"], |
|
|
.gradio-container .gradio-footer { |
|
|
display: none !important; |
|
|
} |
|
|
|
|
|
.gradio-container .gradio-container { |
|
|
padding-bottom: 0 !important; |
|
|
} |
|
|
|
|
|
.gradio-container h1, .gradio-container h2, .gradio-container h3 { |
|
|
color: #FFFFFF !important; |
|
|
font-weight: bold !important; |
|
|
} |
|
|
|
|
|
.gradio-container .markdown { |
|
|
color: #CCCCCC !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-nav { |
|
|
background: #2C2C2C !important; |
|
|
border: none !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-nav button { |
|
|
background: #2C2C2C !important; |
|
|
color: #CCCCCC !important; |
|
|
border: none !important; |
|
|
border-radius: 8px 8px 0 0 !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-nav button.selected { |
|
|
background: #FF8C00 !important; |
|
|
color: #FFFFFF !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-nav button:hover { |
|
|
background: #3C3C3C !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-nav button.selected:hover { |
|
|
background: #FF8C00 !important; |
|
|
} |
|
|
|
|
|
.gradio-container .tab-content { |
|
|
background: #2C2C2C !important; |
|
|
border: none !important; |
|
|
border-radius: 0 0 8px 8px !important; |
|
|
padding: 20px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .accordion { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
margin: 10px 0 !important; |
|
|
} |
|
|
|
|
|
.gradio-container .accordion .accordion-header { |
|
|
background: #2C2C2C !important; |
|
|
color: #FFFFFF !important; |
|
|
border: none !important; |
|
|
border-radius: 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .accordion .accordion-content { |
|
|
background: #2C2C2C !important; |
|
|
color: #CCCCCC !important; |
|
|
border: none !important; |
|
|
border-radius: 0 0 8px 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .button { |
|
|
background: #FF8C00 !important; |
|
|
color: #FFFFFF !important; |
|
|
border: none !important; |
|
|
border-radius: 8px !important; |
|
|
font-weight: bold !important; |
|
|
padding: 12px 24px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .button:hover { |
|
|
background: #FF9F33 !important; |
|
|
} |
|
|
|
|
|
.gradio-container .button.secondary { |
|
|
background: #3C3C3C !important; |
|
|
color: #CCCCCC !important; |
|
|
} |
|
|
|
|
|
.gradio-container .button.secondary:hover { |
|
|
background: #4C4C4C !important; |
|
|
} |
|
|
|
|
|
.gradio-container .slider { |
|
|
background: #3C3C3C !important; |
|
|
} |
|
|
|
|
|
.gradio-container .slider .slider-handle { |
|
|
background: #FF8C00 !important; |
|
|
border: 2px solid #FFFFFF !important; |
|
|
} |
|
|
|
|
|
.gradio-container .slider .slider-track { |
|
|
background: #3C3C3C !important; |
|
|
} |
|
|
|
|
|
.gradio-container .slider .slider-track-fill { |
|
|
background: #FF8C00 !important; |
|
|
} |
|
|
|
|
|
.gradio-container .checkbox { |
|
|
color: #CCCCCC !important; |
|
|
} |
|
|
|
|
|
.gradio-container .radio { |
|
|
color: #CCCCCC !important; |
|
|
} |
|
|
|
|
|
.gradio-container .gallery { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .image { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .video { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .model3d { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .row { |
|
|
gap: 20px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .column { |
|
|
background: #2C2C2C !important; |
|
|
border: 1px solid #3C3C3C !important; |
|
|
border-radius: 8px !important; |
|
|
padding: 20px !important; |
|
|
} |
|
|
|
|
|
.gradio-container .row { |
|
|
align-items: flex-start !important; |
|
|
justify-content: center !important; |
|
|
} |
|
|
|
|
|
.gradio-container .container { |
|
|
max-width: 1200px !important; |
|
|
margin: 0 auto !important; |
|
|
padding: 20px !important; |
|
|
} |
|
|
""" |
|
|
) as demo: |
|
|
gr.Markdown(""" |
|
|
<div style="text-align: center; margin-bottom: 30px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;"> |
|
|
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Instructions</h3> |
|
|
<p style="color: #CCCCCC; margin-bottom: 10px;"> |
|
|
• Upload an image and click "Generate 3D Asset" to create a 3D model |
|
|
</p> |
|
|
<p style="color: #CCCCCC; margin-bottom: 10px;"> |
|
|
• Images with alpha channels will use the existing mask, otherwise background removal is applied automatically |
|
|
</p> |
|
|
<p style="color: #CCCCCC;"> |
|
|
• Multi-image mode supports multiple views for enhanced 3D reconstruction |
|
|
</p> |
|
|
</div> |
|
|
""") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown(""" |
