SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base on the gooaq dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
This model has been finetuned using train_st_gooaq.py using an RTX 3090, although only 10GB of VRAM was used.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("tomaarsen/ModernBERT-base-gooaq")
sentences = [
'are you human korean novela?',
"Are You Human? (Korean: 너도 인간이니; RR: Neodo Inganini; lit. Are You Human Too?) is a 2018 South Korean television series starring Seo Kang-jun and Gong Seung-yeon. It aired on KBS2's Mondays and Tuesdays at 22:00 (KST) time slot, from June 4 to August 7, 2018.",
'A relative of European pear varieties like Bartlett and Anjou, the Asian pear is great used in recipes or simply eaten out of hand. It retains a crispness that works well in slaws and salads, and it holds its shape better than European pears when baked and cooked.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
NanoNQ |
NanoMSMARCO |
| cosine_accuracy@1 |
0.38 |
0.32 |
| cosine_accuracy@3 |
0.64 |
0.56 |
| cosine_accuracy@5 |
0.7 |
0.66 |
| cosine_accuracy@10 |
0.8 |
0.82 |
| cosine_precision@1 |
0.38 |
0.32 |
| cosine_precision@3 |
0.22 |
0.1867 |
| cosine_precision@5 |
0.144 |
0.132 |
| cosine_precision@10 |
0.082 |
0.082 |
| cosine_recall@1 |
0.36 |
0.32 |
| cosine_recall@3 |
0.62 |
0.56 |
| cosine_recall@5 |
0.67 |
0.66 |
| cosine_recall@10 |
0.74 |
0.82 |
| cosine_ndcg@10 |
0.5674 |
0.5554 |
| cosine_mrr@10 |
0.5237 |
0.4725 |
| cosine_map@100 |
0.5117 |
0.4798 |
Nano BEIR
| Metric |
Value |
| cosine_accuracy@1 |
0.35 |
| cosine_accuracy@3 |
0.6 |
| cosine_accuracy@5 |
0.68 |
| cosine_accuracy@10 |
0.81 |
| cosine_precision@1 |
0.35 |
| cosine_precision@3 |
0.2033 |
| cosine_precision@5 |
0.138 |
| cosine_precision@10 |
0.082 |
| cosine_recall@1 |
0.34 |
| cosine_recall@3 |
0.59 |
| cosine_recall@5 |
0.665 |
| cosine_recall@10 |
0.78 |
| cosine_ndcg@10 |
0.5614 |
| cosine_mrr@10 |
0.4981 |
| cosine_map@100 |
0.4957 |
Training Details
Training Dataset
gooaq
Evaluation Dataset
gooaq
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 2048
per_device_eval_batch_size: 2048
learning_rate: 8e-05
num_train_epochs: 1
warmup_ratio: 0.05
bf16: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 2048
per_device_eval_batch_size: 2048
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 8e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.05
