Spaces:
Runtime error
Runtime error
| """Refer to https://huggingface.co/spaces/mikeee/docs-chat/blob/main/app.py. | |
| and https://github.com/PromtEngineer/localGPT/blob/main/ingest.py | |
| https://python.langchain.com/en/latest/getting_started/tutorials.html | |
| gradio.Progress example: | |
| https://colab.research.google.com/github/gradio-app/gradio/blob/main/demo/progress/run.ipynb#scrollTo=2.8891853944186117e%2B38 | |
| unstructured: python-magic python-docx python-pptx | |
| from langchain.document_loaders import UnstructuredHTMLLoader | |
| docs = [] | |
| # for doc in Path('docs').glob("*.pdf"): | |
| for doc in Path('docs').glob("*"): | |
| # for doc in Path('docs').glob("*.txt"): | |
| docs.append(load_single_document(f"{doc}")) | |
| text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) | |
| texts = text_splitter.split_documents(docs) | |
| model_name = "hkunlp/instructor-base" | |
| embedding = HuggingFaceInstructEmbeddings( | |
| model_name=model_name, model_kwargs={"device": device} | |
| ) | |
| # constitution.pdf 54344, 72 chunks Wall time: 3min 13s CPU times: total: 9min 4s @golay | |
| # test.txt 21286, 27 chunks, Wall time: 47 s CPU times: total: 2min 30s @golay | |
| # both 99 chunks, Wall time: 5min 4s CPU times: total: 13min 31s | |
| # chunks = len / 800 | |
| db = Chroma.from_documents(texts, embedding) | |
| db = Chroma.from_documents( | |
| texts, | |
| embedding, | |
| persist_directory=PERSIST_DIRECTORY, | |
| client_settings=CHROMA_SETTINGS, | |
| ) | |
| db.persist() | |
| est. 1min/100 text1 | |
| # 中国共产党章程.txt qa | |
| https://github.com/xanderma/Assistant-Attop/blob/master/Release/%E6%96%87%E5%AD%97%E7%89%88%E9%A2%98%E5%BA%93/31.%E4%B8%AD%E5%9B%BD%E5%85%B1%E4%BA%A7%E5%85%9A%E7%AB%A0%E7%A8%8B.txt | |
| colab CPU test.text constitution.pdf | |
| CPU times: user 1min 27s, sys: 8.09 s, total: 1min 35s | |
| Wall time: 1min 37s | |
| """ | |
| # pylint: disable=broad-except, unused-import, invalid-name, line-too-long, too-many-return-statements, import-outside-toplevel, no-name-in-module, no-member, too-many-branches, unused-variable, too-many-arguments, global-statement | |
| import os | |
| import time | |
| from copy import deepcopy | |
| from math import ceil | |
| from pathlib import Path | |
| # from tempfile import _TemporaryFileWrapper | |
| from textwrap import dedent | |
| from types import SimpleNamespace | |
| from typing import List | |
| import gradio as gr | |
| import httpx | |
| import more_itertools as mit | |
| import torch | |
| # from about_time import about_time | |
| from charset_normalizer import detect | |
| from chromadb.config import Settings | |
| # from langchain.embeddings import HuggingFaceInstructEmbeddings | |
| # from langchain.llms import HuggingFacePipeline | |
| # from epub2txt import epub2txt | |
| from langchain.chains import ConversationalRetrievalChain, RetrievalQA | |
| from langchain.docstore.document import Document | |
| from langchain.document_loaders import ( | |
| CSVLoader, | |
| Docx2txtLoader, | |
| PDFMinerLoader, | |
| TextLoader, | |
| ) | |
| from langchain.embeddings import ( | |
| SentenceTransformerEmbeddings, | |
| ) # HuggingFaceInstructEmbeddings, | |
| from langchain.llms import HuggingFacePipeline, OpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.text_splitter import ( | |
| CharacterTextSplitter, | |
| RecursiveCharacterTextSplitter, | |
| ) | |
| from langchain.vectorstores import FAISS, Chroma | |
| from loguru import logger | |
| from PyPDF2 import PdfReader | |
| from tqdm import tqdm | |
| from transformers import LlamaForCausalLM, LlamaTokenizer, pipeline | |
