Dataset Viewer (First 5GB)
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
1.92k
1.92k
End of preview. Expand in Data Studio

πŸ“Œ SemanticSTF Dataset

SemanticSTF is a real multimodal LiDAR dataset collected under adverse weather conditions including rain, snow, and fog, for autonomous driving research.

It provides synchronized LiDAR point clouds, RGB images, and per-point semantic labels of 20 classes, designed for 3D semantic segmentation and sensor fusion tasks.

The dataset contains train/val/test splits, camera intrinsics/extrinsics, and high-quality annotations aligned at the frame level.


πŸ“‚ Dataset Contents

The downloadable archive contains:

/SemanticSTF/
  └── calib/
    └── calib_cam_stereo_left.json
    └── calib_tf_tree_full.json
  └── train/
    └── train.txt
    └── velodyne
      └── 2018-02-04_11-09-42_00400.bin
      β”œβ”€β”€ 2018-02-04_11-22-09_00100.bin
      ...
    └── labels
      └── 2018-02-04_11-09-42_00400.label
      β”œβ”€β”€ 2018-02-04_11-22-09_00100.label
      ...
    └── images
      └── 2018-02-04_11-09-42_00400.png
      β”œβ”€β”€ 2018-02-04_11-22-09_00100.png
      ...
  └── val/
    └── val.txt
    └── velodyne
      ...
    └── labels
      ...
    └── images
      ...
  └── test/
    └── test.txt
    └── velodyne
      ...
    └── labels
      ...
    └── images
      ...
  ...
  └── semanticstf.yaml
Modality Format Description
LiDAR .bin LiDAR point cloud
Labels .label semantic label per point
RGB Images .png synchronized with LiDAR
Calibration .json camera intrinsics + LiDAR-to-camera TF
Weather .txt adverse weather per frame

Check example code for data loading.


Citation

If you find our work useful in your research, please consider citing:

@inproceedings{xiao20233d,
  title={3d semantic segmentation in the wild: Learning generalized models for adverse-condition point clouds},
  author={Xiao, Aoran and Huang, Jiaxing and Xuan, Weihao and Ren, Ruijie and Liu, Kangcheng and Guan, Dayan and El Saddik, Abdulmotaleb and Lu, Shijian and Xing, Eric P},
  booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
  pages={9382--9392},
  year={2023}
}

SemanticSTF dataset consists of re-annotated LiDAR point cloud data from the STF dataset. Kindly consider citing it if you intend to use the data:

@inproceedings{bijelic2020seeing,
  title={Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather},
  author={Bijelic, Mario and Gruber, Tobias and Mannan, Fahim and Kraus, Florian and Ritter, Werner and Dietmayer, Klaus and Heide, Felix},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={11682--11692},
  year={2020}
}
Downloads last month
64