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoNQ_cosine_ndcg@10 |
NanoMSMARCO_cosine_ndcg@10 |
NanoBEIR_mean_cosine_ndcg@10 |
| 0 |
0 |
- |
- |
0.0388 |
0.0785 |
0.0587 |
| 0.0068 |
10 |
6.9066 |
- |
- |
- |
- |
| 0.0136 |
20 |
4.853 |
- |
- |
- |
- |
| 0.0204 |
30 |
2.5305 |
- |
- |
- |
- |
| 0.0272 |
40 |
1.3877 |
- |
- |
- |
- |
| 0.0340 |
50 |
0.871 |
0.3358 |
0.4385 |
0.4897 |
0.4641 |
| 0.0408 |
60 |
0.6463 |
- |
- |
- |
- |
| 0.0476 |
70 |
0.5336 |
- |
- |
- |
- |
| 0.0544 |
80 |
0.4601 |
- |
- |
- |
- |
| 0.0612 |
90 |
0.4057 |
- |
- |
- |
- |
| 0.0680 |
100 |
0.366 |
0.1523 |
0.5100 |
0.4477 |
0.4789 |
| 0.0748 |
110 |
0.3498 |
- |
- |
- |
- |
| 0.0816 |
120 |
0.3297 |
- |
- |
- |
- |
| 0.0884 |
130 |
0.3038 |
- |
- |
- |
- |
| 0.0952 |
140 |
0.3062 |
- |
- |
- |
- |
| 0.1020 |
150 |
0.2976 |
0.1176 |
0.5550 |
0.4742 |
0.5146 |
| 0.1088 |
160 |
0.2843 |
- |
- |
- |
- |
| 0.1156 |
170 |
0.2732 |
- |
- |
- |
- |
| 0.1224 |
180 |
0.2549 |
- |
- |
- |
- |
| 0.1292 |
190 |
0.2584 |
- |
- |
- |
- |
| 0.1360 |
200 |
0.2451 |
0.1018 |
0.5313 |
0.4846 |
0.5079 |
| 0.1428 |
210 |
0.2521 |
- |
- |
- |
- |
| 0.1496 |
220 |
0.2451 |
- |
- |
- |
- |
| 0.1564 |
230 |
0.2367 |
- |
- |
- |
- |
| 0.1632 |
240 |
0.2359 |
- |
- |
- |
- |
| 0.1700 |
250 |
0.2343 |
0.0947 |
0.5489 |
0.4823 |
0.5156 |
| 0.1768 |
260 |
0.2263 |
- |
- |
- |
- |
| 0.1835 |
270 |
0.2225 |
- |
- |
- |
- |
| 0.1903 |
280 |
0.2219 |
- |
- |
- |
- |
| 0.1971 |
290 |
0.2136 |
- |
- |
- |
- |
| 0.2039 |
300 |
0.2202 |
0.0932 |
0.5165 |
0.4674 |
0.4920 |
| 0.2107 |
310 |
0.2198 |
- |
- |
- |
- |
| 0.2175 |
320 |
0.21 |
- |
- |
- |
- |
| 0.2243 |
330 |
0.207 |
- |
- |
- |
- |
| 0.2311 |
340 |
0.1972 |
- |
- |
- |
- |
| 0.2379 |
350 |
0.2037 |
0.0877 |
0.5231 |
0.5039 |
0.5135 |
| 0.2447 |
360 |
0.2054 |
- |
- |
- |
- |
| 0.2515 |
370 |
0.197 |
- |
- |
- |
- |
| 0.2583 |
380 |
0.1922 |
- |
- |
- |
- |
| 0.2651 |
390 |
0.1965 |
- |
- |
- |
- |
| 0.2719 |
400 |
0.1962 |
0.0843 |
0.5409 |
0.4746 |
0.5078 |
| 0.2787 |
410 |
0.186 |
- |
- |
- |
- |
| 0.2855 |
420 |
0.1911 |
- |
- |
- |
- |
| 0.2923 |
430 |
0.1969 |
- |
- |
- |
- |
| 0.2991 |
440 |
0.193 |
- |
- |
- |
- |
| 0.3059 |
450 |
0.1912 |
0.0763 |
0.5398 |
0.5083 |
0.5241 |
| 0.3127 |
460 |
0.1819 |
- |
- |
- |
- |
| 0.3195 |
470 |
0.1873 |
- |
- |
- |
- |
| 0.3263 |
480 |
0.1899 |
- |
- |
- |
- |
| 0.3331 |
490 |