| from epub_loader import EpubLoader | |
| from load_api_key import load_api_key, pk_base, sk_base | |
| MODEL_NAME = "paraphrase-multilingual-mpnet-base-v2" # 1.11G | |
| # fix timezone | |
| os.environ["TZ"] = "Asia/Shanghai" | |
| try: | |
| time.tzset() # type: ignore # pylint: disable=no-member | |
| except Exception: | |
| # Windows | |
| logger.warning("Windows, cant run time.tzset()") | |
| api_key = load_api_key() | |
| if api_key is not None: | |
| os.environ.setdefault("OPENAI_API_KEY", api_key) | |
| if api_key.startswith("sk-"): | |
| os.environ.setdefault("OPENAI_API_BASE", sk_base) | |
| elif api_key.startswith("pk-"): | |
| os.environ.setdefault("OPENAI_API_BASE", pk_base) | |
| # resetip | |
| try: | |
| url = "https://api.pawan.krd/resetip" | |
| headers = {"Authorization": f"{api_key}"} | |
| httpx.post(url, headers=headers) | |
| except Exception as exc_: | |
| logger.error(exc_) | |
| raise | |
| ROOT_DIRECTORY = Path(__file__).parent | |
| PERSIST_DIRECTORY = f"{ROOT_DIRECTORY}/db" | |
| # Define the Chroma settings | |
| CHROMA_SETTINGS = Settings( | |
| chroma_db_impl="duckdb+parquet", | |
| persist_directory=PERSIST_DIRECTORY, | |
| anonymized_telemetry=False, | |
| ) | |
| DEVICE = "cuda" if torch.cuda.is_available() else "cpu" | |
| ns_initial = SimpleNamespace( | |
| db=None, | |
| qa=None, | |
| texts=[], | |
| ingest_done=None, | |
| files_info=None, | |
| files_uploaded=[], | |
| db_ready=None, | |
| chunk_size=250, | |
| chunk_overlap=250, | |
| model_name=MODEL_NAME, | |
| ) | |
| ns = deepcopy(ns_initial) | |
| def load_single_document(file_path: str | Path) -> List[Document]: | |
| """Load a single document from a file path.""" | |
| try: | |
| _ = Path(file_path).read_bytes() | |
| encoding = detect(_).get("encoding") | |
| if encoding is not None: | |
| encoding = str(encoding) | |
| except Exception as exc: | |
| logger.error(f"{file_path}: {exc}") | |
| encoding = None | |
| file_path = Path(file_path).as_posix() | |
| if Path(file_path).suffix in [".txt"]: | |
| if encoding is None: | |
| logger.warning( | |
| f" {file_path}'s encoding is None " | |
| "Something is fishy, return empty str " | |
| ) | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| try: | |
| loader = TextLoader(file_path, encoding=encoding) | |
| except Exception as exc: | |
| logger.warning(f" {exc}, return dummy ") | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| elif Path(file_path).suffix in [".pdf"]: | |
| try: | |
| loader = PDFMinerLoader(file_path) | |
| except Exception as exc: | |
| logger.error(exc) | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| elif file_path.endswith(".csv"): | |
| try: | |
| loader = CSVLoader(file_path) | |
| except Exception as exc: | |
| logger.error(exc) | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| elif Path(file_path).suffix in [".docx"]: | |
| try: | |
| loader = Docx2txtLoader(file_path) | |
| except Exception as exc: | |
| logger.error(f" {file_path} errors: {exc}") | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| elif Path(file_path).suffix in [".epub"]: | |
| try: | |
| # _ = epub2txt(file_path) | |
| loader = EpubLoader(file_path) | |
| except Exception as exc: | |
| logger.error(f" {file_path} errors: {exc}") | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| else: | |
| if encoding is None: | |
| logger.warning( | |
| f" {file_path}'s encoding is None " | |
| "Likely binary files, return empty str " | |
| ) | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| try: | |
| loader = TextLoader(file_path) | |
| except Exception as exc: | |
| logger.error(f" {exc}, returnning empty string") | |
