Datasets:
Search is not available for this dataset
image
imagewidth (px) 1.92k
1.92k
|
|---|
End of preview. Expand
in Data Studio
π SemanticSTF Dataset
SemanticSTF is a real multimodal LiDAR dataset collected under adverse weather conditions including rain, snow, and fog, for autonomous driving research.
It provides synchronized LiDAR point clouds, RGB images, and per-point semantic labels of 20 classes, designed for 3D semantic segmentation and sensor fusion tasks.
The dataset contains train/val/test splits, camera intrinsics/extrinsics, and high-quality annotations aligned at the frame level.
π Dataset Contents
The downloadable archive contains:
/SemanticSTF/
βββ calib/
βββ calib_cam_stereo_left.json
βββ calib_tf_tree_full.json
βββ train/
βββ train.txt
βββ velodyne
βββ 2018-02-04_11-09-42_00400.bin
βββ 2018-02-04_11-22-09_00100.bin
...
βββ labels
βββ 2018-02-04_11-09-42_00400.label
βββ 2018-02-04_11-22-09_00100.label
...
βββ images
βββ 2018-02-04_11-09-42_00400.png
βββ 2018-02-04_11-22-09_00100.png
...
βββ val/
βββ val.txt
βββ velodyne
...
βββ labels
...
βββ images
...
βββ test/
βββ test.txt
βββ velodyne
...
βββ labels
...
βββ images
...
...
βββ semanticstf.yaml
| Modality | Format | Description |
|---|---|---|
| LiDAR | .bin |
LiDAR point cloud |
| Labels | .label |
semantic label per point |
| RGB Images | .png |
synchronized with LiDAR |
| Calibration | .json |
camera intrinsics + LiDAR-to-camera TF |
| Weather | .txt |
adverse weather per frame |
Check example code for data loading.
Citation
If you find our work useful in your research, please consider citing:
@inproceedings{xiao20233d,
title={3d semantic segmentation in the wild: Learning generalized models for adverse-condition point clouds},
author={Xiao, Aoran and Huang, Jiaxing and Xuan, Weihao and Ren, Ruijie and Liu, Kangcheng and Guan, Dayan and El Saddik, Abdulmotaleb and Lu, Shijian and Xing, Eric P},
booktitle={Proceedings of the IEEE/CVF conference on computer vision and pattern recognition},
pages={9382--9392},
year={2023}
}
SemanticSTF dataset consists of re-annotated LiDAR point cloud data from the STF dataset. Kindly consider citing it if you intend to use the data:
@inproceedings{bijelic2020seeing,
title={Seeing through fog without seeing fog: Deep multimodal sensor fusion in unseen adverse weather},
author={Bijelic, Mario and Gruber, Tobias and Mannan, Fahim and Kraus, Florian and Ritter, Werner and Dietmayer, Klaus and Heide, Felix},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={11682--11692},
year={2020}
}
- Downloads last month
- 64