0.1764 |
- |
- |
- |
- |
| 0.3399 |
500 |
0.1828 |
0.0728 |
0.5439 |
0.5176 |
0.5308 |
| 0.3467 |
510 |
0.1753 |
- |
- |
- |
- |
| 0.3535 |
520 |
0.1725 |
- |
- |
- |
- |
| 0.3603 |
530 |
0.1758 |
- |
- |
- |
- |
| 0.3671 |
540 |
0.183 |
- |
- |
- |
- |
| 0.3739 |
550 |
0.1789 |
0.0733 |
0.5437 |
0.5185 |
0.5311 |
| 0.3807 |
560 |
0.1773 |
- |
- |
- |
- |
| 0.3875 |
570 |
0.1764 |
- |
- |
- |
- |
| 0.3943 |
580 |
0.1638 |
- |
- |
- |
- |
| 0.4011 |
590 |
0.1809 |
- |
- |
- |
- |
| 0.4079 |
600 |
0.1727 |
0.0700 |
0.5550 |
0.5021 |
0.5286 |
| 0.4147 |
610 |
0.1664 |
- |
- |
- |
- |
| 0.4215 |
620 |
0.1683 |
- |
- |
- |
- |
| 0.4283 |
630 |
0.1622 |
- |
- |
- |
- |
| 0.4351 |
640 |
0.1592 |
- |
- |
- |
- |
| 0.4419 |
650 |
0.168 |
0.0662 |
0.5576 |
0.4843 |
0.5210 |
| 0.4487 |
660 |
0.1696 |
- |
- |
- |
- |
| 0.4555 |
670 |
0.1609 |
- |
- |
- |
- |
| 0.4623 |
680 |
0.1644 |
- |
- |
- |
- |
| 0.4691 |
690 |
0.1643 |
- |
- |
- |
- |
| 0.4759 |
700 |
0.1604 |
0.0660 |
0.5605 |
0.5042 |
0.5323 |
| 0.4827 |
710 |
0.1634 |
- |
- |
- |
- |
| 0.4895 |
720 |
0.1515 |
- |
- |
- |
- |
| 0.4963 |
730 |
0.1592 |
- |
- |
- |
- |
| 0.5031 |
740 |
0.1597 |
- |
- |
- |
- |
| 0.5099 |
750 |
0.1617 |
0.0643 |
0.5576 |
0.4830 |
0.5203 |
| 0.5167 |
760 |
0.1512 |
- |
- |
- |
- |
| 0.5235 |
770 |
0.1563 |
- |
- |
- |
- |
| 0.5303 |
780 |
0.1529 |
- |
- |
- |
- |
| 0.5370 |
790 |
0.1547 |
- |
- |
- |
- |
| 0.5438 |
800 |
0.1548 |
0.0620 |
0.5538 |
0.5271 |
0.5405 |
| 0.5506 |
810 |
0.1533 |
- |
- |
- |
- |
| 0.5574 |
820 |
0.1504 |
- |
- |
- |
- |
| 0.5642 |
830 |
0.1489 |
- |
- |
- |
- |
| 0.5710 |
840 |
0.1534 |
- |
- |
- |
- |
| 0.5778 |
850 |
0.1507 |
0.0611 |
0.5697 |
0.5095 |
0.5396 |
| 0.5846 |
860 |
0.1475 |
- |
- |
- |
- |
| 0.5914 |
870 |
0.1474 |
- |
- |
- |
- |
| 0.5982 |
880 |
0.1499 |
- |
- |
- |
- |
| 0.6050 |
890 |
0.1454 |
- |
- |
- |
- |
| 0.6118 |
900 |
0.1419 |
0.0620 |
0.5586 |
0.5229 |
0.5407 |
| 0.6186 |
910 |
0.1465 |
- |
- |
- |
- |
| 0.6254 |
920 |
0.1436 |
- |
- |
- |
- |
| 0.6322 |
930 |
0.1464 |
- |
- |
- |
- |
| 0.6390 |
940 |
0.1418 |
- |
- |
- |
- |
| 0.6458 |
950 |
0.1443 |
0.0565 |
0.5627 |
0.5458 |
0.5543 |
| 0.6526 |
960 |
0.1458 |
- |
- |
- |
- |
| 0.6594 |
970 |
0.1431 |
- |
- |
- |
- |
| 0.6662 |
980 |
0.1417 |
- |
- |
- |
- |
| 0.6730 |
990 |
0.1402 |
- |
- |
- |
- |
| 0.6798 |
1000 |
0.1431 |
0.0563 |
0.5499 |
0.5366 |
0.5432 |