| return [Document(page_content="", metadata={"source": file_path})] | |
| return loader.load() # use extend when combining | |
| def get_pdf_text(pdf_docs): | |
| """docs-chat.""" | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(f"{pdf}") # taking care of Path | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_text_chunks(text, chunk_size=1000): | |
| """docs-chat.""" | |
| text_splitter = CharacterTextSplitter( | |
| separator="\n", chunk_size=chunk_size, chunk_overlap=200, length_function=len | |
| ) | |
| chunks = text_splitter.split_text(text) | |
| return chunks | |
| def get_vectorstore( | |
| text_chunks, | |
| vectorstore=None, | |
| persist=True, | |
| ): | |
| """Gne vectorstore.""" | |
| # embedding = OpenAIEmbeddings() | |
| # for HuggingFaceInstructEmbeddings | |
| model_name = "hkunlp/instructor-xl" | |
| model_name = "hkunlp/instructor-large" | |
| model_name = "hkunlp/instructor-base" | |
| # embedding = HuggingFaceInstructEmbeddings(model_name=model_name) | |
| model_name = MODEL_NAME | |
| logger.info(f"Loading {model_name}") | |
| embedding = SentenceTransformerEmbeddings(model_name=model_name) | |
| logger.info(f"Done loading {model_name}") | |
| if vectorstore is None: | |
| vectorstore = "chroma" | |
| if vectorstore.lower() in ["chroma"]: | |
| logger.info( | |
| "Doing vectorstore Chroma.from_texts(texts=text_chunks, embedding=embedding)" | |
| ) | |
| if persist: | |
| vectorstore = Chroma.from_texts( | |
| texts=text_chunks, | |
| embedding=embedding, | |
| persist_directory=PERSIST_DIRECTORY, | |
| client_settings=CHROMA_SETTINGS, | |
| ) | |
| else: | |
| vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embedding) | |
| logger.info( | |
| "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)" | |
| ) | |
| return vectorstore | |
| # if vectorstore.lower() not in ['chroma'] | |
| # TODO handle other cases | |
| logger.info( | |
| "Doing vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)" | |
| ) | |
| vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embedding) | |
| logger.info( | |
| "Done vectorstore FAISS.from_texts(texts=text_chunks, embedding=embedding)" | |
| ) | |
| return vectorstore | |
| def greet(name): | |
| """Test.""" | |
| logger.debug(f" name: [{name}] ") | |
| return "Hello " + name + "!!" | |
| def upload_files(files): | |
| """Upload files.""" | |
| file_paths = [file.name for file in files] | |
| logger.info(file_paths) | |
| ns.files_uploaded = file_paths | |
| # return [str(elm) for elm in res] | |
| return file_paths | |
| # return ingest(file_paths) | |
| def process_files( | |
| # file_paths, | |
| progress=gr.Progress(), | |
| ): | |
| """Process uploaded files.""" | |
| if not ns.files_uploaded: | |
| return f"No files uploaded: {ns.files_uploaded}" | |
| # wait for update before querying new ns.qa | |
| ns.ingest_done = False | |
| logger.debug(f"ns.files_uploaded: {ns.files_uploaded}") | |
| # imgs = [None] * 24 | |
| # for img in progress.tqdm(imgs, desc="Loading from list"): | |
| # time.sleep(0.1) | |
| # imgs = [[None] * 8] * 3 | |
| # for img_set in progress.tqdm(imgs, desc="Nested list"): | |
| # time.sleep(.2) | |
| # for img in progress.tqdm(img_set, desc="inner list"): | |
| # time.sleep(10.1) | |
| # return "done..." | |
| documents = [] | |
| if progress is None: | |
| for file_path in ns.files_uploaded: | |
| logger.debug(f"-Doing {file_path}") | |
| try: | |
| documents.extend(load_single_document(f"{file_path}")) | |
| logger.debug("-Done reading files.") | |
| except Exception as exc: | |
| logger.error(f"-{file_path}: {exc}") | |
| else: | |
