Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig | |
| from PIL import Image | |
| import torch | |
| import spaces | |
| import json | |
| # Load the processor and model | |
| processor = AutoProcessor.from_pretrained( | |
| 'allenai/Molmo-7B-D-0924', | |
| trust_remote_code=True, | |
| torch_dtype='auto', | |
| device_map='auto' | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| 'allenai/Molmo-7B-D-0924', | |
| trust_remote_code=True, | |
| torch_dtype='auto', | |
| device_map='auto' | |
| ) | |
| import json | |
| def wrap_json_in_markdown(text): | |
| result = [] | |
| stack = [] | |
| json_start = None | |
| in_json = False | |
| i = 0 | |
| while i < len(text): | |
| char = text[i] | |
| if char in ['{', '[']: | |
| if not in_json: | |
| json_start = i | |
| in_json = True | |
| stack.append(char) | |
| else: | |
| stack.append(char) | |
| elif char in ['}', ']'] and in_json: | |
| if not stack: | |
| # Unbalanced bracket, reset | |
| in_json = False | |
| json_start = None | |
| else: | |
| last = stack.pop() | |
| if (last == '{' and char != '}') or (last == '[' and char != ']'): | |
| # Mismatched brackets | |
| in_json = False | |
| json_start = None | |
| if in_json and not stack: | |
| # Potential end of JSON | |
| json_str = text[json_start:i+1] | |
| try: | |
| # Try to parse the JSON to ensure it's valid | |
| parsed = json.loads(json_str) | |
| # Wrap in Markdown code block | |
| wrapped = f"\n```json\n{json.dumps(parsed, indent=4)}\n```\n" | |
| result.append(text[:json_start]) # Append text before JSON | |
| result.append(wrapped) # Append wrapped JSON | |
| text = text[i+1:] # Update the remaining text | |
| i = -1 # Reset index | |
| except json.JSONDecodeError: | |
| # Not valid JSON, continue searching | |
| pass | |
| in_json = False | |
| json_start = None | |
| i += 1 | |
| result.append(text) # Append any remaining text | |
| return ''.join(result) | |
| def process_image_and_text(image, text): | |
| # Process the image and text | |
| inputs = processor.process( | |
| images=[Image.fromarray(image)], | |
| text=text | |
| ) | |
| # Move inputs to the correct device and make a batch of size 1 | |
| inputs = {k: v.to(model.device).unsqueeze(0) for k, v in inputs.items()} | |
| # Generate output | |
| output = model.generate_from_batch( | |
| inputs, | |
| GenerationConfig(max_new_tokens=1024, stop_strings="<|endoftext|>"), | |
| tokenizer=processor.tokenizer | |
| ) | |
| # Only get generated tokens; decode them to text | |
| generated_tokens = output[0, inputs['input_ids'].size(1):] | |
| generated_text = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) | |
| generated_text_w_json_wrapper = wrap_json_in_markdown(generated_text) | |
| return generated_text_w_json_wrapper | |
| def chatbot(image, text, history): | |
| if image is None: | |
| return history + [("Please upload an image first.", None)] | |
| response = process_image_and_text(image, text) | |
| history.append({"role": "user", "content": text}) | |
| history.append({"role": "assistant", "content": response}) | |
| return history | |
| # Define the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Image Chatbot with Molmo-7B-D-0924") | |
| with gr.Row(): | |
| image_input = gr.Image(type="numpy") | |
| chatbot_output = gr.Chatbot(type="messages") | |
| text_input = gr.Textbox(placeholder="Ask a question about the image...") | |
| submit_button = gr.Button("Submit") | |
| state = gr.State([]) | |
| submit_button.click( | |
| chatbot, | |
| inputs=[image_input, text_input, state], | |
| outputs=[chatbot_output] | |
| ) | |
| text_input.submit( | |
| chatbot, | |
| inputs=[image_input, text_input, state], | |
| outputs=[chatbot_output] | |
| ) | |
| demo.launch() |