| 0.6866 |
1010 |
0.1386 |
- |
- |
- |
- |
| 0.6934 |
1020 |
0.1413 |
- |
- |
- |
- |
| 0.7002 |
1030 |
0.1381 |
- |
- |
- |
- |
| 0.7070 |
1040 |
0.1364 |
- |
- |
- |
- |
| 0.7138 |
1050 |
0.1346 |
0.0545 |
0.5574 |
0.5416 |
0.5495 |
| 0.7206 |
1060 |
0.1338 |
- |
- |
- |
- |
| 0.7274 |
1070 |
0.1378 |
- |
- |
- |
- |
| 0.7342 |
1080 |
0.135 |
- |
- |
- |
- |
| 0.7410 |
1090 |
0.1336 |
- |
- |
- |
- |
| 0.7478 |
1100 |
0.1393 |
0.0541 |
0.5776 |
0.5362 |
0.5569 |
| 0.7546 |
1110 |
0.1427 |
- |
- |
- |
- |
| 0.7614 |
1120 |
0.1378 |
- |
- |
- |
- |
| 0.7682 |
1130 |
0.1346 |
- |
- |
- |
- |
| 0.7750 |
1140 |
0.1423 |
- |
- |
- |
- |
| 0.7818 |
1150 |
0.1368 |
0.0525 |
0.5681 |
0.5237 |
0.5459 |
| 0.7886 |
1160 |
0.1392 |
- |
- |
- |
- |
| 0.7954 |
1170 |
0.1321 |
- |
- |
- |
- |
| 0.8022 |
1180 |
0.1387 |
- |
- |
- |
- |
| 0.8090 |
1190 |
0.134 |
- |
- |
- |
- |
| 0.8158 |
1200 |
0.1369 |
0.0515 |
0.5613 |
0.5416 |
0.5514 |
| 0.8226 |
1210 |
0.1358 |
- |
- |
- |
- |
| 0.8294 |
1220 |
0.1401 |
- |
- |
- |
- |
| 0.8362 |
1230 |
0.1334 |
- |
- |
- |
- |
| 0.8430 |
1240 |
0.1331 |
- |
- |
- |
- |
| 0.8498 |
1250 |
0.1324 |
0.0510 |
0.5463 |
0.5546 |
0.5505 |
| 0.8566 |
1260 |
0.135 |
- |
- |
- |
- |
| 0.8634 |
1270 |
0.1367 |
- |
- |
- |
- |
| 0.8702 |
1280 |
0.1356 |
- |
- |
- |
- |
| 0.8770 |
1290 |
0.1291 |
- |
- |
- |
- |
| 0.8838 |
1300 |
0.1313 |
0.0498 |
0.5787 |
0.5552 |
0.5670 |
| 0.8906 |
1310 |
0.1334 |
- |
- |
- |
- |
| 0.8973 |
1320 |
0.1389 |
- |
- |
- |
- |
| 0.9041 |
1330 |
0.1302 |
- |
- |
- |
- |
| 0.9109 |
1340 |
0.1319 |
- |
- |
- |
- |
| 0.9177 |
1350 |
0.1276 |
0.0504 |
0.5757 |
0.5575 |
0.5666 |
| 0.9245 |
1360 |
0.1355 |
- |
- |
- |
- |
| 0.9313 |
1370 |
0.1289 |
- |
- |
- |
- |
| 0.9381 |
1380 |
0.1335 |
- |
- |
- |
- |
| 0.9449 |
1390 |
0.1298 |
- |
- |
- |
- |
| 0.9517 |
1400 |
0.1279 |
0.0497 |
0.5743 |
0.5567 |
0.5655 |
| 0.9585 |
1410 |
0.1324 |
- |
- |
- |
- |
| 0.9653 |
1420 |
0.1306 |
- |
- |
- |
- |
| 0.9721 |
1430 |
0.1313 |
- |
- |
- |
- |
| 0.9789 |
1440 |
0.135 |
- |
- |
- |
- |
| 0.9857 |
1450 |
0.1293 |
0.0493 |
0.5671 |
0.5554 |
0.5612 |
| 0.9925 |
1460 |
0.133 |
- |
- |
- |
- |
| 0.9993 |
1470 |
0.1213 |
- |
- |
- |
- |
| 1.0 |
1471 |
- |
- |
0.5674 |
0.5554 |
0.5614 |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.6.0.dev20241112+cu121
- Accelerate: 1.2.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}