| for file_path in progress.tqdm(ns.files_uploaded, desc="Reading file(s)"): | |
| logger.debug(f"Doing {file_path}") | |
| try: | |
| documents.extend(load_single_document(f"{file_path}")) | |
| logger.debug("Done reading files.") | |
| except Exception as exc: | |
| logger.error(f"{file_path}: {exc}") | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=ns.chunk_size, chunk_overlap=ns.chunk_overlap | |
| ) | |
| texts = text_splitter.split_documents(documents) | |
| logger.info(f"Loaded {len(ns.files_uploaded)} files ") | |
| logger.info(f"Loaded {len(documents)} document(s) ") | |
| logger.info(f"Split into {len(texts)} chunk(s) of text") | |
| total = ceil(len(texts) / 101) | |
| ns.texts = texts | |
| ns.ingest_done = True | |
| _ = [ | |
| [Path(doc.metadata.get("source")).name, len(doc.page_content)] | |
| for doc in documents | |
| ] | |
| ns.files_info = _ | |
| _ = ( | |
| f"done file(s): {dict(ns.files_info)}, splitted to " | |
| f"{total} chunks. \n\nThe following embedding takes " | |
| f"step 0-{total - 1}. (Each step lasts about 18 secs " | |
| " on a free tier instance on huggingface space.)" | |
| ) | |
| return _ | |
| def embed_files(progress=gr.Progress()): | |
| """Embded ns.files_uploaded.""" | |
| # initialize if necessary | |
| if ns.db is None: | |
| logger.info(f"loading {ns.model_name:}") | |
| for _ in progress.tqdm(range(1), desc="diggin..."): | |
| embedding = SentenceTransformerEmbeddings( | |
| model_name=ns.model_name, model_kwargs={"device": DEVICE} | |
| ) | |
| logger.info("creating vectorstore") | |
| ns.db = Chroma( | |
| # persist_directory=PERSIST_DIRECTORY, | |
| embedding_function=embedding, | |
| # client_settings=CHROMA_SETTINGS, | |
| ) | |
| logger.info("done creating vectorstore") | |
| total = ceil(len(ns.texts) / 101) | |
| if progress is None: | |
| # for text in progress.tqdm( | |
| for idx, text in enumerate(mit.chunked_even(ns.texts, 101)): | |
| logger.debug(f"-{idx + 1} of {total}") | |
| ns.db.add_documents(documents=text) | |
| else: | |
| # for text in progress.tqdm( | |
| for idx, text in enumerate( | |
| progress.tqdm( | |
| mit.chunked_even(ns.texts, 101), | |
| total=total, | |
| desc="Processing docs", | |
| ) | |
| ): | |
| logger.debug(f"{idx + 1} of {total}") | |
| ns.db.add_documents(documents=text) | |
| logger.debug(f" done all {total}") | |
| # ns.qa = load_qa() | |
| llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore | |
| retriever = ns.db.as_retriever() | |
| ns.qa = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| # return_source_documents=True, | |
| ) | |
| logger.debug(f"{ns.ingest_done=}, exit process_files") | |
| _ = ( | |
| f"Done {total} chunks. You can now " | |
| "switch to Query Docs Tab to chat. " | |
| "You can chat in a language you prefer, " | |
| "independent of the document language. Have fun." | |
| ) | |
| return _ | |
| def respond(message, chat_history): | |
| """Gen response.""" | |
| logger.debug(f"{ns.files_uploaded=}") | |
| if not ns.files_uploaded: # no files processed yet | |
| bot_message = "Upload some file(s) for processing first." | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| logger.debug(f"{ns.ingest_done=}") | |
| if not ns.ingest_done: # embedding database not doen yet | |
| bot_message = ( | |
| "Waiting for ingest (embedding) to finish, " | |
| "be patient... You can switch the 'Upload files' " | |
| "Tab to check" | |
| ) | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| _ = """ | |
| if ns.qa is None: # load qa one time | |
| logger.info("Loading qa, need to do just one time.") | |
| ns.qa = load_qa() | |
| logger.info("Done loading qa, need to do just one time.") | |