|
|
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;"> |
|
|
<h3 style="color: #FFFFFF; margin-bottom: 15px;">3D Model Generation</h3> |
|
|
<p style="color: #CCCCCC; margin-bottom: 20px;">Generate 3D models and textures from image or text using AI technology.</p> |
|
|
</div> |
|
|
""") |
|
|
|
|
|
with gr.Tabs() as input_tabs: |
|
|
with gr.Tab(label="Single Image", id=0) as single_image_input_tab: |
|
|
image_prompt = gr.Image(label="Image Prompt", format="png", image_mode="RGBA", type="pil", height=300) |
|
|
with gr.Tab(label="Multiple Images", id=1) as multiimage_input_tab: |
|
|
multiimage_prompt = gr.Gallery(label="Image Prompt", format="png", type="pil", height=300, columns=3) |
|
|
gr.Markdown(""" |
|
|
**Multi-Image Mode:** Upload different views of the same object for enhanced 3D reconstruction. |
|
|
|
|
|
*Note: For best results, ensure consistent lighting and object positioning across views.* |
|
|
""") |
|
|
|
|
|
with gr.Accordion(label="Generation Settings", open=False): |
|
|
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1) |
|
|
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) |
|
|
gr.Markdown("**Stage 1: Sparse Structure Generation**") |
|
|
with gr.Row(): |
|
|
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1) |
|
|
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
gr.Markdown("**Stage 2: Structured Latent Generation**") |
|
|
with gr.Row(): |
|
|
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1) |
|
|
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1) |
|
|
multiimage_algo = gr.Radio(["stochastic", "multidiffusion"], label="Multi-image Algorithm", value="stochastic") |
|
|
|
|
|
with gr.Accordion(label="Output Settings", open=False): |
|
|
mesh_simplify = gr.Slider(0.3, 0.98, label="Mesh Simplification", value=0.95, step=0.01) |
|
|
texture_size = gr.Slider(512, 2048, label="Texture Resolution", value=1024, step=512) |
|
|
|
|
|
generate_btn = gr.Button("Generate 3D Asset", variant="primary", size="lg") |
|
|
|
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown(""" |
|
|
<div style="background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px; padding: 20px; margin-bottom: 20px;"> |
|
|
<h3 style="color: #FFFFFF; margin-bottom: 15px;">Generated 3D Asset</h3> |
|
|
<p style="color: #CCCCCC; margin-bottom: 20px;">Preview and download your generated 3D model.</p> |
|
|
</div> |
|
|
""") |
|
|
|
|
|
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300) |
|
|
model_output = LitModel3D(label="3D Model Preview", exposure=10.0, height=300) |
|
|
|
|
|
download_glb = gr.DownloadButton(label="Download 3D Asset", interactive=False, variant="secondary") |
|
|
|
|
|
is_multiimage = gr.State(False) |
|
|
|
|
|
|
|
|
|
|
|
demo.load(start_session) |
|
|
demo.unload(end_session) |
|
|
|
|
|
single_image_input_tab.select( |
|
|
lambda: False, |
|
|
outputs=[is_multiimage] |
|
|
) |
|
|
multiimage_input_tab.select( |
|
|
lambda: True, |
|
|
outputs=[is_multiimage] |
|
|
) |
|
|
|
|
|
image_prompt.upload( |
|
|
preprocess_image, |
|
|
inputs=[image_prompt], |
|
|
outputs=[image_prompt], |
|
|
) |
|
|
multiimage_prompt.upload( |
|
|
preprocess_images, |
|
|
inputs=[multiimage_prompt], |
|
|
outputs=[multiimage_prompt], |
|
|
) |
|
|
|
|
|
generate_btn.click( |
|
|
get_seed, |
|
|
inputs=[randomize_seed, seed], |
|
|
outputs=[seed], |
|
|
).then( |
|
|
generate_and_extract_glb, |
|
|
inputs=[image_prompt, multiimage_prompt, is_multiimage, seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps, multiimage_algo, mesh_simplify, texture_size], |
|
|
outputs=[video_output, model_output, download_glb], |
|
|
).then( |
|
|
lambda: gr.Button(interactive=True), |
|
|
outputs=[download_glb], |
|
|
) |
|
|
|
|
|
video_output.clear( |
|
|
lambda: gr.Button(interactive=False), |
|
|
outputs=[download_glb], |
|
|
) |
|
|
|
|
|
model_output.clear( |
|
|
lambda: gr.Button(interactive=False), |
|
|
outputs=[download_glb], |
|
|
) |
|
|
|
|
|
gr.Markdown(""" |
|
|
<div style="text-align: center; margin-top: 40px; padding: 20px; background: #2C2C2C; border: 1px solid #3C3C3C; border-radius: 8px;"> |
|
|
<p style="color: #CCCCCC; font-size: 0.9rem; margin: 0;"> |
|
|
Powered by <span style="color: #FF8C00;">Mean Cat Entertainment</span> • Built for the future of VFX |
|
|
</p> |
|
|
</div> |
|
|
""") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large") |
|
|
pipeline.cuda() |
|
|
try: |
|
|
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) |
|
|
except: |
|
|
pass |
|
|
demo.launch(mcp_server=True) |