| # """ | |
| if ns.qa is None: | |
| bot_message = "Looks like the bot is not ready. Try again later..." | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| try: | |
| res = ns.qa(message) | |
| answer = res.get("result") | |
| docs = res.get("source_documents") | |
| if docs: | |
| bot_message = f"{answer}\n({docs})" | |
| else: | |
| bot_message = f"{answer}" | |
| except Exception as exc: | |
| logger.error(exc) | |
| bot_message = f"bummer! {exc}" | |
| if "empty" in str(exc): | |
| bot_message = f"{bot_message} (probably invalid apikey)" | |
| chat_history.append((message, bot_message)) | |
| return "", chat_history | |
| # pylint disable=unused-argument | |
| def ingest( | |
| file_paths: list[str | Path], | |
| model_name: str = MODEL_NAME, | |
| device_type=None, | |
| chunk_size: int = 256, | |
| chunk_overlap: int = 50, | |
| ): | |
| """Gen Chroma db.""" | |
| logger.info("\n\t Doing ingest...") | |
| logger.debug(f" file_paths: {file_paths}") | |
| logger.debug(f"type of file_paths: {type(file_paths)}") | |
| # raise SystemExit(0) | |
| if device_type is None: | |
| if torch.cuda.is_available(): | |
| device_type = "cuda" | |
| else: | |
| device_type = "cpu" | |
| if device_type in ["cpu", "CPU"]: | |
| device = "cpu" | |
| elif device_type in ["mps", "MPS"]: | |
| device = "mps" | |
| else: | |
| device = "cuda" | |
| # Load documents and split in chunks | |
| # logger.info(f"Loading documents from {SOURCE_DIRECTORY}") | |
| # documents = load_documents(SOURCE_DIRECTORY) | |
| documents = [] | |
| for file_path in file_paths: | |
| # documents.append(load_single_document(f"{file_path}")) | |
| logger.debug(f"Doing {file_path}") | |
| documents.extend(load_single_document(f"{file_path}")) | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=chunk_size, chunk_overlap=chunk_overlap | |
| ) | |
| texts = text_splitter.split_documents(documents) | |
| logger.info(f"Loaded {len(file_paths)} files ") | |
| logger.info(f"Loaded {len(documents)} documents ") | |
| logger.info(f"Split into {len(texts)} chunks of text") | |
| # Create embedding | |
| # embedding = HuggingFaceInstructEmbeddings( | |
| embedding = SentenceTransformerEmbeddings( | |
| model_name=model_name, model_kwargs={"device": device} | |
| ) | |
| # https://stackoverflow.com/questions/76048941/how-to-combine-two-chroma-databases | |
| # db = Chroma(persist_directory=chroma_directory, embedding_function=embedding) | |
| # db.add_documents(documents=texts1) | |
| # mit.chunked_even(texts, 100) | |
| db = Chroma( | |
| # persist_directory=PERSIST_DIRECTORY, | |
| embedding_function=embedding, | |
| # client_settings=CHROMA_SETTINGS, | |
| ) | |
| # for text in progress.tqdm( | |
| for text in tqdm(mit.chunked_even(texts, 101), total=ceil(len(texts) / 101)): | |
| db.add_documents(documents=text) | |
| _ = """ | |
| with about_time() as atime: # type: ignore | |
| db = Chroma.from_documents( | |
| texts, | |
| embedding, | |
| persist_directory=PERSIST_DIRECTORY, | |
| client_settings=CHROMA_SETTINGS, | |
| ) | |
| logger.info(f"Time spent: {atime.duration_human}") # type: ignore | |
| """ | |
| logger.info(f"persist_directory: {PERSIST_DIRECTORY}") | |
| # db.persist() | |
| # db = None | |
| # ns.db = db | |
| ns.qa = db | |
| logger.info("Done ingest") | |
| _ = [ | |
| [Path(doc.metadata.get("source")).name, len(doc.page_content)] | |
| for doc in documents | |
| ] | |
| ns.files_info = _ | |
| return _ | |
| # TheBloke/Wizard-Vicuna-7B-Uncensored-HF | |
| # https://huggingface.co/TheBloke/vicuna-7B-1.1-HF | |
| def gen_local_llm(model_id="TheBloke/vicuna-7B-1.1-HF"): | |
| """Gen a local llm. | |
| localgpt run_localgpt | |
| https://medium.com/pytorch/bettertransformer-out-of-the-box-performance-for-huggingface-transformers-3fbe27d50ab2 | |
| with torch.device(“cuda”): | |
| model = AutoModelForCausalLM.from_pretrained(“gpt2-large”, torch_dtype=torch.float16) | |
| model = BetterTransformer.transform(model) | |
| """ | |
| tokenizer = LlamaTokenizer.from_pretrained(model_id) | |
| if torch.cuda.is_available(): | |
| model = LlamaForCausalLM.from_pretrained( | |
| model_id, | |
| # load_in_8bit=True, # set these options if your GPU supports them! | |
| # device_map=1 # "auto", | |
| torch_dtype=torch.float16, | |
| low_cpu_mem_usage=True, | |
| ) | |
| else: | |
| model = LlamaForCausalLM.from_pretrained(model_id) | |
| local_llm = None | |
| if model is not None: # to please pyright | |
| pipe = pipeline( | |
| "text-generation", | |
| model=model, # type: ignore | |
| tokenizer=tokenizer, | |
| max_length=2048, | |
| temperature=0, | |
| top_p=0.95, | |
| repetition_penalty=1.15, | |
| ) | |
| local_llm = HuggingFacePipeline(pipeline=pipe) | |
| return local_llm | |
| def load_qa(device=None, model_name: str = MODEL_NAME): | |
| """Gen qa. | |
| device = 'cpu' | |
| model_name = "hkunlp/instructor-xl" | |
| model_name = "hkunlp/instructor-large" | |
| model_name = "hkunlp/instructor-base" | |
| embedding = HuggingFaceInstructEmbeddings( | |
| """ | |
| logger.info("Doing qa") | |
| if device is None: | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| else: | |
| device = "cpu" | |
| embedding = SentenceTransformerEmbeddings( | |
| model_name=model_name, model_kwargs={"device": device} | |
| ) | |
| # xl 4.96G, large 3.5G, | |
| db = Chroma( | |
| persist_directory=PERSIST_DIRECTORY, | |
| embedding_function=embedding, | |
| client_settings=CHROMA_SETTINGS, | |
| ) | |
| retriever = db.as_retriever() | |
| # _ = """ | |
| # llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G? | |
| llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore | |
| qa = RetrievalQA.from_chain_type( | |
| llm=llm, | |
| chain_type="stuff", | |
| retriever=retriever, | |
| # return_source_documents=True, | |
| ) | |
| # {"query": ..., "result": ..., "source_documents": ...} | |
| return qa | |
| # TODO: conversation_chain | |
| # pylint: disable=unreachable | |
| # model = 'gpt-3.5-turbo', default text-davinci-003 | |
| # max_tokens: int = 256 max_retries: int = 6 | |
| # openai_api_key: Optional[str] = None, | |
| # openai_api_base: Optional[str] = None, | |
| # llm = OpenAI(temperature=0, max_tokens=0) | |
| llm = OpenAI(temperature=0, max_tokens=1024) # type: ignore | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, | |
| # retriever=vectorstore.as_retriever(), | |
| retriever=db.as_retriever(), | |
| memory=memory, | |
| ) | |
| logger.info("Done qa") | |
| return conversation_chain | |
| # memory.clear() | |
| # response = conversation_chain({'question': user_question}) | |
| # response['question'], response['answer'] | |
| def main1(): | |
| """Lump codes.""" | |
| with gr.Blocks() as demo1: | |
| iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
| iface.launch() | |
| demo1.launch() | |
| logger.info(f"ROOT_DIRECTORY: {ROOT_DIRECTORY}") | |
| openai_api_key = os.getenv("OPENAI_API_KEY") | |
| openai_api_base = os.getenv("OPENAI_API_BASE") | |
| logger.info(f"openai_api_key (env var/hf space SECRETS): {openai_api_key}") | |
| logger.info(f"openai_api_base: {openai_api_base}") | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| # name = gr.Textbox(label="Name") | |
| # greet_btn = gr.Button("Submit") | |
| # output = gr.Textbox(label="Output Box") | |
| # greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet") | |
| # | |
| # ### layout ### | |
| with gr.Accordion("Info", open=False): | |
| _ = """ | |
| # localgpt | |
| Talk to your docs (.pdf, .docx, .epub, .txt .md and | |
| other text docs). It | |
| takes quite a while to ingest docs (10-30 min. depending | |
| on net, RAM, CPU etc.). | |
| Send empty query (hit Enter) to check embedding status and files info ([filename, numb of chars]) | |
| Homepage: https://huggingface.co/spaces/mikeee/localgpt | |
| """ | |
| gr.Markdown(dedent(_)) | |
| with gr.Tab("Upload files"): | |
| # Upload files and generate vectorstore | |
| with gr.Row(): | |
| file_output = gr.File() | |
| # file_output = gr.Text() | |
| # file_output = gr.DataFrame() | |
| upload_button = gr.UploadButton( | |
| "Click to upload", | |
| # file_types=["*.pdf", "*.epub", "*.docx"], | |
| file_count="multiple", | |
| ) | |
| with gr.Row(): | |
| text2 = gr.Textbox("Gen embedding") | |
| process_btn = gr.Button("Click to embed") | |
| # reset_btn = gr.Button("Reset everything", visibile=False) | |
| with gr.Tab("Query docs"): | |
| # interactive chat | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(label="Query") | |
| clear = gr.Button("Clear") | |
| # actions | |
| def reset_all(): | |
| """Reset ns.""" | |
| global ns | |
| ns = deepcopy(ns_initial) | |
| return f"reset done: ns={ns}" | |
| # reset_btn.click(reset_all, [], text2) | |
| upload_button.upload(upload_files, upload_button, file_output) | |
| process_btn.click(process_files, [], text2) | |
| # Query docs TAB | |
| msg.submit(respond, [msg, chatbot], [msg, chatbot]) | |
| clear.click(lambda: None, None, chatbot, queue=False) | |
| if __name__ == "__main__": | |
| demo.queue(concurrency_count=20).launch() | |
| _ = """ | |
| run_localgpt | |
| device = 'cpu' | |
| model_name = "hkunlp/instructor-xl" | |
| model_name = "hkunlp/instructor-large" | |
| model_name = "hkunlp/instructor-base" | |
| embedding = HuggingFaceInstructEmbeddings( | |
| model_name=, | |
| model_kwargs={"device": device} | |
| ) | |
| # xl 4.96G, large 3.5G, | |
| db = Chroma(persist_directory=PERSIST_DIRECTORY, embedding_function=embedding, client_settings=CHROMA_SETTINGS) | |
| retriever = db.as_retriever() | |
| llm = gen_local_llm() # "TheBloke/vicuna-7B-1.1-HF" 12G? | |
| qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
| query = 'a' | |
| res = qa(query) | |
| --- | |
| https://www.linkedin.com/pulse/build-qa-bot-over-private-data-openai-langchain-leo-wang | |
| history = [】 | |
| def user(user_message, history): | |
| # Get response from QA chain | |
| response = qa({"question": user_message, "chat_history": history}) | |
| # Append user message and response to chat history | |
| history.append((user_message, response["answer"]))] | |
| --- | |
| https://llamahub.ai/l/file-unstructured | |
| from pathlib import Path | |
| from llama_index import download_loader | |
| UnstructuredReader = download_loader("UnstructuredReader") | |
| loader = UnstructuredReader() | |
| documents = loader.load_data(file=Path('./10k_filing.html')) | |
| # -- | |
| from pathlib import Path | |
| from llama_index import download_loader | |
| # SimpleDirectoryReader = download_loader("SimpleDirectoryReader") | |
| # FileNotFoundError: [Errno 2] No such file or directory | |
| documents = SimpleDirectoryReader('./data').load_data() | |
| loader = SimpleDirectoryReader('./data', file_extractor={ | |
| ".pdf": "UnstructuredReader", | |
| ".html": "UnstructuredReader", | |
| ".eml": "UnstructuredReader", | |
| ".pptx": "PptxReader" | |
| }) | |
| documents = loader.load_data() | |
| """ | |